Skip to main content
. 2021 Mar 29;11:7014. doi: 10.1038/s41598-021-86640-1

Table 2.

Model formulas and Δ AIC scores for individual integrated step selection functions.

Model Model formula PYBI021 PYBI022 PYBI028 PYBI029 PYBI033 PYBI055
1 log_sl*cos_ta + strata(step_id_) (null model) 21.92 8.13 11.78 18.04 2.39 17.05
2 forest + forest:sl + forest:ta 19.12 12.64 7.59 14.27 6.34 21.56
3 settle + settle:sl + settle:ta 17.19 13.74 7.04 20.93 1.85 17.43
4 road + road:sl + road:ta 18.46 7.98 12.61 18.18 1.61 15.29
5 water + water:sl + water:ta 4.7 0 5.32 0.14 2.51 5.67
6 aq.ag + aq.ag:sl + aq.ag:ta 19.75 9.83 0 22.43 0.94 16.46
7 terr.ag + terr.ag:sl + terr.ag:ta 21.46 8.97 11.32 15.72 4.58 20.08
8 road + forest + settle 24.43 11.04 14.83 6.9 6.41 19.24
9 road + terr.ag + water 3.51 6.83 3.62 1.81 1.22 0
10 water + settle + aq.ag 0 5.68 10.1 0 0 6.39

Integrated step selection functions were created using observed steps of radio tracked Burmese pythons (Python bivittatus) within the agricultural matrix (i.e., all individuals excluding PYBI060) in the Sakaerat Biosphere Reserve, Nakhon Ratchasima, Thailand. Each model includes interactive effects of turn angle and step length. sl: step length, ta: turn angle, settle: human settlement, aq.ag: aquatic agriculture, terr.ag: terrestrial agriculture. Emboldened text indicates score within < 2 Δ AIC of the model with the most support for a given individual.