Table 4.
Performance metrics of DNN model in diagnosing malignant nodules of different sizes, evaluated on normal subset versus HT subset.
HT Subset | Normal subset | ||
---|---|---|---|
Average size (SD) | 0.975 (0.51) | 1.25 (0.77) | |
<5 mm | AUC | 0.915 | 0.895 |
Accuracy | 0.83 | 0.825 | |
Sensitivity | 0.859 | 0.82 | |
Specificity | 0.828 | 0.826 | |
Precision | 0.327 | 0.651 | |
5–10 mm | AUC | 0.909 | 0.895 |
Accuracy | 0.82 | 0.846 | |
Sensitivity | 0.902 | 0.868 | |
Specificity | 0.794 | 0.822 | |
Precision | 0.577 | 0.841 | |
10–20 mm | AUC | 0.883 | 0.907 |
Accuracy | 0.832 | 0.837 | |
Sensitivity | 0.854 | 0.878 | |
Specificity | 0.824 | 0.792 | |
Precision | 0.652 | 0.827 | |
>20 mm | AUC | 0.871 | 0.845 |
Accuracy | 0.836 | 0.801 | |
Sensitivity | 0.722 | 0.724 | |
Specificity | 0.864 | 0.837 | |
Precision | 0.594 | 0.688 |
AUC, Areas under the ROC curve. All metrics were the average of 10-folds.