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Abstract

Nearly 200 distinct chemical modifications of RNAs have been discovered to date. Their analysis via direct methods has
been possible in abundant RNA species, such as ribosomal, transfer or viral RNA, since several decades. However, their
analysis in less abundant RNAs species, especially cellular messenger RNAs, was rendered possible only recently with the
advent of high throughput sequencing techniques. Given the growing biomedical interest of the proteins that write, erase
and read RNA modifications, ingenious new methods to enrich and identify RNA modifications at base resolution have been
implemented, and more efforts are underway to render them more quantitative. Here, we review several crucial
modification-specific (bio)chemical approaches and discuss their advantages and shortcomings for exploring the
epitranscriptome.
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Introduction
The chemical diversity of RNA polymers is vastly expanded
by more than 200 chemical modifications that can occur at
the phosphate, ribose and nucleobases in living organisms
[1]. These chemical tags fine-tune RNA–DNA, RNA–RNA and
RNA–protein interactions, eventually affecting gene expression
networks and cellular functions. Most of RNA modifications
are incorporated during or after transcription and are often
called post-transcriptional modifications. Borrowing from the
language of epigenetics, and from the Ancient Greek ε’πί (epí, ‘on
top of’), RNA modifications are also called epitranscriptomic, to
highlight that they carry another layer of information on top of
the RNA sequence itself. In this review, we highlight methods
developed to dissect this additional layer of information for a
few base modifications with high biological impact.

Transfer RNAs (tRNAs) are the most chemically diverse RNA
molecules. tRNAs have the advantage of being small (<100 nt),
abundant in cells and carrying evolutionary conserved RNA
modifications [2]. As a result, the study of tRNA modifications
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has driven forward technological advances in the last 6 decades.
The state of the art for tRNA modification detection and quan-
tification entails tRNA affinity purification with sequence spe-
cific probes, digestion with specific RNases and tandem mass
spectrometry analysis [3]. Despite their abundance, full-length
tRNAs remain difficult to sequence using RNA-seq techniques.
The main culprit is the presence of specific tRNA modifica-
tions that create a roadblock for many commonly used reverse
transcriptases (RTs) during the step of complementary DNA
(cDNA) synthesis [4]. The two main strategies for overcoming
this hurdle has been to either remove select tRNA modifica-
tions with appropriate eraser enzymes before RNA-seq library
preparation [5, 6], or to use RTs, such as thermostable group
II intron reverse transcriptases (TGIRTs) [7] that have the dual
advantage of bypassing RNA modification roadblocks and of
leaving a characteristic nucleotide misincorporation signature at
RNA modification sites [8, 9].

Specific messenger RNAs (mRNAs) are significantly less
abundant than specific tRNAs, making affinity purification
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Figure 1. A given RNA modification may be detected by direct sequencing, such as the Oxford Nanopore Technology, or by SBS sequencing methods that involve an

obligate RT into cDNA step. When the RNA modification does not change base pairing during RT (silent), the modification is enriched through specific antibodies, or

‘unsilenced’ through specific treatments. In the latter case, and when the RNA modification naturally changes the base pairing (RT signature) or creates a roadblock,

it can inferred though mismatch to the reference or read pile-up or drop-off.

techniques coupled to tandem mass spectrometry unviable
for detecting specific mRNA modifications at single nucleotide
resolution level. Instead, modifications on specific mRNAs and
other less abundant RNAs are most often inferred through either
direct or indirect (sequencing-by-synthesis [SBS]) sequencing
methods (Figure 1). Indeed, many RNA modifications are
now detectable by a direct sequencing method from Oxford
Nanopore Technology (Figure 1), which decodes changes to
an electrical current as nucleic acids are passed through a
protein nanopore to provide the specific RNA sequence [10].
While still in development, this technology is very promising
for identifying RNA modifications and their combinations in
intact RNA molecules, but due to space limitations, we will not
review this method here, and refer the reader to an excellent
review by Novoa et al. [10] as a starting point. In SBS methods,
the RNA is first reverse-transcribed into cDNA with RTs prior
to library amplification, and this step is crucial for detection
of RNA modifications at the single nucleotide resolution level.
RNA modifications that do not affect Watson–Crick base pairing
are RT silent, i.e. they do not change the output sequence,
while RNA modifications that change Watson–Crick base pairing
can induce either a nucleotide misincorporation or an RT
block at the RNA modification site during cDNA synthesis as
mentioned above. In this case, the RNA modification site can
be inferred from the mismatch to the reference sequence, or
from read pile up/drop-off (Figure 1). RT silent modifications are
most often enriched with specific antibodies prior to RNA-seq.
While effective in identifying approximate RNA modification
locations, such methods cannot precisely identify which sites
in the RNA-seq peaks are modified, nor can they quantify the
modification stoichiometry for each site. Remarkably however,
RT silent RNA modifications can be ‘unsilenced’ through specific
antibody crosslinking, chemical, editing or digestion methods to
allow their identification at single-nucleotide resolution level
(Figure 1).

N6-Methyladenosine (m6A)

Adenosine can be methylated on the exocyclic amino group
(-NH2) at the sixth position of the purine ring to form N6-
methyladenosine (m6A). It is one of the most prevalent RNA
modifications, especially in mRNA, where it is primarily written
by METTL3/14 complex [11], and plays crucial roles in mRNA
metabolism and associated cellular processes [12–14]. m6A
requires sophisticated methods for its site specific detection
and quantitation, because it does not disrupt Watson–Crick
base pairing and is silent during reverse transcription [15]. m6A
antibody-based enrichment and next-generation sequencing
approaches (MeRIP-seq or m6A-seq) were pioneered by Meyer
et al. [16], and Dominissini et al. [17] in 2012, and have proved
to be successful for transcriptome-wide m6A mapping in
many biological settings (reviewed in [18]). Another technique,
termed site-specific cleavage and radioactive-labeling followed
by ligation-assisted extraction and thin-layer chromatography
(SCARLET) was developed by the Pan group and is useful for
validating the precise location of the m6A residue and its
modification ratio one site at a time [19]. In addition, several
metabolic tagging techniques using alkyne or allyl analogs of
the methyl group donor S-Adenosyl-Methionine (SAM) that
induce RT block [15] or misincorporation signature [20] have
been reported. For example, the latter method uses Se-allyl-
L-selenohomocysteine as SAM analog for in-cell experiments
[20]. Once the allyl-handle is metabolically incorporated as N6-
allyladenosine at the position of m6A by methyltransferases,
through iodine induced cyclization, mismatch signatures at
m6A sites can be generated. The MAZTER-seq method takes
advantage of the fact that the endoribonuclease mazF cuts
immediately upstream of an ACA sequence but not (m6A)CA
[21], to detect and quantify the m6A sites occurring within the
(m6A)CA motif. MAZTER-seq was successfully applied to profile
and quantify m6A at single-nucleotide resolution at 16–25%
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Figure 2. Chemistry behind bisulfite sequencing. Bisulfite deaminates cytosine (C) to uracil (U), giving rise to a T signal during sequencing. m5C has an electron rich

C5-C6 bond and is resistant to deamination, exhibiting a C signal.

of expressed sites in mRNA [22]. In another elegant method
called DART-seq [23], Meyer fused the m6A-binding domain YTH
from the YTHDF2 m6A reader to the deaminase domain (BE1) of
APOBEC1 to induce a C to U editing in the invariable C residue
of the m6A writer consensus domain (Gm6AC →Gm6AU) to
enable antibody-free single nucleotide resolution m6A mapping
and quantitation. In [23], the cells were transiently transfected
with an APOBEC1-YTH construct limiting its use to cell lines or
model organisms engineered to express APOBEC1-YTH, however
Gm6AC →Gm6AU editing post-RNA extraction with recombinant
APOBEC1-YTH should be feasible and render m6A mapping
from low input samples—such as patient samples—finally
possible.

5-Methylcytosine (m5C)

Similar to DNA, RNA can be methylated on the carbon 5 of
the pyrimidine ring of cytosines to form 5-methylcytosine or
m5C (Figure 2). m5C is abundant in tRNA and rRNA, as well
as in other RNA species, including mRNA where it may be
the second most abundant base modification after m6A [24].
Although RNA m5C modification has been less studied than
m6A, it is clearly a very important modification carried out
by eight different m5C RNA methyltransferases (NSUN1-7, and
TRMT1/DNMT2) in humans, most of which have important bio-
logical roles relevant to disease and cancer [25, 26]. m5C is RT
silent, but similarly to DNA, bisulfite treatment coupled to RNA-
seq has been used to map m5C at single nucleotide resolution
[27–30]. Indeed, due to the electron rich C5-C6 double bond
in the m5C pyrimidine ring, bisulfite treatment converts C but
not m5C to U (Figure 2). Thus, upon bisulfite treatment, reverse
transcription-polymerase chain reaction (RT-PCR) and sequenc-
ing, C gives rise to T, while m5C stays C (Figure 2). However,
bisulfite reaction suffers from RNA degradation and incom-
plete C to U conversion, especially in double stranded or highly
structured regions (i.e. G-C clamps) [31], limiting m5C map-
ping to abundant RNAs. Other methods have been developed
to improve the sensitivity of m5C detection. For example, in the
Aza-IP method developed by Khoddami and Cairns [32], cells are
metabolically labeled with the 5-azacytidine (5-azaC) C analog,
which randomly gets incorporated into RNA instead of C. When

this occurs at a target m5C RNA site, a covalent bond (C–S)
forms between the C6 position of the base and the sulfur atom
of a cysteine residue in the catalytic pocket of specific RNA
methyltransferases [32]. An alternative, UV-crosslink-free ver-
sion of iCLIP named miCLIP (methylation-individual nucleotide
resolution crosslinking and immmunoprecipitation) was devel-
oped by the Frye lab to identify NSUN2 m5C RNA methyltrans-
ferase targets [33]. In miCLIP, NSUN2 is engineered to not release
NSUN2 RNA targets due to irreversible covalent bond forma-
tion between the NSUN2-C271A mutant and the RNA catalytic
intermediate. Thus, NSUN2 target RNAs could be enriched and
identified through IP of the protein–RNA complex and RNA-
seq of the recovered target RNAs [33]. Osmium reaction-based
tagging of m5C followed by liquid chromatography coupled to
mass spectrometry (LC–MS) has also been reported [34, 35]. It
takes advantage of the C5-methyl group that increases electron
density along the C5=C6 double bond in m5C and forms a stable
m5C–Os–ligand ternary complex (ligand=bipyridine). However,
it suffers from structural problems and high reactivity toward
m5U (T) [34, 35].

Pseudouridine (�)

Pseudouridine or � is a highly abundant RNA modification
catalyzed by a large number of �-synthases (PUS, 13 different
enzymes in humans), which break the nitrogen-carbon glyco-
sidic bond between the ribose and U, rotate the base by 180◦

and form a carbon–carbon glycosidic bond instead [36–39]. This
isomerization allows for an additional hydrogen bond donor
in � compared to U contributing to better thermodynamic
(structural) stability and base-stacking [36–39]. � detection
is problematic for two reasons; firstly, it is an RT silent
modification, and secondly, it is also a mass spectrometry silent
modification due to � having the same mass as U. [39]. However
� can be ‘unsilenced’ by chemical labeling with carbodiimides or
carbodiimide derivatives that enable its detection by mismatch
signatures during sequencing [39–43] or by using several tag-free
or tag-on mass spectrometry based approaches [44–46] (Figure 3).
Interestingly, a recent report also indicated base-skipping/
deletion at/near the position of � during bisulfite sequencing
[27].
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Figure 3. Labeling of Pseudouridine (�) by carbodiimide CMCT (N-cyclohexyl-N′-β-(4-methylmorpholinium) ethylcarbodiimide p-tosylate) reagent. CMCT forms bulky

derivatives which upon alkaline hydrolysis give rise to a single derivative exhibiting distinct RT signature. Using this chemistry, � can be identified by sequencing and

LC–MS. (R1 = cyclohexyl group, R2 = ethyl-4-methylmorpholinium group).

Figure 4. Sodium cyanoborohydride (NaCNBH3) mediated reduction of ac4C. In acidic media, the hydride reduces ac4C to N4-acetyltetrahydrocytidine, which generates

a T signal instead of a C signal during sequencing.

N4-acetylcytosine (ac4C)

Cytosines can undergo acetylation on the exocyclic amino group
(–NH2) at the fourth position of the pyrimidine ring to form
ac4C in a reaction requiring ATP, Acetyl-CoA, the NAT10 acetyl-
transferase [47], and in specific cases the U13 snoRNA or the
THUMPD1 adaptor protein [48]. Ac4C stabilizes G–C interactions
and fine-tunes mRNA translation efficiency and stability [49].
Ac4C is also RT silent, and recently, two different approaches
attempted to reveal the ac4C epitranscriptome in human cell
lines. The ac4C antibody-based acRIP-seq approach identified
numerous ac4C sites in mRNA [49]. The other approach exploited
the fact that sodium borohydride (NaBH4) or sodium cyanoboro-
hydride (NaCNBH3) reduces ac4C to give rise to T upon RT-PCR,
whereas unmodified C remains C [50] (Figure 4). The sodium
cyanoborohydride treatment coupled to RNA-seq mapped ac4C
in ribosomal RNA and a few tRNAs in human cells, but only
mapped ac4C to a few mRNAs—only when both NAT10 and
THUMPD1 were overexpressed [51]. It was suggested that the
ac4C antibody suffers from non-specificity, however the sites
of ac4C identified by acRIP-seq disappeared in HeLa-NAT10-
KO cells [49]. Thus, it is likely that the discrepancies between
the two approaches come from yet to be identified differences,
including differences in cell lines growth conditions and/or ratio
of modification. This discrepancy could be solved by coupling
the acRIP-seq to sodium cyanoborohydride treatment, which
could concomitantly enrich the ac4C modified RNAs and directly
test the specificity of the antibody.

2′-O-methylation (Nm)

2′-O-methylation, i.e. methylation of the 2′-OH group in ribose,
is one of the most common modifications observed in almost
every class of RNAs, including mRNAs and piRNAs [52, 53]. Please
note that the whole nucleotide is referred to as Nm, where
N is any base. 2′-O-methylation disrupts hydrogen bonds due
to the increase in lipophilic surface and thus has significant
effects including stabilization of helical structures, protection of
RNA from various endonucleases, or fine-tuning of RNA-protein
interactions [52]. Due to the presence of 2′-OMe group, Nm is
resistant to alkaline hydrolysis (Figure 5A) or periodate oxidation
(Figure 5B). These properties have been coupled to RNA-seq to
map Nm sites in transcriptome-wide scale [54–57]. However,
given that Nm mapping relies on read pile-up or drop-off at
the Nm site, instead of misincorporation, the confidence in the
identified sites is weakened, while the rate of Nm modification is
difficult to estimate. For example, Nm-seq identified 7412 sites in
non-ribosomal RNAs species from HEK293 cells, with a consen-
sus sequence of 10 nt present in 33% of all sites [57]. However,
close inspection of this consensus sequence revealed that it is
nearly identical to the 3′ adaptor used in the Nm-seq library,
suggesting that a third of identified Nm sites may be due to a
commonly observed mispriming artifact [58]. In spite of this, the
rest of the reads may represent bona fide Nm sites, highlighting
the need for more robust methods for systematic detection and
validation of Nm sites. Indeed, internal Nm modifications may
have important roles in gene expression regulation, as suggested
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Figure 5. (A) Detection of Nm (2′-O-Me) by alkaline hydrolysis. Due to the presence of 2′-OH, RNA gets hydrolyzed in basic conditions, while 2′-OMe containing nucleotide

is resistant to cleavage. (B) Detection of Nm (2′-O-Me) by periodate based oxidation. Periodate is capable of oxidizing 1,2-diol (2′ ,3′-OH groups), but not Nm due to the

presence of 2′-OMe group.

by a recent study showing that similar to rRNA, Fibrillarin can be
guided by snoRNAs U32A and U51 to modify a specific residue
within the protein-coding region of peroxidasin to enhance the
stability, but inhibit the translation of the mRNA into protein [59].

7-methylguanosine (m7G)

Guanines can be methylated at the N7-position of the purine
ring (m7G) inducing a positive charge. The most widely known
function of m7G modification is related to it being an obligate
feature of eukaryotic mRNA caps [60]. However, methylation of
m7G by METTL1 was recently mapped in internal sites in other
RNA species [61–65] by exploiting an observation in the 1970’s
that sodium borohydride efficiently reduces m7G in basic condi-
tions, and the reduced base is prone to forming an abasic site in
acidic conditions [66, 67] (Figure 6). Since the abasic site consists
of an equilibrating mixture of the ring-closed acetal (major) and
the ring-opened aldehyde (minor), it can be covalently bound
with hydrazine probes (e.g. biotin-hydrazine) for enrichment and
detection purposes [61–65]. Moreover, given that m7G sites can
be directly traced by the abasic site signatures generated dur-
ing cDNA synthesis and sequencing [61–64], it is paramount to
inspect that the sequence of the RNAs enriched by this method
contain these abasic site signatures, in order to distinguish
background RNAs from RNAs with bona fide m7G sites.

N1-methyladenosine (m1A)

N1-methyladenosine is a major modification primarily observed
in conserved sites in tRNA and rRNA [68]. The m1A nucleo-
side is positively charged and able of disrupting Watson–Crick
base pairing. Consequently, m1A creates RT roadblock and/or
misincorporation signatures in ratios that are specific of the
adjoining nucleotides and used reverse transcriptases [69–71].
These properties have been exploited to map m1A at single
nucleotide resolution in RNA-seq experiments performed with
or without pre-enrichment with an m1A antibody [5–9, 69–76].
The stoichiometry of m1A modification in tRNA and rRNA is

high, leading to excellent concordance of sites detected by mass
spectrometry and RNA-seq [69–71], however the extent of m1A in
cytoplasmic mRNA has been debated [75], going from a dozen, to
hundreds or thousands of sites identified [69–71, 74, 76]. While
most of the cited publications agree that the m1A antibody
enriches sequences mapping to the 5′ ends of mRNAs, they
diverge in the number of ‘called’ m1A sites. This may be due
to a combination of issues, including m1A antibody specificity,
accuracy of read mapping, and the ratio of misincorporation by
RTs within the m1A-antibody enriched sequences [75]. At least
two publications have reported that the ratio of misincorpora-
tion is not linearly correlated to the ratio of m1A modifications
when using either TGIRT [69] or an RT specifically evolved from
the human immunodeficiency virus RT catalytic domain (p66)
to increase m1A readthrough and misincorporation rate [71].
This problem may be the primary reason why, apart from a few
overlapping called m1A sites among datasets, there is variability
in the numbers and identity of ‘called’ m1A sites even within
the same cell line. The case of m1A exemplifies the difficulty of
accurately identifying low stoichiometry RNA modification sites
in RNA even in the advantageous situation of a modification
that is not RT silent. Going forward, as previously proposed [18],
evolution of new RTs with improved readthrough and higher
misincorporation rate as in the elegant study from the He and
Dickinson labs [71], should solve many of the issues related to
the bioinformatic analysis of misincorporation signatures for
detecting RNA modifications with low stoichiometry [77].

Remarks
Numerous (bio)chemical methods have been reported to
date to identify/quantify a growing spectrum of RNA modi-
fications. Here we described several methods targeting cru-
cial modifications such as N6-methyladenosine (m6A), 5-
methylcytosine (m5C), pseudouridine (�), N4-acetylcytosine
(ac4C), 7-methylguanosine (m7G), N1-methyladenosine (m1A) etc.
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Figure 6. Sodium borohydride (NaBH4) mediated detection of m7G. NaBH4 reduces m7G and the reduced base is prone to cleavage forming an abasic site in acidic

media. Abasic sites can be covalently linked with hydrazine probes (e.g. biotin-hydrazine) for enrichment and detection purposes. R = linker containing biotin moiety.

Antibody-based techniques require high input of RNA and
often show background/non-specificity during enrichment.
Thus, multiple controls and/or orthogonal approaches should
be used to correlate/verify the results whenever possible.
One should keep in mind this drawback before using any
modification-specific antibody techniques.

LC–MS based methods are very sensitive for detecting mod-
ification. But impurity present in RNA samples or degraded
RNA might give rise to ‘false positive’ results. Moreover, for
low abundance RNAs (e.g. mRNA or miRNA), mass spectrometry
dependent methods can be difficult to perform.

Reproducibility of results using available methods might vary
from person to person (or lab to lab) depending on multiple
crucial factors such as pH, reagent concentration, reaction/incu-
bation time, solubility, salt concentration, temperature and RT
used. RNA modifications are sensitive to environmental effects,
e.g. heat shock, oxidative/reductive stress. Therefore, handing
cells/tissues with proper care and proper experimental settings
are extremely important to obtain reproducible results. Notably,
epitranscriptomic profile or RNA modification levels may largely
be context-specific and thus vary from one cell line to another
cell line and from one organism to another.

Many of the techniques described here have been crucial
for deciphering the roles of RNA modifiers in cellular processes
involved in normal development and disease. However, many
are laborious and often suffer from non-specificity, RNA

degradation, background and structural problems, or inappro-
priate bioinformatic analysis. Moreover, RNA-friendly chemical
reactions might require proper optimization to gain better target
selectivity and yield. Thus, more extensive research, and more
sensitive and accurate methods are still required to explore in
depth the epitranscriptome and the panoply of proteins that
write, read and erase them. This is paramount to elucidating
their roles in disease and cancer, with the ultimate goal of
targeting them for therapeutic benefit.

Summary points
• Detection at single nucleotide resolution level is

paramount to uncover the molecular mechanism of
action of RNA modifications.

• RNA modifications in rare RNAs are inferred through
either direct or indirect sequencing methods.

• RNA modifications that affect base pairing can induce
reverse transcription (RT) roadblock or nucleotide
misincorporation, thus enabling detection at single
nucleotide resolution.

• RNA modifications that do not affect base pairing
are called RT silent, but can be ‘unsilenced’ through
specific chemical or biochemical treatments to induce
RT roadblock or nucleotide misincorporation.
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