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Abstract

Prediction of chemical bioactivity and physical properties has been one of the most important 

applications of statistical and more recently, machine learning and artificial intelligence methods 

in chemical sciences. This field of research, broadly known as Quantitative Structure-Activity 

Relationships (QSAR) modeling, has developed many important algorithms and has found a broad 

range of applications in physical organic and medicinal chemistry in the past 55+ years. This 

Perspective summarizes recent technological advances in QSAR modeling. Importantly, it also 

highlights the applicability of algorithms, modeling methods, and validation practices developed in 

QSAR to a wide range of research areas beyond traditional QSAR fields. These fields include 

nanotechnology, materials science, biomaterials, clinical informatics, and others. As modern 

research methods generate rapidly increasing amounts of data, knowledge of robust data-driven 

modelling methods is becoming essential for scientists in many disciplines both within and outside 

of chemical research. We hope that this contribution will serve to address this challenge.

Introduction

Quantitative Structure-Activity Relationship (QSAR) modeling is a well-established 

computational approach to chemical data analysis. QSAR models are developed by 

establishing empirical, linear or non-linear relationships between values of chemical 
descriptors computed from molecular structure and experimentally measured properties or 

bioactivities of those molecules, followed by application of these models to predict or design 

novel chemicals with desired properties.

Historically, QSAR modeling has largely been applied to computer-aided drug discovery. 

Many papers, reviews, and book chapters describing the methods and applications of QSAR 

modeling have appeared in the scientific literature since the seminal publication by Hansch 

et al. in 19621 that effectively pioneered the field. More than five years ago, some of the 

contributors to this paper coauthored a comprehensive review of QSAR modeling,2 where 

we discussed the evolution of methods and best practices of QSAR. The field has grown and 

evolved substantially subsequently. The Web of Science core collection lists more than 5600 

papers on QSAR published within last five years, a substantial fraction of the ~20,000 

papers that have been published on this subject since 1962. Many publications have 

advanced the traditional areas of QSAR modeling such as prediction of biological activities 

and ADME/Tox properties, building on successful use of QSAR modeling in chemical, 

agrochemical, pharmaceutical3, and cosmetic industries.4 However, new and interesting 

directions and application areas have also emerged, such as process chemistry5,6 and 

(retro)synthetic route prediction and optimization.7 Thus, models have become an integral 

component of the drug discovery process, providing substantial guidance in planning 

experiments.3,8

Clearly, QSAR modeling is an established and useful computational chemistry approach . 

However, many practitioners still consider it limited to modeling and prediction of chemical 

bioactivities and/or properties. One aim of this Perspective is to outline the opportunities 
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presented by recent and emerging developments in artificial intelligence (AI), machine 

learning (ML) and other approaches to modeling Big Data within traditional QSAR. 

However, our prime objective is to emphasize the impact that QSAR methods and 

approaches have, or will shortly have, on many modern data-driven areas of molecular 

research beyond traditional QSAR areas.

In cheminformatics molecules are represented by mathematical descriptors that encode 

molecular structures and properties. Multivariate statistical methods or machine learning are 

employed to establish relationships between descriptors and a target property, such as 

molecular bioactivity. It is easy to see that analogous representations can be generated for 

many types of data where objects are represented by their features, and the general objective 

is to predict object properties (endpoints) from these features. For instance, in clinical data, 

the objects would be patients, the features would be clinical or pharmacological biomarkers 

characteristic of the patients, and the target property would be the any health outcomes such 

as the rate of patient survival.

Regardless of the nature of the data, the same machine learning (ML) approaches can be 

used universally to analyze and process data in any domain. Furthermore, despite differences 

in the information content and meaning of the data, different research fields share similar 

data handling routines. These often replicate the workflows and protocols already created, 

evaluated, and used in QSAR. Indeed, the general data cycle associated with QSAR projects 

(Figure 1) can be easily adopted for similar data-analytical investigations in other fields. To 

further illustrate this point, Table 1 provides a collection of recent references describing 

studies in diverse research areas that cite some or many concepts from QSAR. Examples 

include fields as diverse as climatology,9 urban engineering,10 student admissions,11, remote 

sensing12 and clinical informatics (discussed in one of the sections of this contribution). 

Importantly, QSAR modeling was one of the first research fields that highlighted the 

importance of data curation,13 rigorous validation of developed models,14 and data 

reproducibility,15 that has recently become a significant concern to the scientific community.
16

Here we integrate contributions from some of the leading experts in QSAR modeling that 

illustrate the breadth and generality of modern data processing and modeling practices in the 

field.17 The contributors have worked both on methodology and applications of QSAR 

modeling for most of their professional life. Some of the coauthors have pivoted their 

research into other areas where QSAR-like approaches have not been used before, 

illustrating the main theme of this paper by their own careers. We engaged other scientists 

who work in areas where data modeling was not common but who have started using 

QSAR-like methods in their research. We are confident that many fields that employ 

statistical modeling approaches will benefit significantly from the experience accumulated 

within the QSAR community in the last 55 years.

We start this contribution by discussing fundamental concepts of QSAR, such as chemical 

similarity. We describe the impact of recent advances, such as Deep Learning (DL), on 

traditional areas of QSAR modeling, such as drug discovery and development and chemical 

safety prediction. We then reflect how the complexity of algorithms and the size, diversity, 
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and complexity of chemical bioactivity data have grown. We also illustrate how modern 

computational methods are capable of modeling multiple bioactivity endpoints 

simultaneously, addressing the issue of multi-objective optimization. We then extend 

traditional boundaries of QSAR by summarizing recent, exciting developments in organic 

synthesis planning and retrosynthetic pathway prediction, advances in robotic chemistry, and 

applications of machine learning to quantum chemistry. Finally, to further illustrate the 

breadth of applicability of modern QSAR approaches, we discuss their use in materials and 

nanomaterials science, regenerative medicine, and health care. Throughout the discussion, 

we identify methodological similarities between drug discovery approaches and those 

employed in other areas. We further propose that experience and best practice of data 

curation, model development, and validation accumulated by the QSAR community 

provides valuable guidance for many areas where statistical and machine learning data 

modeling is applied.

This broad, platform applicability of QSAR algorithms and protocols across all data-rich 

areas of modern science underpins the appeal of QSAR as a robust, predictive data analysis 

and modelling tool. We advise contemporary chemists to become familiar with the major 

computational approaches discussed in this contribution. To this end, borrowing from a 

recent “In the Pipeline” blog by Derek Lowe,18 “it is not that machines are going to replace 
chemists. It’s that the chemists who use machines will replace those that don’t”! We hope 

that this paper will stimulate experimental scientists to consider deeper integration of 

computational methods and models into their research projects, to consider how the data 

they generate will be modelled when planning experiments and will serve as useful reference 

for computational chemists as well.

Chemical similarity

Classical QSAR is defined by linear (regression) models derived from a set of small 

molecules sharing the same (target-specific) biological activity. A QSAR model predicts 

changes in potency as a function of structural modifications.1,19 The evolution of QSAR 

modeling from linear to more complex machine learning models addressing non-linear 

relationships between chemical structure and bioactivity was discussed in a paper co-written 

by one of the founders of classical QSAR, Prof. Toshio Fujita in 2016.19 Chemical 

bioactivity data employed in model development are generally derived from investigations of 

analog series from medicinal chemistry. These sets of compounds usually share a common 

core structure (scaffold) and carry different substituents (R-groups) at one or more sites. 

Descriptor-based linear regression models then predict potency of newly designed analogs to 

further extend such congeneric series, a fundamental task of classical QSAR. This prediction 

scheme is provides a useful guide to compound design and synthesis, making QSAR one of 

the most popular predictive approaches in medicinal chemistry since its seminal 

development.1

QSAR modeling is based upon the premise that structurally similar compounds exhibit 

similar biological effects, often referred to as the similarity-property principle (SPP) The 

SPP postulates a causal link between molecular similarity and biological activity, which 

implies that gradual changes in chemical structure are accompanied by gradual changes in 
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activity. This expectation provides the initial rationale for the generation of linear QSAR 

models.1

Chemical similarity is often evaluated in relation to bioactivity. Multi-dimensional structure-

activity relationship (SAR) landscapes derived from models, describe similarity 

relationships between active molecules and their biological potency differences. These can 

be used to understand the effects of various structural features on biology, especially SAR 

continuities versus discontinuities in compound responses.20 SAR continuity is directly 

associated with the SPP, implicating a smooth continuous relationship between conservative 

structural modifications of active compounds and accompanying moderate potency 

alterations. In contrast, SAR discontinuities21 occur when small structural modifications 

lead to very large biological potency changes, not consistent with the SPP and falling outside 

the applicability domain of linear QSAR models. Figure 2 shows small sets of active 

compounds that are characterized by SAR continuity and discontinuity, respectively. 

“Activity cliffs” are formed by analogs displaying the largest potency differences in a 

compound series for the smallest change in structure.22 The existence of activity cliffs in 

compound data sets is a major factor limiting QSAR predictions, often much greater than 

intrinsic limitations of modeling.22 Strikingly similar observations have also been made in 

bioinformatics where some pairs of proteins with high sequence similarity possess very 

different structures and functions.23 This analogy is one of many that methodologically 

bridge between QSAR and other fields that rely on data analytics. It should be noted that 

activity cliffs may be sensitive to both the choice of descriptors and the degree of the 

experimental variability. Importantly, SAR discontinuity limits QSAR modeling regardless 

of molecular representations and descriptors that are used when the corresponding 

compounds are close structural analogs. Activity landscapes of compound data sets might be 

“flattened” by using large numbers of features as molecular representations such that 

compounds become increasingly dissimilar (i.e., their distances in feature space increase). 

However, introducing artificial dissimilarity results in a loss of SAR information (and often 

leads to overfitting of regression models).

In QSAR modeling the presence of SAR continuities and discontinuities in sets of active 

compounds is not mutually exclusive. Rather, continuous and discontinuous SARs coexist in 

many data sets21 resulting in the presence of adjacent gently sloped and rugged regions in 

activity landscapes (Figure 2). Focusing potency predictions around local regions of SAR 

continuity can often lead to QSAR models with high predictive power. To this end, 

numerical SAR analysis methods can be used to identify compound subsets having desirable 

SAR characteristics.24

Going beyond the traditional QSAR paradigm means departing from the SPP. Modeling 

compounds with increasingly diverse structures with few or no common scaffolds means 

that structural differences between active compounds are not gradual, such as those that arise 

from “scaffold hopping”.25 This leads to structurally diverse active compounds that require 

non-linear approaches to modeling SARs satisfactorily, making bioactivity predictions more 

difficult. Non-linear SAR models require analysis of relationships between structure of both 

close and remote structural analogs and respective changes in their potency. This is beyond 
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the capacity of classical linear regression QSAR methods and generally requires the use of 

machine learning (ML) as discussed in the next section.26

To summarize, the choice of molecular representations (descriptors) and assessment of 

molecular similarity play a critical role in QSAR. It should be emphasized that comparison 

of object representations, their similarity metrics and the interplay between object 

relationships and associated (latent) properties is of general relevance for data modeling 

irrespective of research areas. In fact, the similiar similibus curantur (“likes are cured by 

likes”) principle formulated by Paracelsus27 (the “father of toxicology”) could be seen as 

one of the most common ways of rational thinking (reflected in the SPP principle as applied 

in cheminformatics) and reasoning approaches in nearly any area of science. As highlighted 

throughout this contribution, this principle is one of key drivers of the general applicability 

of approaches and tools employed in cheminformatics.

Modern trends in QSAR modeling

Chemical similarity may help with qualitative assessment of compound bioactivity but its 

quantitative evaluation requires the use of statistical tools that can model the relationship 

between chemical structure and bioactivity.1 Currently, there is much talk about the use of 

artificial intelligence (AI) in chemistry. Here we distinguish between AI and machine 

learning in the following way. AI is the superset of tasks that demonstrate characteristics of 

human intelligence, while ML is a subset of AI which accesses data, analyses trends and 

generates intelligent, actionable insights. Many people use the term AI in the same context 

as ML in many data-rich disciplines, ranging from health care to astronomy. In this regard 

one can say that AI has been used in chemistry since the 1960’s under the name QSAR. In 

general, ML represents a set of techniques for predicting a property Y based on known 

examples, where each example i has property Y(i) and a set of k features X(i,j), j=1 to k. In 

this section we show how QSAR modeling can be applied much more broadly than has been 

the case previously. Theoretical organic chemistry, a highly specialized field, gave rise to the 

QSAR paradigm. The experience and trends in modern QSAR we summarize in this section 

is illustrative, and perhaps, instructional, for any data-rich area of research.

Machine learning suffers from the same philosophical limitations that any type of inductive 

learning does: distinguishing correlation from causation and knowing when we have enough 

training examples to generate a mode that makes accurate predictions for new cases, etc. In 

QSAR, the dependent variable Y is usually some biological or physical property, and the 

independent variable features X (descriptors in chemistry) are derivable from chemical 

structures. In QSAR, historically the objects are drug-sized molecules, but that is not always 

the case. Objects can be atoms, protein sequences, pairs of proteins, etc., so long as relevant 

descriptors can generated.

Chemical descriptors for drug-sized molecules fall into two main categories: substructures, 

which note the presence and/or frequency of certain groups, and computable properties that 

are representative of the entire molecule. In QSAR, the function that maps Y from X is 

called a model. Obviously, the same general construct is used in statistical modeling in any 

field, except the nature of descriptors depends on the type of the objects.

Muratov et al. Page 6

Chem Soc Rev. Author manuscript; available in PMC 2021 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



This section concentrates on trends in QSAR in the pharmaceutical industry because, 

arguably, that is where the opportunities and challenges for innovation and potential impact 

on society are greatest.28 Most pharmaceutical companies are likely to develop QSAR 

models for on-target (e.g., binding of ligands to targets) and off-target (secondary 

pharmacology) activities, as well as ADMET (absorption, distribution, metabolism, 

excretion, and toxicity) properties, which are discussed in the next section. Companies also 

develop their own best practices for building and using QSAR models. Models are used so 

that predictions can substitute for experiment under some circumstances. However, the 

current state of the art in QSAR modeling often precludes chemists from relying fully on 

individual quantitative predictions, rather on predictions of trends accurate enough to 

prioritize sets of compounds for synthesis and experimental evaluation.

Researchers are always seeking ways to improve their science, and the field of QSAR is no 

exception. There are many recent trends but here we describe the most important ones that in 

our opinion, can be generalized to many other research fields:

1. Data. Data driven modeling methods are clearly highly dependent on data size, 

quality, and diversity. The size and diversity of datasets have dramatically 

increased in recent years due to technological advances in robotics and 

miniaturization (similar trends of course are observed in nearly any area of 

research and technology development). We can now generate very large volumes 

of data for a specific project, typically for 104-106 diverse molecules. Data 

generation is resource intensive, and data are always containing experimental 

error. Outside of the pharmaceutical industry, the availability of large volumes of 

published, or otherwise public domain data in databases like ChEMBL29 and 

PubChem 30 has transformed the field.

2. Validation methods. A common method of validating a QSAR model is by use 

of an external test set. Part of the data is held aside and the remainder used to 

train the model. The model is used to predict the test set endpoints and a metric 

for the accuracy of prediction is then calculated. A better ways to simulate the 

natural evolution of a typical drug discovery project is to use a time-split test set,
31 i.e., assigning compounds tested in later phases of the project to the test set. It 

can be demonstrated that time-split gives a good estimate of the R2 for true 

prospective prediction relative to random test set selection (a standard method 

that can overestimate prediction accuracy) and leave-class-out validation (which 

is too pessimistic).31 Users of the ChEMBL database sometimes use the date of 

publication as a surrogate time-split threshold. Validation of QSAR models for 

properties of chemical mixtures is more complicated. In that regard, the points 

out32 approach is not different from traditional QSAR, but should be used only 

for predicting the same mixtures with new composition. The compounds out32 

approach is suitable for predicting new mixtures of compounds from the 

modeling set; the mixtures out33 approach is for mixtures of one compound from 

the modeling set and one new compound; and the everything out34 approach (the 

most rigorous) is for mixtures of completely new compounds.
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3. Multitask modeling. In classical QSAR only one predicted activity is modelled 

at a time. However, in drug development, multiple activities, both on- and off-

target, are needed for prioritizing compounds. The set of techniques for 

prioritizing compounds based on more than one predicted activity 

simultaneously is called multi-parameter optimization,35 or multi-task modeling. 

In general, this objective can be achieved by an ensemble of single task models, 

or by a single model that can predict more than one activity simultaneously using 

either non-neural net or neural net-based techniques, including deep learning that 

has become popular in recent years. The multiple activities could involve related 

targets in one species, the same target in different species, the same target under 

different experimental conditions, or be completely unrelated. Multitask 

modeling is expected to be useful when data are sparse, i.e. not all molecules are 

tested on all targets, and the hope is that information will “leak” or “read across” 

different targets and reinforce structure-activity trends. Several methods have 

been proposed for multitask QSAR modeling including Perturbation Theory + 

Machine Learning (PTML),36 inductive learning and multi-objective 

optimization37 as applied in proteochemometrics modeling.38 The most common 

way of handling multitask modeling currently is with deep neural nets, especially 

convolutional neural nets. This will be discussed in more detail in the section on 

ML methods. Multi-task optimization represents an active area of development 

in QSAR modeling. However, it is still unclear whether these techniques provide 

a significant improvement in external predictive accuracy compared to an 

ensemble of single task models developed for the same end points. For example, 

an ensemble of models developed with XGBoost (gradient boosting decision 

trees) method exhibited the best performance in a recent 2019 IDG-DREAM 

Drug-Kinase Binding Prediction Challenge.39 As many compounds do have 

multiple biological activities, there is an obvious need to continue both 

methodological and application studies on multitask modeling in QSAR and 

other areas of statistical data analysis.

4. Applicability Domain (AD). An applicability domain40 defines the space of 

molecular features on which the model has been trained and to which it should 

be applied; The AD provides a means for estimating the reliability of property 

predictions for new molecules from a QSAR model. It allows flagging of less 

reliable predictions and helps identify additional molecules that might be 

required to expand the model AD into more productive chemical spaces. 

Interestingly, AD is one area where QSAR is ahead of the general field of ML, 

although there is not yet a consensus on the best approach to this issue.40

5. Modelability. Whether a statistically significant model can be built from a given 

dataset depends on a number of issues. If the size of the experimental error in the 

measured dependent variable approaches the magnitude of the variation across 

multiple molecules in the dataset, it becomes increasingly hard to generate 

meaningful models. The signal to noise ratio in the data set is too low. Assuming 

this is not an issue, and considering activity and descriptors together, the 

relatively new concept of modelability41 proposes that predictivity of QSAR 
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models is then limited by activity cliffs. As discussed above, activity cliffs exist 

when very similar compounds have very different activities, making the target 

property of compounds near the activity cliffs hard to predict.22 This difficulty is 

not easily overcome by changing either the QSAR method or the descriptors 

used. One exception is that using stereochemically-aware descriptors can reduce 

activity cliffs where different stereoisomers exhibit very different activities. 

Metrics that measure the prevalence of activity cliffs in a dataset are good 

predictors of the modelability of that dataset.41 Clearly, these metrics cannot 

distinguish activity cliffs that are intrinsic to the SAR response surface from 

those that are artifacts due to large experimental uncertainties in the measured 

activities.

6. Interpretability. Early classical QSAR methods were relatively simple and 

tended to deal with molecules that were close analogs. Comparative Molecular 

Field Analysis (CoMFA)42 was extremely successful because of its visual appeal 

– it was clear where and how to modify a molecule to increase its activity. Later, 

projection of atom/fragment model contributions onto exemplar molecules has 

been suggested.43 However, as modeling methods have become more 

sophisticated, descriptors more arcane, and datasets more diverse, the accuracy 

and breadth of predictions have increased at the expense of interpretability 

(understanding the molecular basis for good or bad activity of molecules that 

guides design of improved examples). Methods that “see” into the black box of 

QSAR models independent of the descriptors and QSAR methods used are 

discussed in a recent review.44 An important process in QSAR modeling is 

selecting the most relevant subset of descriptors for a much larger pool in a 

context dependent way (sparse feature selection,45 which we also touch on in the 

section on biomaterials and regenerative medicine below). This improves the 

ability of models to generalize well and can make interpretation easier because 

fewer descriptors are used in the model. Subsequently, models are usually 

interpreted in two ways. The first is to determine which descriptors are the most 

important for driving improved properties of molecules. This is called 

“descriptor importance” for QSAR44 or “feature importance” for ML in general. 

The second, applicable to models trained on substructure-type descriptors, is to 

project the most important features from the model onto exemplar molecules to 

highlight structural features associated with more favorable activity.46 A 

molecule with atoms colored according to their contribution represents a 

molecular “heat map.” Another important, descriptor- and model-independent 

method for interpreting features is to apply small perturbations to the input 

descriptors one at a time, while holding the other constant, and observing the 

effect on the modeled property (sensitivity analysis, effectively generating partial 

derivatives of the response with respect to the descriptors).47 These approaches 

to interpretation have limitations as well.48 It is important to recall that no 

statistical method can distinguish correlation from causation, and interpretations 

cannot always be related to a mechanism. A practical approach towards 

mechanistic interpretability, lateral validation,49 is to observe trends across 
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related phenomena: When the choice of variables, the sign and size of their 

coefficients are similar across multiple QSARs, this may help mechanistic 

understanding and perhaps causation.

7. ML methods. There are many standard methods of ML in QSAR. The current 

wave of enthusiasm is for deep neural nets (DNN) as the ML method. Because of 

their relative recency and popularity across many disciplines, comparison of 

DNN with other popular ML approaches is presented below.

DNN methods are attractingly widespread application across many disciplines .50 Single 

hidden layer neural nets were a popular ML method for developing QSAR models in the 

1990’s However, neural nets have undergone a renaissance in the past decade. Algorithmic 

improvements, advances in hardware, use of GPUs, etc., have made DNNs practical and 

computationally tractable. In AI applications, such as image classification or speech 

recognition, DNNs have been shown to be superior to any techniques that came before. 

DNNs began to be applied to QSAR51 after the Merck Molecular Activity Challenge in 

2012.52 In less than a decade we have seen an enormous growth in publications using 

diverse DNN architectures for modelling chemically-related properties.

To put DNNs into context for QSAR, there are many other ML methods used in QSAR 

modeling including k-nearest neighbors (kNN),53 partial least squares (PLS)54, support 

vector machines (SVM),55 relevance vector machines, (RVM),56 random forest (RF),57 

Gaussian processes (GP),58 and boosting59. In the pharmaceutical industry (in fact, in any 

discipline), ML and DNN methods can be compared to older methods by the following: –

1. Prediction accuracy

2. Number of sensitive and tunable hyper-parameters;

3. Need for descriptor selection

4. Length of training time

5. Length of prediction time (including uploading the model into memory);

6. Domain of applicability (determined mainly by descriptors and training set 

characteristics)

7. Interpretability of models.

RF has been a popular choice for QSAR modeling for many years as it can make very good 

predictions, has few adjustable parameters, and can be parallelized. Moreover, the degree of 

agreement of predictions of different agreement of RF trees60 can help define the AD. 

Boosting is also very useful because it is often one of the most accurate and fastest methods, 

especially with the latest implementation of Extreme (XGBoost61) and Light Gradient 

Boosting Machine.62

The case for DNNs as a ML method would be made based on its superior predictivity. 

Comparison of DNNs to other ML methods like RF and XGBoost on standard industrial 

QSAR datasets shows a statistically significant improvement in prospective predictions as 

shown in studies conducted by some of the authors of this paper, and similar conclusions 
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have been published elsewhere.63 However, in absolute terms, the improvement is less than 

notable. When trained on the same data sets and descriptors, DNN predictions are not 

different to those of other methods.64 Thus, the squared correlation coefficient (R2) of 

models generated with DNN was only 0.04 higher (on average) than those built with RF as 

shown in Figure 3. This is consistent with the universal Approximation Theorem discussed 

below.

Deep Neural Nets methods also have undesirable characteristics such as requiring more 

tuning of training parameters for a given training set, being computationally more 

demanding, taking longer to predict, and being harder to interpret.

Why are DNN models not making substantially better predictions than the other ML 

methods? A fundamental reason is the Universal Approximation Theorem that states that 

single layer neural networks (and ML methods mathematically similar) are sufficient to 

model any nonlinear function given sufficient data.65 Another reason may be that any 

pharmaceutical data set inevitably has experimental errors that will compromise very 

accurate model generation. Training and test sets are also not necessarily similar, and the 

new field of modelability suggests that all QSAR methods are limited by the presence and 

size of activity cliffs.66 For these reasons, more sophisticated and flexible methods will not 

necessary provide better predictions.

It is important to remember that in the pharmaceutical industry, unlike other areas where ML 

is applied, the data required to build models is limited, expensive, and resource-intensive.67 

Getting marginally better predictions is not useful when the bottleneck is data paucity. 

However, DNNs methods do have very important advantages over most other ML methods:

1. They can straightforwardly model more than one activity at a time (multi-task 

models);68 the same is true for single layer NNs with multiple output nodes69 but 

not so for other ML methods. It has been claimed that on the average this 

produces better predictions than models of the individual activities. In practice, 

this effect can be quite modest, exhibiting both improvements and degradations 

in prediction for individual activities. It has been shown that improvement relies 

on the training set for the activities sharing similar compounds and features, and 

there being significant correlations between the activities.70

2. Their ability to automatically generate novel chemical features (using, e.g., graph 

convolutional neural networks, CNNs) is particularly important.71 This mimics 

how images are processed on the fly (with atoms replacing pixels), as opposed to 

the use of pre-generated chemical descriptors. The premise is that by generating 

richer molecular features, more predictive models will result. In some cases, 

CNN has provided more accurate predictions than descriptor based DNNs.71 For 

example, CNN is better at predicting quantum chemical energies.72

3. They provide the possibility of inverting the QSAR model (inverse QSAR), i.e. 

designing molecules directly from the model (so called generative models).73 

This is in contrast to the current QSAR practice that only goes in the direction of 

property prediction from structures, not from properties to predicted structures. 

Candidate molecules must be generated by screening large virtual libraries or by 
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assembling or swapping chemical fragments and predicting their properties by a 

QSAR model.

To summarize, it is still unclear from the ML literature whether DNNs are distinctly better at 

QSAR tasks than standard methods, because in most cases an exhaustive comparison has not 

been made. We would recommend that the method in question must always be compared to 

a good off-the-shelf ML method (such as RF or boosting) in the context of QSAR Best 

Practices.17 We would also recommend that a fairly large number of datasets (>10) should 

be examined in any given study. This removes the temptation to cherry-pick the results that 

make the method under study look better.

Another issue is the tests for DNN performance represent a low bar for success, meaning 

that predictivity appears better than it is in practice (an issue for the entire QSAR area). 

Random-split validation (which is still a literature standard) makes predictions that appear to 

be good because the test and training sets cover about the same chemical space, a difficult 

constraint as predictions outside of the model AD are likely to be poor). We recommend a 

time-split validation where possible, checking that the test set compounds are not too far 

from the model domain. Another practice in ML is to tune hyper-parameters using a 

validation set, where both the validation and test sets have been chosen from the same pool 

of compounds. In effect, this lets information about the test set to leak into the training set of 

the model, which makes predictions overly optimistic, and thus this practice should be 

avoided. The enthusiasm for DNN methods has sometimes encouraged bad practices, such 

as not comparing results to simpler methods (Occam’s Razor) and publishing non-

reproducible models, as has been reported in other areas of machine learning.74

In our opinion the current enthusiasm for DNNs in QSAR is not yet justified by its slightly 

increased predictive performance, given that the methods are compute-intensive and the 

models very hard to interpret. However, it should not be overlooked a that their main 

advantage in in the generation of novel and useful features from relatively simple 

representations of molecules (or materials) and the potential for inverse QSAR. The 

development of new methods for DNN model interpretation such as Layer-Wise Relevance 

Propagation will also increase their advantage over traditional QSAR methods.75 Clearly, 

given how fast the field is developing, it is hard to know whether DNNs will overcome 

current disadvantages, although the inexorable increase in computational resources available 

will ease some of them. On the other hand, the enthusiasm for DL methods is driving a 

renaissance in the use of ML in chemistry,76 creating more opportunities.

As computational chemists, we should be actively researching other fields like data science 

and mathematics for advances in ML methodology. Historically, we have acquired new ML 

methods through serendipity, because we tend to read only the chemical literature. For 

example, the author of this section started applying RF to QSAR in 2003 because of a 

chance conversation with statisticians. We became aware of DNNs only after the Kaggle 

contest in 2012 and of XGBoost in 2016 because of a suggestion from a person in the IT 

department. However, the criteria we proposed for how DNN and ML methods should be 

compared, and concerns and suggestions on how best to generate dataset splits to enable 

robust assessment of model predictivity, have originated from our experience in QSAR 
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modeling. These learnings will undoubtedly be valuable for other areas of statistical data 

modeling. The above examples suggest that exchange of best practices and methodologies 

between QSAR modeling and other fields will bring advances in both. Better definitions of 

important general concepts such as applicability domain or model interpretability are 

applicable to other diverse disciplines.

QSAR in chemical safety assessment

QSAR approaches have been used extensively to model important drug properties such as 

ADMET. Minimizing toxicity and optimizing pharmacokinetics is critical for designing new 

and safe medicines; incorrect estimation of these parameters can result in undesired side 

effects and affect in vivo efficacy, leading ultimately to a failure of a drug candidate. It 

should be noted that almost any chemical is toxic at a sufficiently high dose, so an important 

characteristic of any drug is its therapeutic index, the ratio of the effective dose causing the 

desired therapeutic effect in 50% of research subjects (ED50) to the drug dose causing 

adverse effect(s) in 50% of the subjects (TD50). Thus, it should not be surprising that even 

extremely toxic compounds such as snake venom toxins are useful, at proper concentrations, 

as diagnostic probes, drug leads, or even as therapeutic agents.77 Chemical toxicity is also 

very important for the assessment of the occupational health and environmental safety. 

Because toxicity is a complex multifactorial phenomenon caused by chemical effects on 

biological systems, it is important to understand underlying toxicity mechanisms to build 

mechanistically meaningful prediction models. There is a clear need to develop standardized 

protocols when conducting toxicity-related predictions, and the information needed for 

protocols to support in silico predictions for major toxicological endpoints of concern (e.g., 

carcinogenicity, acute, genetic, reproductive or developmental toxicity) across several 

industries and regulatory bodies has been discussed elsewhere.78 Below, we review several 

key concepts that relate to issues in chemical toxicity prediction.

Adverse Outcome Pathways (AOP).

AOP is one of the key concepts of toxicity assessment. It assumes that toxicity is initiated by 

a molecular initiating event (MIE), which leads to an adverse outcome (AO).79 A single 

AOP describes a sequence of linked events starting from MIE, going through a cascade of 

linked key events (KEs), and ending at an adverse health or ecotoxicological effect. The 

Adverse Outcome Pathway Knowledge Base is currently under active development for both 

health and eco-toxicology studies.80 With knowledge of AOPs, QSAR modeling can be used 

to identify the potential of chemical compounds to cause a MIE and/or to lead to an adverse 

outcome.

Importantly, metabolites can also cause toxicity even when the precursor has low toxicity. 

Therefore, incorporation of information about metabolic activation can improve toxicity 

QSAR models.81 AOP facilitates mechanistic interpretation of models, provides a better 

understanding of toxicity, and allows the development of new in vitro tests.82 Currently, the 

development and validation of such tests is an emerging topic in predictive toxicology.
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In vitro toxicity and Tox21.

Tox2183 is a high-throughput toxicity evaluation initiative supported by several government 

agencies including US Environmental Protection Agency (EPA), National Institutes of 

Health (NIH), and Food and Drug Administration (FDA). Similar initiative exists in Europe 

under the REACH (Registration, Evaluation, Authorization, and Restriction of Chemicals) 

legislation. REACH encourages the use of so-called alternative approaches or surrogate end 

points to reduce animal testing. Naturally, QSAR modeling represents one of the best 

alternative approaches for risk assessment because it can be used both to predict in vitro 
activities of compounds and to as combine these in vitro results with computed molecular 

descriptors to improve the accuracy of models in predicting in vivo effects. The 

requirements for using QSAR models for regulatory purposes have been reviewed 

elsewhere.84

Tox21 data have been used actively by the cheminformatics community to test both the 

prediction accuracy of QSAR models and to understand current limitations of the field. The 

Tox21 Data Challenge aimed to assess the ability of QSAR models to predict important in 
vitro endpoints related to chemical toxicity.85 Participants predicted the outcomes of 12 

cellular stress assays.85 The winning team (as determined by the AUC metric) used a DNN 

to build multi-task models for these outcomes.86 Model built with an Associative Neural 

Network87 had similar prediction performance. The results of the Tox21 Challenge indicated 

that recent progress in neural networks have accelerated development of robust and 

predictive QSAR models for in vitro toxicity. The development of new types of DNN76 has 

opened up new applications, allowing simpler molecular representations, such as SMILES 

strings or chemical graphs to be used to generate useful toxicity (and other property) models. 

However, these methods have generally lower prediction accuracy than ML approaches 

using traditional QSAR descriptors.88 DNN methods also require substantially larger 

datasets to fully capitalize on their advantages76, a problem that is rapidly abating due to 

explosive growth in chemical data that is driven by automation.

Tox21 data also gave rise to a number of notable comprehensive studies, such as 

Collaborative Estrogen Receptor (ER) Activity Prediction Project (CERAPP)89 and 

Collaborative Modeling Project for Androgen Receptor (AR) Activity (CoMPARA), 

involving 17 and 25 international teams respectively. The resulting consensus QSAR models 

leveraged knowledge from the groups and were used to predict ER and AR potentials of 

32,464 new chemicals.

It should be emphasized that development of new experimental techniques such as deep-

sequencing RNA-Seq,90 provides new types of data for in vitro assessment of toxicities that 

can also be used for QSAR modeling.91

In vivo toxicity.

Given that adverse reactions could be caused by a multitude of factors, prediction of in vivo 
toxicity is arguably the most difficult task in QSAR modeling. The cost and ethical issues 

associated with direct in vivo toxicity assessment means that data to train models is scarce, 

so models are quite limited. This is clearly illustrated by the results of ToxCast Lowest 
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Effect Level prediction challenge.92 The highest prediction accuracy with the lowest RMSE 

of 1.08 log units was achieved using a consensus prediction of Associative Neural 

Network87 models developed with several sets of descriptors.92 Although the organizers of 

the challenge have offered a set of in vitro measurements performed within the ToxCast 

project, the top-ranked model was exclusively based on the calculated descriptors and was 

not improved by adding in vitro data as descriptors.92 The failure of this92 and QSARWorld 

Bioavailability Challenge indicates critical importance of data curation.93 Availability of 

more in vivo data, application of more complex methods such as those based on 

physiologically-based pharmacokinetic (PBPK) models,94 better data curation93 as well as 

new descriptors, which account for pharmacokinetics, should improve the model accuracy. 

Since in vitro assays in ToxCast were not predictive of such complex endpoint,95 other 

methods, such as those based on systems biology, or more complex assays such as RNA-Seq 

used in combination with gene interaction networks, may be more successful.96 Indeed, it 

was reported that combination of in vitro and in silico predictions contributed better models 

for a number of in vivo endpoints.97

Multitask modeling: an approach that should not be overlooked.

Multitask modeling leverages information from multiple correlated properties and may 

provide models with higher predictive power than individual QSAR endpoint models. This is 

attributed to read-across and the existence of mutual information in the more complex 

multiple end point data sets. A recent study showed that multi-task modeling consistently 

improved the accuracy of models for prediction of 29 in-vivo endpoints using 87K chemical 

structures collected from the Registry of Toxic Effects of Chemical Substances (RTECS) 

database.98 Importantly, authors suggested that the significantly improved toxicity 

predictions of multitask models should reduce the need for animal testing, prompting 

revisions to the current regulatory guidelines.

Structural alerts and QSAR—Identification of molecular features associated with 

toxicity (structural alerts) represents a tool because it can help reduce unwanted side-effects 

of compounds by removal of offending moieties. However, toxicity alerts generally have 

lower prediction accuracies compared to QSAR models.99 It has also been suggested that a 

combination of alerts and QSAR models may provide improved guidance for rationally 

designing new compounds with reduced toxicity.99 These combined approaches were further 

developed by the chemistry-wide association study (CWAS) that predicted Ames 

mutagenicity and an adverse drug reaction known as Stevens-Johnson Syndrome.100 The 

identification of important chemical fragments and analysis of their co-occurrences also 

allows mechanistic interpretations of QSAR models without compromising their accuracy.

In summary, this section provides a brief review of a special area of QSAR modeling that 

deals with chemical safety. However, even in this highly specialized application there are 

components that can be generalized to other applications. Multi-objective modelling and 

optimization is one such approach that will be increasingly used in other disciplines. The 

ability to interpret complex statistical models for any target effect is important in many 

fields, especially when building models of large data sets using deep neural networks.101 
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These examples reiterate the conceptual overlap between many elements of QSAR modeling 

and challenges faced by other disciplines.

Multi-target profiling and polypharmacology

Since the beginning of the 20-th century, the concept of “a magic bullet” has served as the 

basis for drug discovery and development.102 According to this concept, a drug should be 

developed with the highest selectivity toward the intended target for a particular disease. 

Thus, classical QSAR/QSPR studies have been performed with training sets of compounds 

active in a single biological assay; frequently, all compounds also belong to the same 

chemical series.1

The advent of high-throughput screening technologies and proliferation of diverse assays 

have enabled screening of a larger number of molecules in more diverse assays. 

Consequently, it is now generally accepted that the majority of pharmaceutical agents 

interact with several, sometimes many, biological targets. This often generates beneficial 

therapeutic activities,102 due to additive or synergistic pharmacological effects.103 On the 

negative side, drugs can also interact with undesired molecular targets to causing adverse or 

toxic effects that often block further development. Clearly, there is a strong need to 

understand both the beneficial and adverse polypharmacology of ligands.104

Discovery of molecules with beneficial polypharmacology could be achieved by the 

experimental evaluation of millions of drug-like compounds against thousands of targets. 

Currently, this is an unrealistic task, particularly taking into account the variability of results 

obtained for the same ligand-target interaction in different assays, and relatively low hit rates 

of experimental screens.105 Thus, in silico prediction of biological activity profiles by 

(Q)SAR models is a viable alternative to these intractable experimental screens. Importantly, 

virtual screening approaches may be applied to millions of virtual molecules designed in 
silico. Such virtual screening greatly reduces both the number of molecules needed to be 

synthesized and tested, allowing pre-selection of likely hits and reduced time and cost in 

synthetic chemistry programs.105

Multi-target profiling of compounds has led to the concept of the Biological Activity 

Spectrum,106 defined as the set of different biological activities resulting from the compound 

interaction with different biological systems. It therefore represents an "intrinsic" property of 

the compound that depends only on its chemical structure.

Several approaches for multi-target modeling have been proposed. One of the earliest 

developments in this area was the computer program PASS (Prediction of Activity Spectra 

for Substances) reported by Filimonov et al almost 30 years ago.107 PASS employs a 

uniform set of Multilevel Neighborhoods of Atoms (MNA) molecular descriptors and a 

Naïve Bayes classifier to model structure-activity relationships across a wide variety of 

biological assays. This approach allows the prediction of a wide range of biological 

activities at molecular, cellular, organ/tissue and organism levels. It can predict 

pharmacotherapeutic effects, mechanisms of action, specific toxicities, terms related to drug 

metabolism, gene expression, etc. The current version of PASS predicts several thousand 

Muratov et al. Page 16

Chem Soc Rev. Author manuscript; available in PMC 2021 June 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



biological activities based on the analysis of structure-activity relationships in the training 

set of over one million biologically active compounds.108 More recently, Gonzalez-Diaz et 

al.109 developed the perturbation theory machine learning (PTML) methods that search for 

QSAR models capable of simultaneous prediction of many target properties under several 

experimental conditions.

Substantial amounts of relevant chemogenomics data have recently became available from 

PubChem, ChEMBL, and other public sources. This has catalyzed a resurgence of freely 

available Web-accessibly tools for bioactivity predictions and continuing development of 

new QSAR tools and methods.

In contrast to PASS Online,106 which is an open access Web-service for predicting 

biological activity spectra, most other tools focus on predicting putative molecular targets 

for compounds of interest. They use training sets extracted from publicly available data 

sources, different types of chemical descriptors, and prediction methods based on 

implementations of different chemical similarity searches. Despite some disadvantages,110 

such approaches remain an accessible way of predicting compound activity against novel 

pharmacological targets lacking sufficient training data for building accurate QSAR models.
111 If the number of known ligands is sufficient for model building, some web portals 

provide an option to predict compound activities using conventional QSAR.

It is challenging to compare the performance of multi-target profiling tools. In contrast to 

single target models, there is a paucity of evaluation sets of compounds reproducibly tested 

for several types of biological activity. Thus, only a few comparative studies have been 

reported to date. For example, using data on affinity of drug-like compounds against several 

GPCRs, the performance of a collection of multiple target-specific k-nearest neighbors 

(kNN) QSAR models, PASS106 and Similarity Ensemble Approach (SEA)112 was 

compared.113 The best results were obtained with the kNN method, while PASS 

demonstrated a moderate predictive accuracy and SEA shown the lowest prediction power 

across multiple targets.

Recently, a large evaluation set including half a million compounds tested across more than 

1,000 assays was constructed from ChEMBL data.114 The performance of several ML 

methods was evaluated, and again kNN generated the best results, while SEA showed the 

lowest predictivity. It is noteworthy that all ML methods showed relatively small differences 

in predictive accuracy and the advantage of the DNN was not readily apparent. This 

conclusion appears reasonable given that the principal purpose of DNN development was 

image feature recognition, i.e., similarity assessment but not prediction. Similar observations 

of the lack of advantage offered by DNN in cheminformatics compared to conventional ML 

was also made in the preceding section on modeling chemical toxicity.

As also noted in the preceding section of this paper, multi-task learning represents one of the 

major directions of QSAR development. A natural extension of multitarget QSAR is the 

analysis of ligand-target interactions in combined chemical-biological space, so called 

chemogenomics.115 Several hundred papers have been published on new methods and 

applications for chemogenomics (some discussed in greater detail in the following sections). 
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For example, Gupta-Ostermann and Bajorath reported the Structure-Activity Relationship 

(SAR) Matrix method, which predicts activities and allows navigation in multi-target 

activity spaces.116 March-Vila and co-workers have summarized the promise of 

chemogenomics applications for drug repurposing.117

A recently proposed proteochemometrics (PCM) approach employs relevant information 

from target sequences and combines it with ligand descriptors to develop models predicting 

ligand-receptor (class of) binding affinity. This approach is more useful than ligand-based 

modeling in cases when the same ligands show differential binding affinity to diverse 

targets. Several interesting applications of the PCM approach have been reported. For 

instance, this approach was used to predict ligand interactions with wild-type and mutated 

α-adrenoceptors where it has demonstrated superior predictivity in comparison with 

conventional QSAR methods.118 In other study, Lapins et al.119 applied PCM method to 

predict inhibition of five major drug metabolizing isoforms of cytochrome P450 (CYP1A2, 

CYP2C9, CYP2C19, CYP2D6, and CYP3A4) by drug-like compounds. A recent study, has 

also demonstrated significant advantages of PCM approach and inductive transfer of 

knowledge between the targets over traditional methods.120

Careful review of the published results of PCM modeling leads to the conclusion that it may 

provide good estimates of ligand-target affinity in a single model by combining data from 

multiple assays (Figure 4). However, to achieve this goal, substantial efforts must be applied 

to standardization121 and curation122 of such data.

To conclude this section, we note that training sets used to develop conventional QSAR 

models do not exceed millions of entries, while the estimated size of drug-like chemical 

space is up to 1060 molecules.123 We expect that with the growth of chemogenomic data and 

expansion of the studied chemical space, the multi-target QSAR modeling will become more 

common than single-target QSAR studies and that multi-target QSAR will lead to the 

discovery of novel medicines with much improved safety and potency profiles. Another 

important projection is that further development of multi-objective optimization methods 

will not only expand the field of polypharmacological QSAR but will also find use in many 

other predictive disciplines where multiple objectives need to be optimized.

QSAR-like approaches in genomics

Genomic and HTS (high throughput screening) data have rarely been subjected to QSAR 

analyses. Indeed, typical workflows require hit confirmation and validation prior to (Q)SAR 

modeling, and cheminformatics-based prioritization schemes based on individual 

compounds as well as scaffolds have been proposed.124 One of the major obstacles to date 

remains the absence of the gene-based descriptors suitable for ML. However, high 

throughput driven biomedical knowledge accumulation has created an urgent need for Big 

Data analytics in genomics and HTS to help with the evaluation, interpretation, and 

integration of data, and with development of respective models.

From a life sciences perspective, the use of DNN can generate novel applications and even 

entirely new meaning to the field of chemical genomics by directly linking the structure of 
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the molecule to its effect on genes, and by embedding these linkages in models that 
predict gene-mediated effects of chemicals in vivo. Such models require the combination 

of input features that characterize both small molecules (i.e., chemical descriptors) and 

genes (e.g., gene expression profiles) or HTS results for training. Only a few studies have 

been published in this area so far. For instance, it was demonstrated that gene ontology (GO) 

terms125 and HTS results can be translated into input features for cheminformatics models.
126 In another such study, Sedykh et al.127 described and implemented a workflow for using 

HTS data in combination with molecular descriptors to predict in vivo toxicity. In a related 

work,128 in vivo rat oral toxicity was predicted by combining endpoints of 499 HTS assays 

(biological variables) with 548 circular Morgan descriptors (chemical variables). Notably, 

when used separately, biological descriptors resulted in a model with lower statistical 

significance than the model based on chemical descriptors.

Another example of ‘hybrid’ QSAR modelling shows how

QSAR descriptors and GO terms can be combined within a unified QSAR model capable of 

predicting the effect of a given molecule on a particular gene.129 Specifically, levels of 

expression of 1000 ‘hallmark genes’ in six cell lines were predicted by DNN-classifiers, 

where for every molecule-gene pair in the training set, circular Morgan fingerprint values 

(molecular descriptors) were combined with GO terms used as gene descriptors. The 

resulting DNN models built with back-propagated feed-forward fully connected multi-layer 

perceptron (MLP) with four layers yielded good prediction accuracies (cross-validated area 

under the curve (AUC) values were in the 0.80-0.83 range). These results suggested that 

‘hybrid’ DNN models can rather accurately associate genes and small molecules to up- or 

down-regulation.

Seventeen different protein- and gene- centric data sources totaling over 262.3 million data 

points were integrated into knowledge graph representation with typed nodes and edges, 

which enable the conversion of the gene-based information into descriptors suitable for ML 

via network-based analytical algorithms.130 Specifically, a set of 103 genes having 

autophagy (ATG) associated annotations from GO terms, UniProt131 and KEGG,132 were 

used to derive ML models using the metapath approach combined with the XGBoost 

algorithm.133 These binary ML models were trained to distinguish ATG genes from non-

autophagy genes (cross-validated AUC values were in the 0.95-0.99 range). Of the top 251 

predicted novel genes, 23% were associated with ATG based on literature queries, whereas 

193 were not.

These case studies offer an important example of QSAR modeling evolving towards the use 

of more complex datasets. Synergistic use of features representing both chemical and 

biological properties, including gene expression profiles, GO terms and KEGG pathway 

associations combined with ML methods, are generating promising results. This increase in 

complexity is typical for many areas of research where DNN and gradient boosting methods 

are finding growing applicability. The improvements in model accuracy achieved by ML 

approaches may have been modest so far, but the prediction power of these models may 

increase in near future due to cross-fertilization of ideas on using ML for data modeling both 

in chemical datasets as well as in many other areas of science and technology. It is tempting 
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to speculate that DNN technology can directly screen virtual chemical libraries for 

compounds with bespoke, useful modulation of target genes and gene networks.

As the sources of data and sizes of datasets describing the biological properties of small 

molecules grow, there is also a concomitant demand for knowledge management (KM) 

systems, that integrate heterogeneous data into unified, predictive models and translate data 
into information.134 For example this might allow merging of experimental bioactivity data 

for small numbers of molecules, 3D information from experimentally resolved structures of 

protein targets for these molecules, statistics of respective drug adverse event reports, and 

high-volume (often lower quality) data such as Genome-Wide Association Studies (GWAS) 

or HTS. Such large scale datasets are already assembled into knowledge graph systems, for 

example Pharos,135 which supports in-depth exploration of the druggable genome.136 

Modelling such data via ML, sparse feature selection, and other advanced algorithmic 

approaches may lead to a better understanding of the associations between chemical 

structures and proteins and genes in an unbiased, objective manner They could further help 

identify novel gene-phenotype associations, either for diseases or for physiological 

phenomena such as autophagy.

QSAR in synthetic organic chemistry

The application of QSAR modeling to challenges faced by synthetic organic chemists is a 

recent and exciting development in predictive computational chemistry. Rapid growth in 

robotic platforms for drug and materials design has stimulated the development of reliable 

cheminformatics tools to assist with efficient synthesis of target molecules. These tools 

estimate synthetic accessibility of a target molecule and suggest feasible synthetic routes 

(Figure 5). Two of the most widely used synthesis planning strategies are forward synthesis 

(starting from specified building blocks) and retrosynthesis (starting from a specified target 

molecule). Synthetic routes usually contain multiple reaction steps for which major products 

and, ideally, kinetic parameters must be predicted by models. Once a given elementary 

reaction is selected, reaction conditions (solvent, catalyst, temperature, etc.) leading to a 

reasonable yield should be suggested by the algorithm. The above considerations can be met 

by a wide range of cheminformatics tools, some of which are currently used in a computer-

aided synthesis design. In this section we briefly describe reaction data availability, 

visualization, and analysis, and summarize recent studies focused on different parts of the 

modeling workflow described in Figure 5.

Reaction data availability.

New modeling tools need access to large volumes of experimental reaction data stored in 

public and proprietary databases. In most of the recent studies, the Reaxys database (> 40 M 

reactions including 12.5 M one-step reactions),137 the USP database extracted from US 

patents (>1.2 M reactions),138 and the QSRR database (~10.000 reactions) have been 

employed. Generally, reaction data from public databases is of mixed quality. Many of the 

reactions are stoichiometrically unbalanced, some important data on reaction conditions are 

missing, and different names are used for the same catalysts or solvents.139 However, no 

standards for reaction data curation have been reported so far. Ignoring the data curation step 
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of the modeling workflow will significantly affect the quality of the training data and models 

derived from them.93

Reaction encoding.

Chemical reactions constitute a very complex modeling problem in cheminformatics. A 

reaction equation involves several different types of molecular graphs (for reactants and 

products) and its yield depends on numerous experimental conditions. Depending on ML 

method used, chemical structures can be encoded by SMILES (e.g., in sequence-to-sequence 

models140) or by descriptor vectors, or a combined fingerprint (resulting from concatenation 

of descriptors of reactants and products141), or subtraction of descriptors of reactants from 

descriptors of products.142. The latter may require balanced reaction equations that, in turn, 

need a specific data curation step.142 Alternatively, a chemical reaction (balanced or 

unbalanced) can be encoded by the Condensed Graph of Reaction (CGR). This merges 

reactant and product structures into a single molecular graph employing both conventional 

chemical (single, double, etc.) and “dynamic” bonds characterizing observed 

transformations (e.g., single and double bond breaks, single-to double bond conversion, 

etc.).143 CGR can be consider a pseudomolecule to which any cheminformatics approaches 

can be applied. In particularly, fragment descriptors or fingerprints can easily be generated 

for CGR.144 Solvent can be encoded by a set of physicochemical parameters which can be 

concatenated with the structural descriptors.

Visualization and analysis of reaction space.

Both graph-based and vector-based approaches have been used to visualize the chemical 

space of reactions. In graph-based approaches, chemical reactions and individual molecules 

(reactants and products) are represented as nodes of a large bipartite graph145 used to 

optimize synthetic pathways. In the vector-based case, a chemical reaction is defined as a 

vector in multidimensional space defined by descriptors. Dimensionality reduction is 

required to generate a two-dimensional map describing the data distribution. This approach 

was pioneered by Gasteiger et al.146 who generated Self-Organized Maps (SOM) that 

clustered different classes of reactions effectively. Generative Topographic Mapping (GTM) 

approaches have recently been used to visualize large sets of SN2, cycloaddition, and 

tautomerization reactions. Unlike SOM and many other dimensionality reduction methods, 

GTM can be used to predict properties of new reactions projected on the map. As a 

predictive tool, GTM performs similarly to conventional ML methods like SVM.

Planning organic synthesis using prediction of reaction products and retrosynthetic 
analysis.

The general aim of synthesis planning is to identify a series of feasible reaction steps leading 

to a target compound from available starting materials. Retrosynthetic methodology, 

invented by Corey,147 is a real challenge because the search for precursors of a product 

generates a combinatorial explosion of possible reaction routes. Cheminformatics tools can 

help select the most feasible series of single-step reactions. The current trend in this field is 

to train DL models on large sets of reactions to predict probabilities of different 

retrosynthetic transformations. It was shown that using Monte Carlo tree searches and 

symbolic AI methods, it is possible to identify feasible reaction pathways.148
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Prediction of reaction outcomes allows one to prioritize retrosynthetic suggestions. A 

cheminformatics tool should predict the products of a given set of reactants under given 

conditions. Consideration of multistage chemical transformations and competitive reactions 

will significantly complicate this problem. Current trends in the modeling of reaction 

outcomes focus on processing large reaction databases with DL models to predict the 

probabilities of competitive chemical processes.149 The latter can be used directly for 

reaction outcome predictions. The ReactionPredictor tool150 is of particular interest because 

it forecasts the output of complex chemical reaction by combining mechanistic 

considerations with ML. This approach enumerates possible interactions and then ranks 

them using a pseudomolecular orbital approach.

Two orthogonal methodologies, template-based and template-free, can be applied to 

retrosynthesis and outcome prediction. Template-based methods rely on user-established sets 

of transformation rules, either suggested by expert-chemists or extracted automatically from 

reaction databases, the feasibility of which is assessed by the model. This concept is 

employed in most retrosynthetic tools, including the popular CHEMATICA program,151 

which integrates more than 10,000 empirical transformation rules.

Alternatively, in template-free approaches transformations between the reactants and the 

products of chemical reactions are deduced directly from their structures. This allows one to 

automatically enlarge the list of transformation rules as soon as new data are available. This 

methodology has become more popular in recent years. For instance, Coley et al.152 

suggested using a graph-convolutional neural network and a global attention mechanism, 

followed by the application of rules to reaction product predictions and retrosynthetic 

analysis. Another template-free approach employs natural language processing methods, 

namely ‘sequence-to-sequence’ models. These use recurrent neural networks (RNN), 

commonly applied to translation of texts between languages. When applied to chemical 

reactions, SMILES strings of reactants and products constitute the language. This 

methodology was applied to model reaction products and for retrosynthetic reaction route 

prediction, which provided similar performance (ca 37% for top-1) to rule-based systems 

(35%).140 A use of an advanced Transformer architecture, which was initially used for 

English-to-German translation, boosted the accuracy of predictions to about 43%.153 This 

result indicates that retrosynthesis predictions can be significantly improved by algorithms 

originally developed for very different purposes.

Forward synthesis planning.

One of the most impressive approaches to forward synthesis planning has been implemented 

in the DOGS program.154 This algorithm applies 58 well-established chemical 

transformation rules to a set of 25144 readily available synthetic blocks from the Sigma-

Aldrich catalog. New molecules are grown in a stepwise procedure, each step consisting of 

complete enumeration of all possible solutions followed by selection of top scoring 

intermediate products to subsequent growing steps. The quality of designed products is 

assessed using pairwise similarity to a target molecule. Thus, DOGS can usefully suggest a 

synthetic plan not only for the target molecule but also for its close analogs
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Assessment of synthetic accessibility.

Synthetic accessibility (or the opposite, synthetic complexity) is a scoring metric used to 

prioritize virtual compounds for synthesis. It is often used as an important filter for 

screening virtual libraries and in de novo design studies. Among scores developed so far155 

the most popular is SA score.156 It is calculated using contributions from fragment 

occurrences in PubChem compounds and a complexity penalty based on the number of 

chiral centers, rings, macrocyclic fragments, and the total number of atoms. Recently, Coley 

et al.157 suggested the Synthetic Complexity Score (SCS) which relies on a neural network 

trained on 22 million reaction pairs from the Reaxys database.

Prediction of kinetic and thermodynamic characteristics.

The logarithm of the reaction rate constant (logk) is a common endpoint in QSAR modeling, 

first used more than 70 years ago.158 Currently, quantitative structure-reactivity relationship 

(QSRR) modeling is performed on large and diverse datasets that account for solvent effects 

and temperature for many types of chemical reactions using NN approaches. In these 

models, descriptors computed for the reactants are concatenated with solvent and 

temperature descriptors. This technology must know the order of reactants in the reaction 

equation, making the development of an automatized QSRR workflow problematic. This 

problem can be solved using Condensed Graphs of Reaction (CGRs) that combine the 

reactant and product information. Fragment descriptors generated for CGRs were 

concatenated with solvent and temperature descriptors and used to train logk models for 

bimolecular nucleophilic substitution,159 bimolecular elimination, and different types of 

cycloaddition.160 Similar approaches were used to develop predictive models for the 

equilibrium constants of tautomerization reactions.161

Prediction of optimal reaction conditions.

Since the reactivity of chemicals is largely determined by the reaction conditions, their 

theoretical assessment is of particular importance (especially for automated robotic 

synthesis). Several approaches to reaction conditions modeling have been reported. For 

example, Marcou et al.162 used CGR-derived fragment descriptors to train SVM, RF, and 

Naive Bayes classification models to predict optimal solvents and catalysts for the Michael 

reaction. Gao et al.163 reported NN-based models trained on ~10 million reactions from 

Reaxys that identify appropriate catalysts, solvents, reagents, and temperatures for a 

specified reactions. A 70% match with experimental conditions was found within the top-10 

predictions. Lin et al.139 used the heuristic that similar reactions proceed under similar 

conditions to predict optimal reaction conditions. They used a simple similarity search of 

reaction databases with recorded conditions,139 especially effective with the CGR 

technology.164 The value of this approach has been demonstrated by protective group 

deprotection reactions. Models trained on 142,111 catalytic hydrogenation reactions 

demonstrated high accuracy (ca. 90%) for predicting optimal experimental conditions.

In summary, the CGR technology can efficiently model optimal reaction conditions. One 

employs similarity searching of reaction databases to construct QSRR models, with reaction 

conditions as endpoints. Studies summarized in this section provide compelling examples of 

the impact of QSAR modeling on one of the historically most empirical areas of natural 
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science, synthetic organic chemistry. The development of both retrosynthetic and forward 

synthesis prediction models, based on the analysis of an immense amount of accumulated 

data, represents one of the most important frontiers in modern science. It is essential for 

chemists to understand and begin applying these emerging approaches. When coupled with 

robotic synthesis methods, these synthesis prediction models are poised to transform organic 

chemistry as we know it and open the door to autonomous chemical synthesis systems in the 

future.

Closed-loop discovery and automation

Traditional serial molecular and materials discovery processes in laboratory have arguably 

reached a plateau. The costs of discovering materials and drug candidates remain high and 

the discovery and translation time is still long. Three decades ago, combinatorial chemistry 

(also known as high-throughput experimentation, HTE) promised to reinvigorate the 

discovery pipeline by carrying out syntheis and experimentation rapidly, in parallel using 

automation. HTE led to important discoveries (such as novel polymers) and, indeed, has 

accelerated the discovery pipeline. However, the avalanche of new drug leads that was 

anticipated did not occur. More recently, DNA-econded chemical libraries have made 

possible synthesis and testing of millions of compounds165 and many big pharma companies 

have embraced this approach.

Furthermore, there is a growing realization that experimentation can be analyzed in terms of 

information theory. Questions like What is the amount of information that an experiment 
contains? What is the next best experiment to carry out? can be answered by modern 

Bayesian methods. This thinking has led to the revival of methods for developing closed-
loop or autonomous approaches. By closed-loop we mean that the experimental system is 

designed using an information-theoretical approach, and the experimentation and assays are 

carried out in an automated way. By using AI or evolutionary algorithms to make decisions 

on what compounds to synthesize in the next cycle, in principle, an autonomous system can 

be developed. The term “self-driving laboratory” has been also coined to describe this type 

of experimental setting.166 Clearly, a self-driving closed loop laboratory is fundamentally 

different from existing HTE. The closed-loop approach, designed to provide rapid iterations 

using autonomous decision making, seeks to minimize the number of experiments required 

to reach a specified goal (e.g., target molecule(s)). It does not need to create large libraries, 

rather employs agile experimental infrastructure, and statistics and ML to build QSAR-like 

models to predict the target properties for every element of the self-driving laboratory.167

Bayesian methods show promise for making closed-loop decisions. Based on prior 

assumptions about the nature of the experimental observations, they can propose the optimal 

next experiment to conduct. PHOENICS,168 for example, employs Bayesian Neural 

Networks and a kernel density estimate approximation to balance exploration vs. 

exploitation. Human interpretability is also an important factor in these systems. The 

algoritm chooses a set of experimental conditions to be generated by robot synthesizers. It is 

not sufficient to understand what the system generates but how? Interpretability is clearly 

very important for modern ML research. To aid interpretability, researchers have used 

hierarchical optimization apporaches that operate on one or more variables. In muktifactorial 
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systems it is often necessary to understand the pareto-optimal regions of the problem space. 

A mathematical function called CHIMERA was recently introduced to address these 

problems;169 it can be used with any optimizer, such as PHOENICS.

Such systems require an operating system that is open-source and capable of controlling 

experimental equipment, storing data in databases, coupling with optimization approaches, 

and interacting with researchers. A “Cortana” or “Alexa” digital assistant for scientists that 

is connected to the closed-loop system could accelerate adoption and innovation. Efforts 

such as ChemOS can help rally developers to achieve this vision.170

One of the promising applications of closed-loop discovery is in the materials space. A 

recent review summarized the state-of-the-art and challenges in this field.171 Examples of 

the application of AI to materials discovery are described in this review, as well as in 

following sections of this paper. One such example is the design of blue emitters for organic 

light-emitting diode devices accomplished by virtual screening of half a million molecules .
172 This approach led the successful discovery of three lead candidate compounds with state-

of-the-art performance,172 exemplifying the promise of closed loop discovery. The three 

good candidates required the synthesis of only ~40 materials. In autonomous systems, 

experimentation becomes the bottle neck in the accelerated discovery process. This can be 

overcome by technological developments – creation of self-driving, closed loop robotic 

laboratories controlled by AI, as discussed in a recent perspective.173

Evolutionary algorithms can also be used to generate closed loop, autonomous molecule and 

materials discovery system. Their application to drug discovery and optimization, and 

materials discovery have been reviewed recently.174 ML-based QSAR can be used to model 

the fitness landscape of materials experiments, which can substitute for downstream 

experiments, improving effeciency and speed.

In summary, AI methods and models that optimally instruct every step of robotic synthesis 

(including the choice of both reagents and reaction conditions) represents a landmark in the 

extension of QSAR methods toward dramatically more efficient chemical synthesis.

Machine learning approaches in quantum chemistry

Computational chemists, physicists, and biologists commonly employ molecular potentials 

to evaluate energies and forces. These are used to search for novel drug compounds and 

materials. Hence, a faster but still accurate computational method for evaluating molecular 

potentials is a very important development. Potential applications include calculating the 

free energy of protein-ligand binding via molecular dynamics simulations, and the 

simulation of deformation dynamics in materials.

The potential energies and forces provided by molecular potentials are obtained traditionally 

by quantum mechanical (QM) calculations or classical physics-based force fields (FF). QM 

methods solve the Schrödinger equation and are the most accurate methods for describing 

atomistic systems. The high computation cost of QM and long-time scales relative to 

experiment has limited studies of larger, realistic atomistic systems. Hence, novel robust 

approaches approximating QM methods without any loss in accuracy are required for 
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continued scientific progress. Force fields are computationally efficient, allowing the 

simulation of up to millions of atoms, but they require explicit parametrization of classical 

bonding, angle, torsion, and possibly higher-order terms. The correct parametrization of 

force fields can be tedious and cumbersome. Further, parametrization for one atomistic 

system may not be transferable to new systems.

Recent breakthroughs in the development of ML methods in chemistry175 have produced 

general purpose models that predict potential energies and other molecular properties 

accurately for a broad class of chemical systems. General purpose models promise to make 

ML a viable alternative to classical empirical potentials (EP) and force fields since EPs are 

known to have many weaknesses, such as poor description of the underlying physics, lack of 

transferability, and are hard to systematically improve their accuracy.

Molecular representations.

To develop a useful and efficient ML-based property predictor, the most critical issue is how 

to represent the system in question to a ML method. These representations (descriptors) 

consist of some numerical representation of a molecule or a system of atoms. There are a 

wide range of published descriptors such as the Coulomb matrix176, or its recent Bag of 

Bonds (BoB)177 extension. Other popular choices include descriptors that represent 

molecular graphs,178 bonds and angles,179 many body expansions,180 the atomistic local 

chemical environment,181 and end to end models that learn the best description of the system 

given minimal neighborhood information.182 Many of these techniques have been 

successfully applied to either molecules or materials.

Some recent descriptors like MBTR (Many-Body Tensor Representation) and SOAP 

(Smooth Overlap of Atomic Positions)183 can describe both finite- and periodic systems. 

MBTR is derived from the Coulomb matrix, BoB, and many-body expansion. SOAP kernel 

represents the local density of atoms within the environment as a sum of Gaussian functions 

centered on each of the neighbors of the central atom. It essentially defines the similarity 

between two neighboring environments and uses it as a descriptor for ML models.184

Local atomic environment vectors (AEV) are another widely used molecular representation. 

AEV explicitly incudes all pairwise combination of elements, which means that the size of 

the input layer of a ML model grows as O(N2) with the number of included chemical 

elements. Therefore, models can only be trained for a relatively small number of chemical 

elements. Adding new elements requires retraining the ML model again from scratch.

Recently, alternative weighting functions (wACSFs),185 circumventing the above issue, have 

been proposed. Though this is a simple re-parametrization, the number of required 

symmetry functions becomes independent of the actual number of elements present in the 

system, leading to more compact descriptors. This alternative solution to the growth problem 

was introduced with the Deep Tensor Neural Network (DTNN)186 and Atom-in-Molecule 

Neural Network (AIMNet). These constitute learnable vectors of atomic features that are 

used to embed atomic symmetry functions to make a unified representation of each atom’s 

chemical environment. DTNN was subsequently refined to create the SchNet architecture182 
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specifically designed to model atomistic systems using continuous-filter convolutional 

layers.

Neural Network potentials.

A ML approach applicable to chemical systems containing large numbers of atoms, 

originally proposed by Behler and Parrinello (BP method) in 2007, used high-dimensional 

neural network potentials (NNP).187 As in many conventional empirical potentials, the 

potential energy E is the sum of local atomic energies of all atoms in the system. Since this 

seminal publication, a substantial number of articles and reviews have been published on the 

use of NNPs for bulk chemical systems (e.g., bulk silicon or water) or for describing single 

molecule potential energy surfaces and reaction coordinates.188

Recently, Smith et al. introduced the first NNP designed for organic molecules, ANI-1.189 It 

is applicable to molecular systems well outside its training set. The ANI-1 potential was 

trained on a dataset of small organic molecules of up to 8-heavy atoms (while sampling both 

conformational and configurational space). Furthermore, ANI-1 demonstrated its 

applicability to much larger systems, up to 70 atoms, including known drugs and molecules 

randomly selected from the GDB-11190 database and containing up to 10 heavy atoms. It 

predicted DFT energies of the test set molecules with up to 10 heavy atoms very well, with 

the resulting RMSE values below 0.57 kcal/mol.

Many techniques for improving the accuracy and transferability of general-purpose ML 

potentials have been employed. Among these, active learning methods, already proven 

successful in conventional QSAR modeling, have been especially popular.191 Active 

learning methods provide a consistent and automated improvement in accuracy and 

transferability and have contributed greatly to the success of general-purpose models. An 

active learning algorithm decides what new QM calculations should be performed then adds 

the new data to the training set. Allowing the ML algorithm to drive sampling improves the 

transferability of an ML potential greatly. Further, transfer learning methods allow the 

training of accurate ML potentials by combining multiple QM approximations.

One fundamental limitation of BP-type models is the inability to pass information between 

atoms at larger distances. Several neural network architectures have been proposed to 

address this limitation. The HIP-NN (Hierarchically Interacting Particle Neural Network) 

approach breaks molecules down into feature representations and uses a number for each 

atom and the pairwise distances between atoms. On-site layers encode information specific 

to each atom and interaction layers allow sharing of information between nearby atoms. The 

total energy is built hierarchically from those interactions.

Another architecture, SchNet, encompasses atom embeddings, interaction refinements, and 

atom-wise energy contributions. At each layer, the atomistic system is represented on atom-

wise basis and is refined by continuous filter convolutions with filter-generating networks.
192

In the AIMNet implementation, the solution to the short-range problem is inspired by mean 

field theory (MFT). The main idea of MFT is to replace all interactions with any one atom 
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with an average or effective interaction, sometimes called a molecular field. This reduces 

any multi-body problem into an effective one-body problem.

Datasets.

As previously stated, one of the most important aspects of building a model in chemistry is 

the choice of the training dataset. Various datasets of organic and materials systems for 

training ML models have been developed over the last decades. Two of the most popular 

organic molecule benchmark sets are the QM7176 and QM9193 collections. The QM7 

benchmark was developed by subsampling the GDB-13194 database of small molecules. 

QM7 contains 7165 energy-minimized molecules consisting of up to 7 heavy atoms and 

several properties computed with density functional theory (DFT)-. This benchmark is 

difficult to model by ML because of its relatively small size. Initial mean absolute errors 

(MAE) ,using the coulomb matrix representation,176 were around 10 kcal/mol.

The ANI-1 dataset includes organic molecules with a large number of non-equilibrium DFT 

total energy calculations . It includes ~24M conformations for 57,462 molecules from the 

GDB database, with the total energy values computed for each conformation. This dataset 

samples both chemical and conformational degrees of freedom at the same time and thus 

provides 100x more data. Therefore, we expect that this dataset will become a new standard 

for comparing the ability of current and future ML methods to improve on the best model 

accuracy (1 kcal/mol) achieved for the QM9 benchmark. More importantly, this data source 

is a foundation for development of future general-purpose machine-learned approaches.

The COMP6 benchmark dataset191 was developed to validate the transferability of ML 

potentials. COMP6 is a benchmark suite containing five rigorous benchmarks that cover 

broad regions of organic and bio-chemical space of isolated molecules and a sixth built from 

the existing S66x8195 noncovalent and intermolecular interactions data.191 Properties are 

calculated using the ωB97x/6-31G(d) basis set, however, it could be recomputed using any 

desired quantum level of theory.

Advanced approaches

In addition to active learning, there are other ML techniques that aim to reduce training data 

requirements. Some ML-based methods (such as NN) can take advantage of information 

from multiple sources. The key concept is to train a model using a large dataset of medium 

accuracy, then retrain the model with a smaller, more accurate and difficult to obtain data 

set. This process called transfer learning (TL) relies on the assumption that less accurate data 

sets contains some information that makes it easier to learn models for the smaller datasets 

of higher accuracy data.

For example, TL could be performed by taking a DL model that was pretrained to medium-

fidelity DFT, holding some number of parameters in the model constant, then retraining the 

remaining parameters using a much smaller, higher accuracy CCSD(T)/CBS dataset. Such 

methodology resulted in the development of the ANI-1ccx potential, which represents an 

attractive alternative to DFT and standard force fields for conformational searches, 

molecular dynamics, and the calculation of reaction energies. The computed reaction energy 
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values demonstrated that the transfer learning-based ANI-1ccx method outperforms DFT on 

test cases, especially those where DFT fails to capture reaction thermochemistry.

In many systems, multiple data modalities can be used to describe the same process. One 

such physical system is the human brain, which provides more reliable information 

processing based on multimodal information.196 Many ML related fields of research have 

successfully applied multimodal ML model training.

In chemistry, molecules, often represented by structural descriptors, can also be described by 

accompanying properties (dipole moments, partial atomic charges) and even electron 

densities. Using multimodal information as inputs has been an actively developing field in 

recent years.197 This boost is caused by the use of additional information that captures the 

implicit mapping between the learnable endpoints. We discussed the advantages of multi-

objective models over traditional single task approaches in the sections on Chemical safety 

prediction and Multi-target profiling above. Here we show that the same approaches are 

equally useful for developing ML models of QM results.

In the previous sections we have commented on the ongoing revolution in organic chemistry 

brought about by advances in computational (retro)synthetic approaches and robotic 

chemistry. Similarly, the use of ML approaches in quantum chemistry constitutes another 

recent paradigm shift. These rapidly emerging approaches dramatically change current limits 

of the size and complexity of molecular systems accessible to QM-level structure and 

property calculations.

Materials informatics

Machine learning methods dependent on large experimental and computational databases, 

are becoming ubiquitous tools for materials development,198 extending their traditional use 

for organic molecules. Materials science is a very large field and space constraints permit 

discussion of only a small set of important questions and answers described below.

Which materials are missing?

This has been a perennial question,199 but several recent studies have attempted to address 

this. For instance, Hautier et al.200 used experimental data to create a probabilistic 

framework for ionic substitution capable of dealing with sparse spaces (quaternary 

configurations). ML has also been used to tackle amorphous systems. For example, Perim et 
al.201 identified an energy spectral descriptor for de novo prediction of metallic glasses and 

used it to quantify the classification probability of mixtures. ML and atomic features 

(descriptors) were also used to identify regions of compositions prone to glass formation and 

demonstrated surprising accuracy.202

Descriptors, the Holy Grail of optimization: where can we find them?

While the great importance of descriptors has been established,198 these parameters are 

often defined deus-ex-machina out of intuition. Attempts have been made to develop 

interpretable parameterizations with ML. Thus, Ghiringhelli et al.203 proposed compressive 

sensing to discover functional forms and tested stability rules for binary semiconductors. 
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Isayev et al.204 introduced universal fragment descriptors for predicting properties of 

inorganic crystal and developed electronic density of states and band structure fingerprints 

that cluster many high temperature superconductors (materials cartography). Recently, 

Stanev et al.205 identified 30+ non-cuprate and non-iron-based oxides, potential new 

superconductors, using RF.

Can enthalpies (and other properties) be predicted?

The correct calculation of enthalpies and other properties is important for ab-initio 
computational materials design.206 Much progress has been made since the original 

principal components analysis of alloy thermodynamics reported by Curtarolo et al.207 Rupp 

et al.208 used kernel ridge regression for modeling molecular atomization energies with 

mean absolute error of ~10 kcal/mol. In a related study, De et al.184 used the smooth overlap 

of atomic positions (SOAPs) to introduce a very useful descriptor for comparing structures: 

the “alchemical similarity” for molecular and periodic structures. Gaussian process 

regression (GPR) was used to generate very accurate Gaussian atomic potentials (GAP) and 

then to train a SOAP–GAP model within a ML framework (GPR) that achieved a 99% 

accurate atomic-scale properties for Si surface reconstruction, stability of molecules, and 

protein ligands.209 Pilania et al.210 tackled melting temperatures of the octet subset of AB 
solids and band gaps of double perovskites. De Jong et al.211 used statistical learning to 

study elastic moduli of inorganic crystals, and with many other relevant studies.

What material properties can we predict?

Thermoelectrics.—A lot of work has been performed for computational predictions of 

thermoelectric systems following the seminal paper of Madsen who proposed an automatic 

search for new thermoelectric materials leading to LiZnSb.212 Legrain et al.213 developed a 

ML descriptor-based framework (random forests and nonlinear support vector machines) 

and found that chemical composition alone can reasonably predict vibrational free energies. 

In the work of Carrete et al.,214 authors used classification trees to address nano-grained 

half-Heuslers thermoelectrics.

Magnets.—In Sanvito et al.,215 the ideal latent heat curvature introduced in Yong et al.216 

was calculated for all the Heusler configurations of the AFLOW repository. This was 

performed with the cloud phase diagram calculator by Oses et al.,217 leading to the 

discovery of two magnets Co2MnTi and Mn2PtPd, the first ever discovered by 

computational means. Körner et al. performed a ML high-throughput-screening of 

intermetallic ThMn12-type phases and rare-earth-lean systems with YNi9In2-type.218 Möller 

et al.219 built kernel-based ML models to optimize chemical compositions for permanent 

magnets.

Light conversion and emission.—To overcome input constraints of common ML 

pipelines, Duvenaud et al.220 developed a convolutional neural network operating directly on 

graphs (representing molecules of arbitrary size/shape), demonstrating enhanced predictive 

performance over traditional fingerprinting for solubility, drug efficacy, and organic 

photovoltaic efficiency datasets. Gómez-Bombarelli et al. integrated neural networks as part 

of a larger computational discovery pipeline to prioritize molecules for quantum simulations.
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172 This led to the discovery of molecular organic light-emitting diodes with external 

quantum efficiencies as large as 22%.

High-entropy systems.—High-entropy materials continue to attract research interest due 

to their remarkable properties, and several semi-empirical methods have been proposed to 

predict their existence.221 Most approaches use descriptors with parameters fitted to the 

limited experimental data. Modeling phase diagrams with CALPHAD also suffers from 

insufficient experimental knowledge.221 There was a recent attempt by Lederer et al.222 to 

parameterize the miscibility-gap and solid-solution boundary lines with ab-initio 

calculations and statistical modeling. Eventually, such analysis might mature into effective 

ab-initio descriptor-based characterization.

Other notable applications.—Fernandez et al. proposed an innovative QSPR model to 

recognize efficient metal organic frameworks for CO2 capture. Emery et al.223 performed a 

descriptor based combinatorial analysis of perovskites for thermochemical water splitting 

applications.

2D materials.—Single or multiple layers of the same or different 2D materials have 

exciting new electrical, optical, heat transfer, and lubrication properties. Recently layers of 

graphene have exhibited superconductivity.224 ML methods have been used to predict the 

interlayer distance, band gap, thermodynamic properties and superlubricity properties of 

hybrid 2D materials.225

Welcoming new challenges!

Materials science properties, based on fundamental principles, are intrinsically suitable for 

modeling by machine learning. Success in ML approaches is a driver for the discovery 

and/or optimization of new materials and/or phenomena. This section has given a short — 

unavoidably incomplete — snapshot of the current state of the art.

What do our colleagues say about future frontiers?—Jain et al.226 identified 

challenges as follows: (i) streamlining the use of large data resources (even with rational 

APIs, large databases remain difficult to interrogate, especially when mixing data from 

different repositories); (ii) developing descriptors for crystalline, periodic solids; and (iii) 

balancing interpretability (physical meaning) of descriptors versus accuracy of models. The 

latter represents a well-known challenge resolved in cheminformatics about a decade ago.227 

Butler et al.175 added the following extra challenges to this list: (iv) dealing with smaller 

datasets (of critical importance especially for the experimental world); (v) quantum learning 

(to enhance calculation speed); and (vi) establishing new principles (not only data, but also 

laws, somewhat similar to Jain’s point about balancing interpretability and accuracy).

What do we say about future frontiers?—There is no need to add further elements to 

the philosophical discussion of ML/AI’s future. We should not underestimate the critical 

issues of the following additional challenges: (vii) dealing with the disordered/amorphous 

systems (e.g., it is not a coincidence that the field of high-entropy alloys is still lacking a 

compelling ML work); (viii) sustainability and organization of big-data in terms of 
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computational infrastructure, standardization of data-entries and prototypes, development of 

materials database languages, e.g., AFLUX;228 (ix) further exploration of web-, cloud-, and 

frameworks-directions, and the last but the most important point (x) unless ML can generate 

new useful materials faster than experiments alone, materials scientists’ interest in ML will 

dissipate quickly.

To conclude this section, we highlight the clear similarity between materials informatics 

with the traditional workflow of QSAR modeling (see Figures 1 and 6). As with 

cheminformatics, the starting point of materials informatics is the accumulation of large 

datasets of materials with experimental or computational properties. The need for 

developing novel materials descriptors and their use in building property prediction models 

using ML techniques follows. Finally, current challenges outlined in the concluding part of 

this section parallel many of those facing traditional QSAR modeling of bioactive 

compounds. Thus, materials informatics (and a closely related field of nanomaterials 

informatics described in the next section) represents a prime example of a new discipline, 

whose development was enabled and immensely catalyzed by the experience and approaches 

developed in QSAR.

Nanomaterials informatics

Nanotechnology is another field for which cheminformatics is becoming a key tool, 

especially for the quantification of diverse properties of nanomaterials and nanostructure-

property modeling. Development of modern AI algorithms has stimulated an increased 

interest in Quantitative Nanostructure – Activity Relationships (QNAR)229 also known as 

nano-QSAR. Like traditional QSAR, QNAR models are based on the assumption that 

similar nanomaterials will induce similar biological effects. However, unlike QSAR, 

nanomaterials (and materials in general) are more complex than single drug molecules, as 

they are less well defined and feature distributions of sizes, shapes, etc.

QNAR models rely on an ensemble of molecular descriptors that encode constitutional, 

topological, or geometrical characteristics of a given set of nanomaterials. These descriptors 

are derived directly from the structures of the nanomaterials using bespoke software. 

Moreover, experimentally determined properties (e.g., elemental composition, zeta potential, 

size distribution, shape) can also be appended to the computed descriptors to boost the 

prediction performances of QNAR models. This is analogous to the use of experimental 

HTS results as descriptors to model biological endpoints for drug candidates described in 

prior sections. QNAR models establish quantitative relationships between those 

experimental and computed descriptors and specified biological endpoints using ML 

techniques.

Importantly, QNAR models are developed using the same workflow, validation procedures, 

statistical criteria, and key steps as those of classical QSAR models for small molecules. 

However, the high structural diversity and complexity of nanomaterials typically lead to 

specific challenges,230 especially when it comes to the choice of molecular descriptors. Two 

types of representations are clearly emerging from the literature – studies in which the whole 

nanoparticle is characterized computationally, experimentally, or both or when such 
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characterization is applied to the surface chemistry of the nanoparticle (especially, organic 

decorators) only. Naturally, the choice of descriptors and the associated software is different 

for these two types of QNAR modeling. For the second type of study the QNAR model is 

similar to a traditional QSAR model, trained using descriptors for surface chemistry, to 

predict biological activity of the nanomaterials. Another challenge of QNAR modeling, 

similar to materials informatics is the relatively small size of the datasets currently available 

in the public domain. This leads to lower prediction accuracy and smaller applicability 

domains for QNAR models compared to those of QSAR models trained on large organic 

molecule data sets. To mitigate this limitation, read-across techniques are increasingly used 

to estimate the properties of nanomaterials.231

Assessing the environmental impact of engineered nanomaterials (ENMs, see Figure 7) 

requires data on their physicochemical and bioactivity properties, as well as 

bioaccumulation. After data collection and validation, ML approaches can be used to 

generate models correlating values of ENMs descriptors (e.g., structural, physicochemical, 

and bioaccumulation-related) and specific toxicity outcomes associated with biological 

mechanisms of action under various exposure scenarios.

The importance of data on ENMs structure and properties

Like other area of materials science, nanotechnology has generated various datasets of 

physicochemical properties, environmental fate and transport parameters, and bioactivity of 

nanomaterials.232 They contain both literature curated and raw data from various 

experimental investigations, useful for QNAR modeling. For example, the OCHEM 

database232 contains experimental data on ENMs and provision for generating descriptors 

for model building, NanoMiner233 contains data (including omics data) on 634 types of 

ENMs. The NM-Biological Interactions Knowledge base contains over 200 toxicological 

evaluations for embryonic zebrafish exposed to metal and metal-oxide ENMs. 

NanoDatabank234 has raw data for over 1000 different nanomaterials and associated 

characterization and toxicity data.

Early nanoinformatics efforts were focused on organizing data into structured datasets (i.e., 

with fixed fields or records).235 However, there is growing recognition that significant data 

are available as unstructured datasets (i.e., with no predefined fixed fields or records), often 

are scattered across multiple literature and online sources. Thus, significant recent efforts 

have been devoted to the development of public databases, meta data, and data management 

systems for nanomaterials. These efforts included incorporation and integration of 

information from multiple sources, addressing data security, effective data sharing, 

intelligent data queries, and data integration.236 The joint EU-US Nanoinformatics Roadmap 

2030232 has stressed the need for guidelines concerning the development of nanoinformatics 

datasets that are structured, have controlled ontology for ENMs properties and bioactivity, 

and interoperability with other databases and modeling tools. Raw data (free from pre-

processing by data curators) that can be curated and analyzed in a context-dependent way 

are most useful for QNAR development.

Substantial amounts of experimental data on the toxicity of ENMs have been generated, 

primarily in various cell lines such as, macrophages, pancreatic and other human cells and 
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bacteria. There are still limited studies with simple organisms like zebrafish and even fewer 

on higher animals. Toxicity data include experimental results across multiple assays and cell 

lines/types with ENMs having different surface modifications and core compositions. There 

are different levels of confidence and consistency across the toxicological studies. Currently, 

efforts to derive generalized toxicity models based on ENMs characteristics have been based 

on datasets from single studies rather than integrated from the collective body of published 

data.237 Clearly, to develop predictive nano-SAR models of ENMs toxicity, it is useful to 

identify critical biological pathways that can lead to adverse outcomes.238 Understanding 

relationships between the structural and physicochemical properties of ENMs and the 

biological responses and correlation between such responses can be very useful for deriving 

causal relationships. Although QNAR models provide valuable insight on ENMs toxicity, 

they generally cannot provide direct mechanistic interpretation that can be validated and 

tracked back directly to experimental data. However, as with most other QSAR models, 

ENMs toxicity models can be very useful in the absence of mechanistic information or 

interpretation.

Clearly, to generate the most robust and predictive ENMs toxicity models, the quality of data 

is paramount. These models can then elucidate the relevance and significance of ENMs 

properties such as structure, surface chemistry, shape and other physicochemical parameters 

with respect to their biological properties. Experimental conditions can also be employed as 

independent variables when modeling toxicity. Several literature studies have identified 

causal relationships between the biological outcomes and important ENMs properties.239

QNAR modeling

Several seminal publications pioneered the field of QNAR modeling. Puzyn et al.240 built 

the first nano-QSAR model based on ensemble learning regression methods and CDK 

descriptors to predict the cytotoxicity of 17 unique metal oxide nanoparticles. Fourches et al.
241 introduced the concept of QNAR modeling with a set of 109 functionalized CLIO 

nanoparticles and their Paca2 cell uptake. This study has been repeated and successfully 

reproduced several times by other research groups.242 For instance, different series of metal 

oxides were also modeled using the OCHEM webserver to generate reliable QNAR models.
243 Drug delivery properties of nanocarriers could be successfully predicted by QNAR 

models as well.244

Important nanomaterials, carbon nanotubes, have had their biological effects extensively 

modelled by QNAR. For instance, Trinh et al.245 used a combination of computed and 

experimental descriptors, encoded as quasi-SMILES, to build QNAR models that could 

accurately estimate the cytotoxicity of carbon nanotubes in human lung cells. Fourches et al.
246 developed a series of QNAR models for 83 functionalized CNTs tested in vitro for 

protein binding and toxicity. These models reached prediction accuracies up to 74% for 

external test set toxicity estimates, and protein-binding classification models achieved 

external prediction accuracies up to 77%. A library of 240,000 potential CNT surface 

modifiers was further screened using these models and the least toxic organic modifiers were 

selected for experimental validation. Subsequent synthesis and testing of these surface-
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modified CNTs confirmed the in silico predictions, demonstrating the utility of QNAR 

models for rational design of nanomaterials with enhanced properties.

In another study, a logistic regression-based QNAR model was developed247 to flag toxic 

outcomes; this model was trained on high-throughput toxicity screening data for BEAS2B 

cells exposed to nine metal oxide nanoparticles. The best-performing model had almost 

100% classification accuracy and required only three nanoparticle descriptors: the period of 

the nanoparticle metal; the atomization energy of the metal oxide; and the nanoparticle size 

and volume fraction. Another study used RF classification to model cellular toxicity of metal 

oxide ENMs.248 The model was trained on data extracted from 216 publications, and used 

14 ENMs attributes as descriptors. It demonstrated that cytotoxicity of ENMs was highly 

correlated with the administered dose, assay type, exposure time, and surface area of 

nanoparticles.248

Bayesian networks as models for predictive toxicology and for assessment of causal 
relationships

Models that predict toxicity of ENMs must account not only for the properties of the 

nanomaterials per se, but also for experimental conditions (e.g., assay types, exposure 

concentrations, exposure period, organism and more). It is important to quantify the 

relevance and significance of ENMs and experimental attributes driving toxicity while 

accounting for uncertainties in data, particularly that collected from multiple sources. 

Toxicity prediction models trained on these attribute combinations can sometimes identify 

causal relationships,239 which can be effectively achieved with the Bayesian Network (BN, 

also called a Bayesian Belief network, BBN) approach.249

BN models construct a network where the modes are ENMs characteristics and the edges 

(links) represent conditional dependences of target outcomes on various attributes. This 

provides a visual representation of causal relationships.250 The model allows interpretation 

of “if/then” causal relationships where the parent (antecedent) and child (descendent) nodes 

are at the outgoing and incoming links in the BN structure, respectively. The set of model 

attributes and their conditional dependencies represents knowledge from the dataset(s) of 

attributes and toxicity outcomes in the form of probability distributions. BN models can 

identify, for example, the conditional dependence that would lead to a toxicity outcome 

within a specific range.

Previous studies have demonstrated the value of BNs for developing qualitative “toxicity/

hazard” classification of ENMs based on using physicochemical and specialized 

descriptors .251 BN models identified the most relevant parameters impacting specific ENMs 

hazards. Thus, regression and classification models were developed252 for cause–effect 

relationships for hazard associated with exposure to TiO2, SiO2, Ag, CeO2, ZnO NPs for 

different toxicity endpoints. A BN model predicted the hazard associated with exposure to 

metal and metal oxide NPs251 for eight toxicity endpoints compiled from 32 published 

studies. Despite the existence of significant data gaps for some NPs the resulting BN model 

identified the most relevant NP properties for predicting toxicity outcomes.
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Data variability and curation

As is true for traditional QSAR, inter- and intra-sample variability in QNAR is a big issue 

that can dramatically affect the predictivity of a model. Therefore, in order to study and/or 

model nanomaterials, the experimental variability for both inter- and intra-sample 

measurements needs to be taken into account whenever possible. For instance, the size 

distribution of a given sample of a specified nanomaterial can vary from one instrument to 

another. If a series of size distribution plots is used to model a set of nanomaterials, then the 

experimental variability of these measured profiles needs to be considered to better 

understand the stability, reliability, and robustness of the model. As with small molecule 

drugs and/or batches of biologics, replicate measurements are necessary to understand 

experimental variability. All, or a subset of compounds chosen to be representative, and their 

associated samples are characterized in triplicate. If one endpoint (e.g., particle diameter, 

zeta potential) is deemed unreliable, that endpoint should not be considered as a descriptor 

for those nanomaterials nor should it be considered as a target property for a model. Clearly, 

materials characteristics measured with low accuracy and reproducibility, will limit the 

predictivity of the QNAR models trained using them. Nanomaterials are particularly 

sensitive to the protocols used for sample preparations (e.g., dilution, sonication, solvent 

mixtures) leading to aggregation or even degradation. Experimental variability is a general 

issue that the QSAR modeling field is constantly dealing with. Strict data curation prior to 

model development is highly recommended,15 whereas external validation ensures the 

stability and robustness of the models over all modeling and external prediction sets.

Perspectives

Although QNAR modeling is still in its infancy, we anticipate it will grow significantly in 

the near future. This growth is dependent on:

• development of more effective and interpretable ENMs-specific descriptors

• further development of high-throughput synthesis and screening platforms for 

nanomaterials, leading to the expansion of publicly available data to train QNAR 

models

• development of more robust and predictive, consensus models based on 

individual QNAR models trained on diverse ENMs descriptors using advanced 

ML techniques including DL

• development of nanomaterials with desired properties and pre-computed 

bioprofiles generated by interdisciplinary research teams. The role of QNAR 

modeling in the context of such multidisciplinary efforts cannot be 

overestimated.

Biomaterials and regenerative medicine

Previous sections have covered major underlying concepts of cheminformatics such as 

chemical similarity, QSAR model building and validation, and domain of applicability. 

These methods have been progressively extended to areas beyond their traditional 

applications, for instance chemical genomics and (nano)materials science as discussed 
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above. Another emerging field is the use of QSAR methods to model control of cell 

phenotypes and understanding and predicting the biological response to materials. These are 

relatively recent, but rapidly expanding fields where the potential impact is very significant. 

Unlike bioinformatics,253 cell biology, and clinical medicine,254 there is a relative paucity of 

published examples of the application of QSAR or related ML-based methods to 

biomaterials, regenerative medicine, and stem cells studies. Polymers and other complex 

materials have been used in implantable or indwelling devices, as replacement or 

augmentation of natural bodily components, as scaffolds for cell culture, and as active 

biomaterials and drug delivery systems. Unfortunately, such materials are not as well 

defined as organic molecules. As discussed above in the sections on (nano)materials 

informatics, one of the biggest challenges in the field of biomaterials is generation of 

appropriate descriptors that capture relevant properties of these materials and can adequately 

represent their structure, often poorly understood and characterized.19 In this regard, rapid 

adoption of DL methods is providing useful models for this very important issue. The 

feature generation capabilities of DNN mean that simpler representations of complex 

materials become possible. We further anticipate that predictive material-QSAR models may 

be interrogated to identify the types of complex features that modulate relevant biological 

responses most strongly.

Although the use of arcane molecular descriptors has already resulted in good predictive 

models of the biological effects of materials, there is increasing impatience with their 

inability to be related back to underlying chemical features interpretable by chemists to 

improve performance. The dilemma between good predictions of properties for new 

materials, and interpretability of models (mechanistically or in terms of molecular 

interactions at a surface) has been reviewed recently by Fujita and Winkler.19 This nexus has 

led to a rise in the popularity of signature or fragment-based descriptors for modeling of 

materials interaction with biological systems. For example, signature descriptors have been 

used to model the adhesion of bacteria to polymers.255 New ML methods such as adversarial 

and encoder-decoder networks have begun tackling the ‘inverse QSAR’ problem, where 

trained model can be used to design or suggest new molecules for synthesis with improved 

activity.

A second important issue that distinguishes materials modeling from small molecules 

modelling is that in the former case interactions are more complex. Often materials interact 

with mixtures of proteins, membranes, cells, and modulate the responses of a myriad signal 

pathways, mechanosensors, etc. Consequently, ML methods are best suited to address such 

complexity and uncertainty, where the mechanisms of the cell-materials interactions are 

largely unknown. Notably, ML methods have been successfully used already for modeling 

soft biological materials such as blood vessels.256

To date, QSAR methodology has been applied in regenerative medicine and biomaterials 

modeling in three major groups of studies. First, sparse and non-sparse feature selection 

methods have been used to reduce the complexity of materials-biological systems 

interactions. For example, sparse feature selection methods were applied to investigate stem 

cell behavior (see Figure 8 for details). Similarly, an expectation maximization algorithm 

employing a sparse (Laplacian) prior45 was used to identify the most relevant genes in 
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unbiased genome-wide expression studies. In one such study, mesenchymal stem cells 

(MSCs) were exposed to the components of a biomaterial (strontium bioglass, SrBG) with 

varying levels of strontium ions.257 These drive MSC differentiation down the osteogenic 

pathway to form bone tissue. After preliminary expression level and fold ratio filtering, the 

sparse feature selection method identified a handful of genes related to fatty and sterol 

biosynthesis - a previously unreported mechanism of bone growth modulation. Subsequent 

experimental validation of this mechanism by means of qPCR Raman spectroscopy and 

protein expression profiling led to important implications for the control osteoporosis and 

bone loss.

In another related investigation, unbiased sparse feature selection methods were applied to 

gene expression data.258 In this experiment, stem cells were forced to divide symmetrically 

or asymmetrically in response to several types of experimental conditions.258 Sparse feature 

selection methods were used to identify robust markers for symmetric cell division, which is 

a very important factor in stem cell proliferation and differentiation studies.258

ML methods have been increasingly applied to quantitative modeling of the responses of 

biological systems to interactions with materials.259 To date, most of these materials have 

been polymers, due to their tunable properties, ease of library generation and 

characterization, and generally understood biocompatibility. Early work was conducted by 

the Kohn group from Rutgers University who generated a library of 112 tyrosine-derived 

polyarylates and measured a range of their physical properties and biological responses.260 

They used DRAGON descriptors261 based on the monomeric units of the polymers in 

combination with such parameters as glass transition temperature (Tg) and air-water contact 

angle to generate quantitative and predictive models of fetal rat lung fibroblast (FRLF) 

metabolism and fibrinogen attachment on the polymer surfaces. Subsequently, research 

teams at the University of Nottingham, CSIRO, Monash University, and MIT generated 

polymer microarrays262 and conducted high throughput screening to elucidate structure-

property relationships in their interactions with cells.

The use of biomaterials as cell factories263 shows great promise, and the large generated 

stem cell attachment, proliferation, and differentiation datasets were modelled by ML 

methods. These could make robust and accurate predictions of stem cell behavior of 

materials not used to train the models. In one study, the attachment of embryoid bodies (a 

surrogate and stable cell system to mimic embryonic stem cells) to a polymer library was 

modelled using sparse feature selection and optimally regularized neural networks.264 These 

models relied on DRAGON descriptors and Bayesian regularized neural networks to 

quantify the attachment of embryoid bodies to the polyacrylate libraries. A more recent 

study modelled attachment, proliferation, and differentiation of human dental pulp stem cells 

to a polymer library.265 In this case study, the authors also investigated the ability of a 541 

members of polyacrylate homopolymer and copolymer library to promote attachment, 

proliferation, and differentiation of stem cells.

Finally, advanced QSAR methods are being applied to the characterization of surfaces that 

interact with biological systems and to analyzes of complex high-content data such as cell 

imaging and phonotype recognition. Surface analysis methods such as Raman and Time-of-
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Flight Secondary Ion Mass Spectrometry (ToF-SIMS) are invaluable experimental tools for 

characterizing the nature of surfaces interacting with biology. Surprisingly, there has been 

little application of statistical methods and ML to the corresponding spectroscopic data. 

ToF-SIMS in particular has proven to generate data that is very useful for QSPR material 

modeling.262 Recent work has shown how self-organizing maps (SOMS) can provide 

superior clustering of complex mass peak data,266 probing into the intrinsic information 

content (Shannon entropy) of these surface analysis methods.267

As the field of biomaterials modeling is relatively nascent, there are many issues that need 

resolving before the full benefit of AI/ML-based QSAR methods can be realized. The most 

important of these issues is how to represent a high molecular weight complex material such 

as a cross-linked polymer hydrogel or polymer library with distributions of chain length, 

block sizes, degree of cross-linking, etc. Although surprisingly effective models can be 

generated using descriptors based on small fragments, additional materials features may be 

needed where these approximations fail. More recently methods have been developed that 

allow many types of nanoscale topographies to be imprinted onto materials surfaces. These 

modulate biological properties such as macrophage polarization, so efficient ways of 

generating descriptors for topographical features are required. Equally important is the need 

to generate models that can be interrogated to guide the synthesis of subsequent generations 

of materials with improved characteristics.174 Biological data variability and reproducibility 

are also a constant struggle for high throughput materials-based experiments. Improving the 

reliability of these biological response data by careful statistical treatment of results and 

improved fabrication quality control is also important. However, as modeling of biomaterials 

coevolves with further development of the respective experimental research, one shall expect 

models to become more robust and impactful.

Clinical and health informatics

Just as advances in statistics, ML, and AI have influenced chemical research, experience 

accumulated in cheminformatics can be applied to clinical research. The growing linkage 

between QSAR modeling and clinical informatics was highlighted by the most recent 22nd 

EuroQSAR meeting in 2018 dedicated explicitly to “Translational and Health Informatics: 

Implications for Drug Discovery”.268 One example of such cross-fertilization between the 

fields is the development of robotic biomarkers of motor impairment of patients recovering 

from stroke.269

One of the greatest challenges in designing clinical trials is dealing with the subjectivity and 

variability introduced by human assessment of clinical endpoints. This problem is 

particularly acute in neurology, where outcomes may be highly variable (e.g., in cognition), 

susceptible to the state of the patient (e.g., fatigue, pain, anxiety, depression), the lack of a 

gold standard definition or diagnosis (e.g., neuropathy, dementia), are high dimensional 

(e.g., imaging or genomic markers), or are composite in nature (e.g., clinical instruments for 

assessing depression or quality of life).270 These factors make it difficult to demonstrate 

treatment benefits, requiring larger pools of subjects in clinical trials as well as properly 

structured electronic health record (EMR) archiving and retrieval capabilities.
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Neurological disorders such as stroke suffer from clinical assessment limitations as 

established methods are often subjective: Scales such as the Fugl-Meyer (FM),271 Motor 

Power (MP),272 NIH Stroke (NIH),273 and Modified Rankin (MR),274 require properly 

trained personnel for evaluation, with results widely varying from rater to rater.275 While 

extensive training of raters and centralization of outcome assessments (whenever possible) 

can reduce variability, it does not completely eliminate it and comes with its own additional 

costs.276

One way to minimize this measurement variability issue is to replace human raters with 

robotic technology that can provide repeatable, reliable and speedy assessment of continuous 

measures of impairment and its change during recovery. Robotic devices are less sensitive to 

the skills and expertise of a human rater, can reduce inter- and intra-rater variability, can be 

used simultaneously for both assessment and rehabilitation, which can be done faster and 

more frequently, and can further be used in a home setting thus minimizing patient burden 

and inconvenience.276

The following study illustrates the use of QSAR -type approaches in clinical informatics. To 

test their utility in clinical trials, the four clinical scales mentioned above, were used in 

conjunction with a robotic assay to measure arm movement in 208 patients at 7, 14, 21, 30, 

and 90-day time-points after acute ischemic stroke. The data were collected at two clinical 

sites in the US and the UK. The study had two goals. The first was to establish whether the 

robotic measurements could predict the scores of human raters, and the second was to 

develop a more sensitive robotic biomarker that could reduce the sample size of the study 

without compromising the predictive value. The robots were low impedance and low friction 

interactive devices that measured speed, position, and force.277 The robotic assessment 

consisted of 35 macro- and micro-metrics derived from various directed, unassisted 

reaching, circle drawing, resistance to external forces, and shoulder strength measurements, 

applied to the affected and unaffected arms.278

The relationships between these 35 robotic variables and the four clinical scales were 

visualized (see Figure 9) using stochastic proximity embedding (SPE), a self-organizing 

nonlinear mapping algorithm that was originally invented to visualize very large 

combinatorial chemical libraries115 and subsequently adapted for various molecular 

modeling applications.279 Having established a degree of correlation, models were generated 

to assess whether the robotic metrics could predict the clinical scales with sufficient 

accuracy to serve as their surrogates. The model was trained using the data from degree of 

recovery from day 7 to day 90 after stroke, and all other intermediate measurements were 

used as test data. Specifically, 208 patients were divided into two complementary 

populations: those with complete data sets for days 7 and 90 (referred to as completers; 

N=87) and; those with missing data on days 7 or 90 (referred to as non-completers; N=121). 

The models, based on feed-forward NNs, were derived independently for each clinical scale. 

They were trained to predict the clinical scores of a given patient on a given day from the 

respective robotic metrics, using the completer population as a training set.

To minimize over-fitting, a feature selection algorithm based on artificial ant colonies, 

originally developed for QSAR applications, was used to identify the subset of robotic 
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metrics that had the highest predictive power.280 Once the relevant features were identified, 

ensemble models comprising 10 neural network predictors were constructed using the same 

network topology and training parameters but initialized with a different random number 

seed. The predictions of these models were averaged to produce an ensemble prediction. All 

models were cross-validated using the standard jackknife approach that divided the training 

data into 10 disjoint subsets containing 10% of the patterns each, systematically removing 

each subset from the training set, building a model with the remaining patterns, and 

predicting the clinical scores of the removed patterns using the optimized network 

parameters. The resulting predictions were compared to the original clinical scores to 

evaluate the overall agreement with the R2
CV metrics. This process was repeated 10 times to 

obtain more robust cross-validation statistics. Finally, the best models identified by cross-

validation were used to predict performance of the non-completers, who formed an 

independent test set. This protocol was virtually identical to the one used for QSAR 

applications.281

The resulting models recapitulated the human scored clinical scales with a cross-validated 

R2 of 0.73, 0.75, 0.63, and 0.60 for the FM, MP, NIH and MR scales, respectively. The 

models also showed lower but still useful predictive power for the external validation set 

(non-completers). The models had better prediction accuracy for the FM and MP scales that 

are more closely related to motor function than the NIH and MR metrics. Finally, the models 

were used to derive novel composite robotic endpoints with improved sensitivity (and effect 

size) compared to existing scales. To measure the effect size, Cohen’s d parameter for paired 

observations was used, defined as the mean divided by the standard deviation of the day 7 to 

day 90 changes over all the completers. Since optimizing nonlinear composites is an ill-

posed mathematical problem, a greedy forward-selection algorithm was employed to select 

up to 8 most relevant robotic features. Optimized robotic composites with as few as four 

features increased the effect size over a reference natural history trial282 by as much as 

107% for the training and 83% for the test set. This result is highly significant as an increase 

of 83% in effect size would result in a 70% reduction in the number of patients required to 

achieve the typical 80% statistical power in a clinical trial.

While the primary purpose of EMRs is to serve patient care, the second QSAR-inspired 

study illustrates how structured EMR information can be processed with unsupervised 

learning to improve patient phenotyping in Chronic Obstructive Pulmonary Disease 

(COPD).283 COPD, a heterogeneous disease characterized by persistent, non-reversible 

airflow limitation is the fourth leading cause of death in the United States (as of 2010). 

While “phenotype” is a co-emergent property of the genotype-environment interaction, 

COPD has bene classically stratified in two phenotypes,284 the “blue bloater”, which is 

rooted in chronic bronchitis (cyanosis due to hypoxemia), and the “pink puffer”, which is 

rooted in emphysema (pink skin and hyperinflation), although up to seven COPD 

phenotypes have been proposed, based on “clinical relevance”.285 Unsupervised learning 

was used to analyze EMR data from COPD patients, first to find out if common COPD 

patterns exist, which in turn could identify different COPD subtypes and lead to improved 

therapeutic management within each COPD subtype. A total of 3,144 patients aged 40 or 

older, admitted to the University of New Mexico Hospital, a 580-bed tertiary hospital with a 

COPD diagnosis (ICD9 codes: 490, 491, 492 or 496) between 1 January 2011 and 1 May 
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2014 were processed for this study. Data processed in this analysis included demographics, 

comorbidities, presence of atopy, obesity, number of admissions, prescriptions for inhalers 

(grouped as: i) short acting beta-agonist, ii) long-acting beta-agonist, iii) anticholinergics, iv) 

steroids and v) combinations), prescriptions for oral steroids, beta-blockers and statins, as 

well as weight loss and elevated plasma bicarbonate (used as surrogate biomarkers for 

disease severity). All variables, including age (40–65 years and >65 years) and number of 

admissions (one admission and ⩾ two admissions), were coded as binary for the study.

These data were clustered using the sphere exclusion algorithm,286 a disjoint similarity 

method that has been widely applied in cheminformatics. In the disjoint similarity method, a 

patient (object) can belong to only one cluster.287 When processing this multidimensional 

space that has as many dimensions as variables, dissimilarity can serve as the distance metric 

between patients. By definition, similarity is set to 0 if all the variables are different and is 

set to 1 if they are equal.287 As described elsewhere, in sphere exclusion the only user input 

is the similarity threshold: First, the similarity between all patients was computed. The 

algorithm then identified the patient with the most “neighbors” within a specified similarity 

cut-off, forming the first cluster. These patients were excluded from further iterations. The 

process was repeated until only patients without neighbors (i.e., singletons) were left. For 

this dataset, the optimal balance between the number of clusters and clustering overlap was 

found at similarity threshold 0.62. Using the sphere exclusion algorithm for clustering 

reduces the risk of bias since the method does not make a priori assumptions regarding 

numbers of clusters or similarity thresholds.

After leaving 189 patients (6%) as outliers, the following nine COPD clusters (phenotypes) 

were identified, with the number of patients given in brackets: 1: Depression–COPD (1748); 

2: Malignancy–COPD (312); 3: Coronary artery disease–COPD (291); 4: Young age–low 

comorbidity–high readmission–COPD (152); 5: Advanced malignancy–COPD (144); 6: 

Cerebrovascular disease–COPD (120); 7: Atopy–COPD (81); 8: Diabetes mellitus – Chronic 

Kidney Disease – COPD (64) and 9: Advanced disease–COPD (43). The largest cluster is 

characterized by a large proportion of patients over age 65 and depression; two clusters (2 

and 5) are associated with malignancy, although the first one has few readmissions whereas 

the second one has signs of advanced COPD and frequent readmissions. Cluster 3 is 

associated with heart disease (patients over age 65), whereas cluster 6 is associated with 

predominantly cerebrovascular disease and younger (under 65) patients. Cluster 4 (young 

patients, few comorbidities) has the highest number of prescriptions for bronchodilators; 

cluster 7 is also comprised of patients below age 65, but with asthma/atopy and higher 

numbers of readmissions; cluster 8 is associated with chronic kidney disease (CKD) and 

type 2 diabetes in patients aged 40-65, whereas cluster 9 has frequent readmissions, severe 

disease and high number of anticholinergic prescriptions. Our analysis revealed five 

previously unreported COPD phenotypes: two malignancy-COPD clusters (2 and 5), the 

COPD – CKD – diabetes cluster (8), the “advanced disease” cluster (9) and the high 

readmission phenotype (4). Each of these new clusters has practical implications, which may 

lead to better therapeutic outcomes.

To summarize, the above studies successfully adapted methods from computational 

chemistry and cheminformatics into in-depth analyses of health data. We anticipate that this 
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transfer of methods and experience will continue to fuel healthcare informatics research by 

introducing new and improved computational methodologies.

Outlook

The field of QSAR modeling based on simple approaches used to predict chemical reactivity 

was initially popularized by Corwin Hansch and his colleagues more than 55 years ago.1 For 

many years, even decades, this field was focused on the prediction of physicochemical 

properties and biological activities using descriptors representing intrinsic properties of 

chemical structures. However, as the size and diversity of chemical datasets expanded, the 

QSAR modeling field has evolved to include larger and more diverse types of chemical 

descriptors and increasingly more complex statistical and machine learning techniques. We 

reflected on these trends earlier,2 and foreshadowed the impact that these developments in 

the QSAR modeling community would have on many other areas of research. We projected 

that, with the continuing strong growth of publicly accessible data, this field will become 

essential for extracting knowledge from, and making predictions with, these massive data 

sets. We forecast that the field will continue to embrace even more powerful and complex 

machine learning methods. Furthermore, we expect that these modeling methods will 

continue to find rapid acceptance not only in chemistry but also in new fields beyond 

chemistry, where large data sets are readily available and modeling complex relationships 

between a set of independent variables and given properties of interest are important. The 

recent expansion of QSAR studies using DL approaches (as discussed in the section on 

Modern trends in QSAR) is an early harbinger of these expectations.

We have illustrated some of non-traditional applications in this review, demonstrating how 

QSAR-like approaches are beginning to yield exciting results in research areas as diverse as 

quantum mechanics, materials and nanomaterials science, biomaterials, regenerative 

medicine, and health care. Impressively, many of the roadblocks and technical issues in 

statistical data modelling employed in different domains of knowledge had already been 

addressed in the QSAR modeling literature. Examples include papers on the impact of the 

errors on QSAR analysis288 and the importance of data curation to achieve stable and 

reproducible models.93 These considerations were under active discussion in the QSAR 

community before the reproducibility crisis brought to light by the NIH289 and biomedical 

scientific community at large.290 Similarly, rigorous model validation prior to prediction14 

and the importance of rigor in modeling protocols291 have been articulated in several 

seminal publications in QSAR field292 and have already been adopted as regulatory 

requirements.84 Extreme examples of the application of QSAR concepts beyond its 

traditional domain are provided by a study into factors influencing temporal crime patterns 

in Chicago293 that cites a well-known work on QSAR model validation292 and a study on 

stock price predictions.294

We expect QSAR-like modeling techniques to continue to expand substantially even beyond 

the areas where it is starting to make an impact, which we discussed above. Scientists 

working in this field will continue to experiment with novel statistical, machine learning, 

and AI algorithms to accelerate the experimental discovery of novel compounds and 

materials with desired properties. The jury is still out on whether the newest DL approaches 
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will improve the prediction accuracy of QSAR models. However, we expect that the answer 

will emerge in the next few years, given the tremendous activity in this field.

As discussed above, stunning and potentially paradigm shifting developments are occurring 

in the use of machine learning approaches to massively accelerate quantum mechanical 

calculations, without sacrificing accuracy, and the use of QSAR methods for de novo 
compound design. Another fascinating and emerging direction is AI-driven chemical 

synthesis route prediction and its synergy with robotic synthesis, also discussed above. We 

anticipate a multitude of new and interesting algorithmic developments in the area of retro- 

and forward synthesis design, with software integrated with the robotic systems. We should 

soon see the emergence of fully autonomous, ‘close loop’ chemical and materials synthesis 

and optimization systems. In addition to these methodological developments, we foresee 

many new and impactful experimental methods arising that lead to novel, useful, and safe 

chemicals when QSAR modeling is applied to these data, and the increased application of 

ML methodologies in drug target selection, gene-phenotype evaluation and disease 

modeling. Finally, besides potentially exciting developments in traditional areas of 

application in chemical sciences, we further expect that the experience in model 

development, validation, and exploitation of QSAR models for knowledge discovery in 

chemical sciences will lead to progressive expansion of QSAR modeling principles and 

approaches in many other disciplines.

Conclusions

This contribution was conceived by a group of scientists who have dedicated significant 

portions of their professional careers to the development and use of quantitative methods in 

computational chemistry and molecular modeling. Following the previous highly cited 

comprehensive survey of QSAR modeling that was coauthored by many contributors to this 

paper and published in 2014,2 we felt it was time to reflect on the new and exciting 

developments in QSAR modeling that have emerged in the last five years due to 

proliferation of large and diverse (Big Data) molecular bioactivity datasets and of 

burgeoning use of associated Big Data analytical methods such as DL. We also intended to 

share our observations and excitement concerning the prolific use of similar ML approaches 

in areas beyond chemical domain; the latter excitement and observations were in part 

influenced by the transition to other fields that some original cheminformaticians, including 

several coauthors of this paper, have made in their own research evolution and career 

development. Herein, we have summarized recent and developing trends in several areas of 

research where statistical data modeling has begun taking a prominent place and where 

experiences and generalizable approaches of QSAR modeling could catalyze new 

discoveries. We hope that this collective contribution will be useful for both specialists in 

data modeling and experimental researchers looking to expand their toolkits to include 

computational data analytical approaches.
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Figure 1. 
Data cycle associated with QSAR modeling projects.
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Figure 2. 
Different SAR patterns. Shown are inhibitors of tyrosine kinase ABL forming different 

SARs. For each compound the logarithmic potency (pKi) value is reported. At the top, SAR 

continuity is observed where gradually changes in compound structure (traced by horizontal 

arrows) are accompanied by moderate potency alterations. By contrast, the inhibitors at the 

bottom display SAR discontinuity. Here, small structural modifications lead to large changes 

in potency. Vertical arrows indicate the formation of pairwise activity cliffs.
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Figure 3. 
Comparison of the Pearson R2 values for models generated using DNN (blue) or XGBoost 

(red and green) and random forest methods.
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Figure 4. 
Proteochemometrics approach enables accurate affinity estimates for novel ligand-target 

pairs.
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Figure 5. 
Main tasks of computer-aided synthesis design. As soon as a synthesis planning for a target 

molecule is established, efficiency of each one-step reaction and related optimal reaction 

conditions could be assessed.
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Figure 6. 
ML Materials Flow is a combination of feature extraction, descriptor analysis, structure 

fingerprinting (representations) of databases, and materials synthesizability. Figure 

reproduced from Refs.217,329-331
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Figure 7. 
Nanoinformatics elements of environmental and health impact assessment for nanomaterials
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Figure 8. 
Changes in hMSC global mRNA expression mediated by treatment with BG- and SrBG-

conditioned media. (A) Operation of the EM algorithm, showing progressive nulling of 

lower genes less relevant to the SrBG treatment. (B) The contribution (mean ± SE) of the 

most significant genes identified by sparse feature analysis. (C) Functional annotation 

clustering analysis of differentially expressed genes in response to Sr100 treatment 

compared with control. Reproduced from Ref.257
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Figure 9. 
SPE map of the correlation distances of the clinical and robotic parameters for the 

completers cohort. The map was derived by computing the pairwise Pearson correlation 

coefficients (R) for all pairs of features, converting them to correlation distances (1-abs(R)), 

and embedding the resulting matrix into 2 dimensions in such a way that the distances of the 

points on the map approximate as closely as possible the correlation distances of the 

respective features. The clinical parameters are highlighted in red, the robotic parameters on 

the affected side in blue, and the robotic parameters on the unaffected side in green. The 

map also shows distinct clusters of correlated variables which are preserved on both the 

affected and unaffected sides (outlined by green and blue ellipses, respectively).
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Table 1.

Examples of QSAR-“inspired” studies from diverse research areas.

Cited
Paper

Title Journal Year/Ref

292 Sensory analysis of red wines: Discrimination by adaptive fuzzy partition Journal of Sensory Studies 2008/295

14 Improved wheat yield and production forecasting with a moisture stress index, 
AVHRR and MODIS data

Crop and Pasture Science 2009/296

14 Use of genetic algorithm and neural network approaches for risk factor 
selection: A case study of West Nile virus dynamics in an urban environment

Computers Environment and Urban 
Systems

2010/10

14 Whole cell-catalyzed transesterification of waste vegetable oil Global Change Biology Bioenergy 2010/297

14 New Ground-Motion Prediction Equations Using Multi Expression Programing Journal of Earthquake Engineering 2011/298

93 Qualitocracy: A Data Quality Collaborative Framework Applied to Citizen 
Science

IEEE Conference Proceedings 2012/299

14 Gene expression programming as a basis for new generation of electricity 
demand prediction models

Computers and Industrial 
Engineering

2014/300

292 Development of a model for quality evaluation of litchi fruit Computers and Electronics in 
Agriculture

2014/301

14,292 Good practices in LIBS analysis: Review and advices Spectrochimica Acta Part B-Atomic 
Spectroscopy

2014/302

303 Characterization of Softwood and Hardwood LignoBoost Kraft Lignins with 
Emphasis on their Antioxidant Activity15

BioResources 2014/304

292 Gene expression models for prediction of dam breach parameters Journal of Hydroinformatics 2014/305

292 An entrainment model for non-uniform sediment Earth Surface Processes and 
Landforms

2015/306

14 Indirect estimation of the ultimate bearing capacity of shallow foundations 
resting on rock masses

International Journal of Rock 
Mechanics and Mining Sciences

2015/307

14 A novel protocol for assessment of aboveground biomass in rangeland 
environments

Rangeland Journal 2015/308

14 Statistical Modeling of Soil Moisture, Integrating Satellite Remote-Sensing 
(SAR) and Ground-Based Data

Remote Sensing 2015/12

292 Testing and Prediction of Material Compatibility of Biofuel Candidates with 
Elastomeric Materials

International Journal of Fuels and 
Lubricants

2015/309

292 Regression Algorithms in Hyperspectral Data Analysis for Meat Quality 
Detection and Evaluation

Comprehensive Reviews in Food 
Science and Food Safety

2016/310

292 Evolutionary patterns and physicochemical properties explain macroinvertebrate 
sensitivity to heavy metals

Ecological Applications 2016/311

292 Restricted attention to social cues in schizophrenia patients European Archives of Psychiatry 
and Clinical Neuroscience

2016/312

93 Molecular descriptor data explain market prices of a large commercial chemical 
compound library

Scientific Reports 2016/313

14 A hybrid intelligent fuzzy predictive model with simulation for supplier 
evaluation and selection

Expert Systems with Applications 2016/314

292 Development of a stage-dependent prognostic model to predict psychosis in 
ultra-high-risk patients seeking treatment for co-morbid psychiatric disorders

Psychological Medicine 2016/315

292 Prediction of Timing of Watermain Failure Using Gene Expression Models Water Resources Management 2016/316

14 A new approach for modeling of flow number of asphalt mixtures Archives of Civil and Mechanical 
Engineering

2017/317

14 Next generation prediction model for daily solar radiation on horizontal surface 
using a hybrid neural network and simulated annealing method

Energy Conversion and 
Management

2017/318
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Cited
Paper

Title Journal Year/Ref

93 Computer-Assisted Decision Support for Student Admissions Based on their 
Predicted Academic Performance

Journal of American Pharmaceutical 
Education

2017/11

292 Predicting Bond Strength between FRP Plates and Concrete Substrate: 
Applications of GMDH and MNLR Approaches

Journal of Advanced Concrete 
Technology

2017/319

14 Gene Expression Programming Approach to Cost Estimation Formulation for 
Utility Projects

Journal of Civil Engineering and 
Management

2017/320

292 Prediction of flow duration curves for ungauged basins Journal of Hydrology 2017/321

14 Maize [Zea Mays (L.)] crop-nutrient response functions extrapolation for Sub-
Saharan Africa

Nutrient Cycling in Agroecosystems 2017/322

14 Performance assessment of existing models to predict brittle failure modes of 
steel-to-timber connections loaded parallel-to-grain with dowel-type fasteners

Engineering Structures 2018/323

292 A comparative study on groundwater spring potential analysis based on 
statistical index, index of entropy and certainty factors models

Geocarto International 2018/324

325 Environmental factors influencing snowfall and snowfall prediction in the 
Tianshan Mountains, Northwest China

Journal of Arid Land 2018/326

14,292 Prediction of riprap stone size under overtopping flow using data-driven models International Journal of River Basin 
Management

2018/327

14 Forecasting experiments of a dynamical-statistical model of the sea surface 
temperature anomaly field based on the improved self-memorization principle

Ocean Science 2018/9

292 Expressed emotion as a predictor of the first psychotic episode - Results of the 
European prediction of psychosis study

Schizophrenia Research 2018/328
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