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Summary
Genetic factors underlying coronary artery disease (CAD) have been widely studied using genome-wide association studies (GWASs).

However, the functional understanding of the CAD loci has been limited by the fact that a majority of GWAS variants are located within

non-coding regions with no functional role. High cholesterol and dysregulation of the liver metabolism such as non-alcoholic fatty liver

disease confer an increased risk of CAD. Here, we studied the function of non-coding single-nucleotide polymorphisms in CAD GWAS

loci located within liver-specific enhancer elements by identifying their potential target genes using liver cis-eQTL analysis and promoter

Capture Hi-C in HepG2 cells. Altogether, 734 target genes were identified of which 121 exhibited correlations to liver-related traits. To

identify potentially causal regulatory SNPs, the allele-specific enhancer activity was analyzed by (1) sequence-based computational pre-

dictions, (2) quantification of allele-specific transcription factor binding, and (3) STARR-seq massively parallel reporter assay. Altogether,

our analysis identified 1,277 unique SNPs that display allele-specific regulatory activity. Among these, susceptibility enhancers near

important cholesterol homeostasis genes (APOB, APOC1, APOE, and LIPA) were identified, suggesting that altered gene regulatory activ-

ity could represent another way by which genetic variation regulates serum lipoprotein levels. Using CRISPR-based perturbation, we

demonstrate how the deletion/activation of a single enhancer leads to changes in the expression ofmany target genes located in a shared

chromatin interaction domain. Our integrative genomics approach represents a comprehensive effort in identifying putative causal reg-

ulatory regions and target genes that could predispose to clinical manifestation of CAD by affecting liver function.
Introduction

Coronary artery disease (CAD) and its most important

complication, myocardial infarction (MI), results primarily

from atherosclerosis, an inflammatory disease of the large

arteries characterized by lipid-rich lesions. Genome-wide

association studies (GWASs) have identified �200 risk

loci for CAD/MI.1,2 However, these loci correspond to

thousands of common single-nucleotide polymorphisms

(SNPs) in high linkage disequilibrium (LD) of which any

could be causal. Furthermore, 90% of SNP-based heritabil-

ity of CAD/MI is explained by variants located in intronic

and intergenic regions with no known function, which

complicates the functional interpretation.3,4 To translate

the GWAS findings into therapeutic potential, we need to

understand which of the risk variants are functional and

what genes they regulate. It has been shown that around

30% of CAD variants5 can be explained by their associa-

tion with traditional risk factors, including hypertension,
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obesity, diabetes, metabolic syndrome, dyslipidemia, insu-

lin resistance, and non-alcoholic fatty liver disease

(NAFLD), highlighting the key role of adipose tissue and

the liver. Especially, NAFLD has been shown to promote

both hyperglycemia and dyslipidemia that increases the

risk of cardiovascular disease.6 However, little is known

about the target genes and regulatory mechanisms by

which these risk variants act.

Emerging evidence suggests that causal disease variants

affecting gene expression are enriched in the enhancers

of disease-relevant cell types.7 However, only a few such

examples have been described for cardiovascular disease-

associated variants, including SORT1,8 PHACTR1,9 AN-

RIL,10 LMOD1,11 and SMAD3,12 highlighting the pressing

need for further studies. Enhancers act by looping with

their target promoters where they bring in additional tran-

scription factors and coactivators. Therefore, long-range

interactions between regulatory elements and gene pro-

moters play key roles in transcriptional regulation.
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Interacting regions are enriched with genetic variants

linked to the altered expression of the genes they con-

tact,13,14 which also highlights their important role in dis-

ease. Variants within enhancers have been shown to affect

the binding of transcription factors (TFs),15 as well as the

chromatin state16,17 and chromatin interactions.10

Here, we focused on the characterization of the GWAS

CAD/MI risk loci that could act through the liver and in

particular via hepatocyte-specific enhancers. First, we per-

formed a promoter Capture Hi-C experiment in HepG2

cells to identify target genes for the risk SNPs that were

further extended by a cis-eQTL analysis. Second, we used

ChIP-seq intensity variation, DeepSEA computational pre-

dictions, and a massively parallel reporter assay to investi-

gate the allele-specific enhancer activity and infer the

causal regulatory SNPs. Finally, we characterized selected

enhancer SNPs located in 3D regulatory hubs to demon-

strate a functional link between enhancers and their target

genes. Overall, we aim to provide deeper understanding of

the genetic basis of CAD acting through the liver tissue.
Subjects and methods

Identification of susceptibility enhancers
GWAS lead SNPs associated with CAD and MI were obtained from

the GWAS catalog18 by using the following terms: coronary artery

disease, coronary heart disease, and myocardial infarction (Table

S1). This corresponded to 262 cytogenic regions. As majority of

the GWAS lead SNPs came from studies that were based on Euro-

pean ancestry, the co-inherited, proximal SNPs (dbSNP version

146) in tight LD (r2 > 0.80) with the GWAS lead SNPs (Table S2)

were determined using the 1000 Genomes European samples

phase 3, version 5a using PLINK v.1.90b5.3 with the following

essential settings: ‘–extract <dbSNP v146 rsIDs>, –keep <EUR

sample IDs>, –maf 0.01, –r2, –ld-snp-list<GWAS lead SNP rsIDs>,

–ld-window 100000, –ld-window-kb 1000, –ld-window-r2 0.8’.19

Only SNPs were analyzed and other types of structural DNA vari-

ants were excluded. To study which of the susceptibility SNPs

fall within with hepatocyte-specific enhancer marks, we checked

for overlap of the enhancer peaks downloaded from ENCODE20

and Roadmap Epigenomics Mapping Consortium21 including

GSM646355-6 (HepG2 H3K27ac), GSM646356 (HepG2

H3K4me1), and GSM1112808-9 (Liver H3K27ac) using the HOM-

ER v4.1022 command ‘mergePeaks’ -cobound.

Prediction of pathogenic exonic SNPs using SIFT and

PolyPhen-2
We used SIFT23 and PolyPhen-224 tools to predict deleterious ef-

fects of exonic SNPs as described below. Importantly, the CAD/

MI risk loci that harbored exonic SNPs were included in the down-

stream analysis as we cannot rule out that both the coding and the

noncoding SNPs could have a biological role. SIFT is a sequence

homology-based tool that predicts whether an amino acid substi-

tution in a protein will have a phenotypic effect. SIFT correlates

protein function with evolution. We submitted the query in the

form of SNP IDs. SIFT takes a query SNPs and uses multiple align-

ment information to predict tolerated and deleterious substitu-

tions for every position of the query sequence. SIFT obtains

alignment for SNP location with similar sequences that could
412 The American Journal of Human Genetics 108, 411–430, March
share similar function to the query and normalized probabilities

are calculated from the alignment. Normalized probabilities <

0.05 is considered to have deleterious effect while SNPs with value

> 0.05 has tolerating effect. For a SNP, PolyPhen-2 calculates Naive

Bayes posterior probability that a SNP is damaging, and reports es-

timates of false positive rate and true positive rate. A SNP is also

evaluated as benign, possibly damaging, or probably damaging

based on false positive rate (FPR) thresholds.

UK biobank GWAS association
The GWAS imputed V3 association files (Table S3) for cardiometa-

bolic traits files were downloaded from nealelab including body

mass index (BMI), basal metabolic rate (BMR), blood pressure,

cholesterol (quantile), diseases of liver, HDL cholesterol (quantile),

LDL direct (quantile), nonalcoholic fatty liver disease, non-cancer

illness code, type 2 diabetes, and triglycerides (quantile). As

described in nealelab (see web resources), the GWAS was based

on linear regression model on all phenotypes including both

sexes. Association for all phenotypes used a least-squares linear

model predicting the phenotype with an additive genotype cod-

ing (0, 1, or 2 copies of the minor allele), with sex and the first

10 principal components from the UK Biobank sample QC file

as covariates. p value < 5 3 10�5 were considered significantly

associated. This lenient cut-off value was used to discover all sug-

gestive candidate associations of the previously identified CAD/MI

GWAS SNPs with liver-related traits.

Cell lines and culture reagents
HepG2 cells (ATCC, HB-8065) were cultured in Dulbecco’s modi-

fied Eagle medium (DMEM; 4.5 g/L glucose, 2 mM L-glutamine,

100 U/mL penicillin, 100 mg/mL streptomycin; LONZA) supple-

mented with 10% fetal bovine serum (FBS; GIBCO). The cells

were maintained at 37�C in a humidified atmosphere at 5% CO2.

Promoter Capture Hi-C library preparation and data

processing
The promoter Capture Hi-C assay was performed using two repli-

cates of 10 million HepG2 cells, as described previously.25 The li-

braries were sequenced on the Illumina HiSeq 4000 platform.

On average, 114.4 M paired-end reads were obtained per sample.

The reads were processed using HiCUP v0.7.226 software with

the default settings except that the insert size restrictions for the

filtering step were set to 200–600 bp. The reads were aligned to

the GRCh37/hg19 human reference genome using bowtie2

v.2.2.9. Significant interactions were identified using the Capture

Hi-C Analysis of Genome Organization (CHiCAGO) software

v.1.1.8. which takes into account that the background levels in

PCHi-C decrease as the genomic distance between the bait and

other end increases.27We used the default threshold of 5 for signif-

icant interactions. Gene set enrichment analysis for promoters

within the interacting ends was performed using Enrichr.28

Feature enrichment at interaction endpoints
To associate interactions with SNPs or histonemarks, study feature

enrichment at interaction endpoints and connect features with

HepG2 promoter capture interactions the HOMER v.4.1022 com-

mand ‘annotateInteractions.pl’ was used. The program uses posi-

tional overlaps to assign interaction endpoints to given genomic

locations. GWAS SNPs18 (v.1.0, 2019-09-24) associated with

HDL, LDL, schizophrenia, multiple sclerosis, Crohn disease,

metabolite levels, prostate cancer, lung cancer, rheumatoid
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arthritis, psoriasis, ankylosing spondylitis, bipolar disorder, Alz-

heimer disease, Parkinson disease, migraine, autism spectrum dis-

order, and celiac disease were included in the analysis. To study the

enrichment of chromatin marks, public data for HepG2 cell line

was collected from ENCODE20 and Roadmap Epigenomics Map-

ping Consortium21 GSE26320 (H3K27ac/me3, H3K4me1/2/3),

GSM1003519 (H3K9me3), GSM816662 (DNaseHS), and human

liver from GSM1112808-9 (H3K27ac).

Identification of target genes from PCHi-C
First, we used HepG2 PCHi-C data to identify target genes of the

CAD/MI SNP carrying regulatory regions. Ideally, each looping

in PCHi-C represents an interaction between promoter of a gene

and its regulatory region. If a promoter of a gene was found to

have a looping interactionwith a CAD/MI SNP carrying regulatory

region, then we considered the gene to be a target gene. This was

achieved by intersecting the SNP coordinates with the non-pro-

moter end of the looping region. If there was a match, the pro-

moter end of the coordinates was called by the gene name. This

analysis was accomplished using a custom python script.

KOBS study cohort
A subset of 263 participants, with the RNA-sequencing data avail-

able from an ongoing KOBS study29,30 (Kuopio Obesity Surgery

Study which includes severely obese individuals undergoing bar-

iatric surgery), were included in our analysis. All participants pro-

vided informed consent and the study protocol was approved by

the local ethics committee. Plasma glucose, insulin, and serum

lipids and lipoproteins (total cholesterol, HDL cholesterol, and tri-

glycerides) and free fatty acids (FFAs) were measured after fasting.

RNA-seq library preparation and mapping (KOBS

cohort)
The KOBS RNA samples were isolated at the University of Eastern

Finland using the miRNeasy (QIAGEN) kit according to the man-

ufacturer’s protocol and subsequently sequenced at the UCLA

sequencing core. The stranded RNA-seq libraries were prepared us-

ing Ribo-Zero gold. The RNA-seq libraries were sequenced as 50-bp

paired-end reads on an Illumina HiSeq 2500 platform. On average

41.5 million uniquely mapped reads were obtained per sample.

The STAR31 2-pass method was used to align the reads to the

GRCh38 reference genome (release 29). To remove lowly ex-

pressed genes, a gene had to have>10 reads in 80% of the samples.

The Rsubread R package32 was used to count all the reads mapped

within exon features. The gene-level quantification was estimated

as the sums of the read counts and the TPM of all the transcripts of

a given gene. We generated data quality statistics with Picard (see

web resources). Hidden covariates were determined with the prin-

cipal component analysis (PCA).

Expression quantitative trait loci (eQTL) analysis and

overlap with CAD/MI GWAS SNPs
For the cis-eQTL analysis, we first carried out a surrogate variable

analysis (SVA)33 on the KOBS gene expression data to identify

latent factors representing unmeasured batch effects in RNA-seq.

Then, KOBS liver gene expression TPM was adjusted for SVA fac-

tors, RNA integrity value (RIN), alignment rate, percent of mito-

chondria reads, 3’ bias, BMI, age, and sex, as well as genetic

principle components 1 and 2. We estimated the minor allele fre-

quency (MAF) of SNP variants using VCFtools34 and only included

SNPs with MAF > 5% in the cis-eQTL analysis. cis-eQTLs were
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identified with linear regression implemented in the R package

Matrix eQTL v.2.1.1.35 The cis window was defined as 1 Mbp up-

stream or downstream of the TSS, and FDR of 5% was used to

assess the significance. For this study, the list of significant SNP-

eGene pairs were filtered for the CAD/MI GWAS (lead and proxy)

SNPs described above. Together with the previously published

liver cis-eQTL studies for the CAD/MI GWAS SNPs from GTEX

v7,36 STARNET,37 and other publications38–40 (Table S4), a total

of 138 eGenes were identified.

Gene association with non-alcoholic steatohepatitis

(NASH) in KOBS
We used the edgeR’s41 negative binomial generalized linear model

with quasi-likelihood F-test to test for differential expression, con-

trolling for technical and 23 factors influencing gene expression

identified with PCA, with selected gene expression levels as depen-

dent and liver phenotypes (normal liver, simple steatosis, and

non-alcoholic steatohepatitis) as independent variables. The

following covariates were included in the analysis: uniquely

aligned reads % and 3’ bias, body mass index, sex, and age. The

quantitative traits used in the correlation analysis (Pearson’s and

partial correlation) were inverse normal transformed to avoid

outlier effects.

HMDP study cohort
The Hybrid Mouse Diversity Panel (HMDP) is a resource for sys-

tems genetics studies consisting of about 100 diverse inbred strains

ofmice.42 The transcriptomic and clinical trait data examined here

were generated as previously described.43

Visualization of KOBS and HMDP data gene-trait

associations
The gene-trait associations as well as NASH differentially expressed

(DE) genes data are presented as Circos (circular plots) using Circl-

ize.44 circos.initializeWithIdeogram() functionwas used to create a

track with chromosomal ideogram with hg19 annotation. The

outer circle reflects the human chromosomes. circos.genomicLa-

bels() function was used to add gene labels that are significantly

associated with traits while circos.track() function was used to

generate tracks for each trait. The inner circles in color dots reflects

the genes that are nominally significant genes and the height of

the dots represents the level of significance.

Processing of human liver single-cell RNA data
Human liver single-cell RNA-seq data, published by MacParland

et al.,45 generated from fresh hepatic tissue obtained from five indi-

viduals during the transplantation surgery, was used to study the

cell type specificity of the 714 candidate genes. The dataset consists

of 8,444 parenchymal and non-parenchymal cells annotated by the

original authors into 20 distinct cell populations including plasma

cells, NK-like cells, B cells, cholangiocytes, erythroid cells, hepatic

stellate cells, and multiple types of hepatocytes, T cells, endothelial

cells, and intrahepatic macrophages. The UMI count data and cell

type annotations were imported into the Seurat (v.3.1)46 software

package and scaled to 10,000 counts per cell. The average expres-

sion for each gene was calculated in each cell type cluster as the

number of counts per million. Genes with more than 1 count per

million in at least one cell type were retained (492 genes). The cell

type average expression levels were plotted on a gene-wise z-scored

heatmap and the genes were clustered according to the Euclidean

distance. The cell-type-specific genes (average TPM of hepatocyte
can Journal of Human Genetics 108, 411–430, March 4, 2021 413



clusters, endothelial cell clusters, macrophage clusters, and T/B cell

clusters) were defined by TPM > 10 and a minimum fold change of

> 2 in one cell type and < 0.5 in the other three cell types to be

called cell-type-specific gene.
HepG2 IL1B treatment, ChIP-seq library preparation,

and sequencing
HepG2 cells were stimulated with 10 ng/mL of IL-1b (PHC0814,

GIBCO) at 2 h, 8 h, and 23 h time points. The ChIP-seq process

was performed as previously described47 using an H3K27ac anti-

body (ab4729, Abcam). The data were mapped using the Bowtie

software package allowing up to two mismatches and reporting

only one alignment for each read. Poor quality reads were filtered

out (minimum 97% of bp over a quality cutoff of 10). The peak

calling was performed using HOMER 4.3,22 command ‘findPeaks’

and the settings for ‘-style histone’. The peaks were annotated to

hg19 genes using the command ‘annotatePeaks’ and the settings

‘-log -size given -strand both’. For quantification, the tags from

the two biological replicates were pooled. Average of 2 h, 8 h,

and 23 h time points were calculated and H3K27ac peaks exhibit-

ing more than 2-fold increase were considered inflammation-acti-

vated enhancers or promoters (H3K27ac peak 5 1 kb from an

annotated promoter).
Identification of enhancer hubs
Enhancer hubs were defined as interacting domains composed of

an enhancer-rich region connected through at least three interact-

ing enhancers. Each end of the looping coordinates was taken as

separate input files. Each line in these files were counted using

sort | uniq -c command. The coordinates with less than three counts

and trans looping coordinates (>1 MB) were removed from the

analysis. Bedtools48 merge function was used to combine the

selected overlapping interactions to constitute an enhancer hub.

Further, looping coordinates were intersected with active

H3K27ac ChIP-seq regions from untreated HepG2 cells described

above, to identify enhancer-rich hubs. Gene coordinates were

downloaded from UCSC table browser with assembly Feb. 2009

(GRCh37/hg19). The gene promoter coordinates harbored in each

hub region were identified using homer command ‘mergePeaks’

-cobound function. The fold change for H3K27ac signal was derived

for each promoter using the HOMER 4.322 using the command ‘an-

notatePeaks’ and the settings ‘-log -size given -strand both’ as

described above. The Datamash package (see web resources) was

used for mean and median calculation of the fold change across

each pairwise comparison (control versus 2 h/8 h/23 h IL1b treat-

ment) for each hub promoter. We ranked all enhancer hub gene

promoters in descending order based on the median fold change

in H3K27ac and plotted the max, median, and min values of as a

running average of H3K27ac fold-change (window size 50). To iden-

tify how much the hepatocyte-specific genes are enriched in the

enhancer hubs, a gene enrichment analysis was performed using

the hypergeometric t test (see web resources). The parameters for

the hypergeometric t test are as follows. Number of successes (k ¼
36) was the hepatocyte-specific genes significantly differentially ex-

pressed under cytokine treatment (p value < 0.05), sample size (s ¼
64) was the total hepatocyte-specific genes, number of successes in

the population (M ¼ 9,648) represented all the genes that were

significantly differently expressed under cytokine treatment (p

value< 0.05) while population size (N¼ 28,797) was the total num-

ber of genes included in the analysis. To understand the enrichment

of the CAD/MI SNPs in enhancer hubs and super-enhancers
414 The American Journal of Human Genetics 108, 411–430, March
compared to other random regions, RegioneR49 software package

was used. The program utilizes permutation tests to assess the asso-

ciation between genomic region sets.

Analysis of RNA-seq data from cytokine-treated HepG2

cells
RNA-seq data for HepG2 cell line treated with cytokines were

downloaded from GSE10200650 (GSM2720393–GSM2720400,

GSM2720545–GSM2720554). GEO2R,51 an interactive web tool

that allows users to compare two or more groups of samples, was

used to generate differentially expressed genes for RNA-seq data.

Nominal p value < 0.05 was considered significant. Lists of 50 su-

per-enhancers, enhancer hubs, and random regions were gener-

ated using the command shuf -n 50. The genomic coordinates

where there were limited interactions (i.e., regions not included

as a hub) was considered as a random region. The genes that are

present in the selected 50 super-enhancer, enhancer hubs, and

random regions were identified by using mergePeaks command

with -cobound options using the list of regions and gene coordi-

nates as input files. Gene-gene correlations under each super-

enhancer, enhancer hub, and random regions for GSE102006

were determined using the DGCA52 R package.

HepG2 nuclear protein extraction and EMSA
HepG2 cells were collected (53 106) in PBS by scraping them from

culture flasks and were washed twice with cold PBS. The cells were

re-suspended in 500 mL 13 hypotonic buffer (20 mM Tris-HCl [pH

7.4], 10mMNaCl, and 3mMMgCl2) with a cOmplete Protease In-

hibitor Cocktail (Roche, Merck) by pipetting up and down several

times and were then incubated on ice for 15 min. 25 mL of deter-

gent (10% NP40) was added and vortexed for 10 s at the highest

setting. Centrifugation was done with the homogenate for

10 min at 3,000 rpm at 4�C. The nuclear pellet was re-suspended

in 50 mL complete Cell Extraction Buffer (10 mM Tris [pH 7.4],

2 mM Na3VO4, 100 mM NaCl, 1% Triton X-100, 1 mM EDTA,

10% glycerol, 1 mM EGTA, 0.1% SDS, 1 mM NaF, 0.5% deoxycho-

late, and 20 mM Na4P2O7) for 30 min on ice by vortexing it at

10 min intervals followed by sonication and centrifugation for

30 min at 14,000 3 g at 4�C. The supernatant (nuclear fraction)

was saved. Quantitation of the protein concentration was per-

formed using the Quant-iT Protein Quantitation Kit (Thermo

Fisher Scientific) and the aliquoted supernatant was stored at

�80�C. HepG2 nuclear extract lysate was also purchased from Ab-

cam (ab14660, Lot: GR3223114-8).

Oligonucleotide probes (15 bp flanking SNP site for reference or

alternate allele) with a biotin tag at the 5’ end of the sequence (In-

tegrated DNA Technologies) were incubated with the HepG2

nuclear protein and a working reagent from the LightShift Chemi-

luminescent EMSA kit (Thermo Fisher Scientific, Catalog #20148).

For competitor assays, an unlabeled probe of the same sequence

was added to the reaction mixture at 1003 excess. The reaction

was incubated for 30 min at room temperature, and then loaded

on a 6% retardation gel (Invitrogen, Catalog #EC6365BOX). The

contents of the gel were transferred to a nylon membrane, cross-

linked by UV, and visualized using a UV trans illuminator by Im-

age Lab Software (Bio-rad).

Computational prediction of allele-specific binding

using DeepSEA
The DeepSEA53 tool was used to predict the chromatin effects of

sequence alterations with single nucleotide sensitivity. For the
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CAD/MI SNPs, DeepSEA predictions were obtained using the on-

line tool with the SNPs in VCF files provided as input. Functional

significance score represented a measure of the significance

of magnitude of predicted chromatin effect and evolutionary

conservation and these scores for SNPs at the single-nucleotide

resolution were obtained. The SNP with functional significance

score < 0.01 were considered significant for allele specific

binding.
Allele-specific binding analysis for HepG2 from ChIP-seq

data
The BaalChIP54 tool was used for allele-specific measurements of

transcription factor binding from the ChIP-seq data. A Bayesian

statistical approach was used by the tool to correct for the effect

of background allele frequency on the observed ChIP-seq read

counts. We analyzed 210 TFs representing 580 samples obtained

fromChIP-seq experiments in HepG2 cells by ENCODE20,55 (Table

S5). The zygosity of the SNPs was identified using VCF file56 (data-

set 1 and dataset 2 HepG2_phased_variants.vcf). The BaalChIP-

analysis was corrected for altered karyotypes using HepG2

genomic DNA (gDNA) using ENCFF356NCL and ENCF-

F277OEP56 for the observed allelic imbalances and focused on

the heterozygous loci (3,824 SNPs). The fold change was calcu-

lated by log2(Ref allele count/Alt allele count).
STARR-seq
A massively parallel reporter assay was performed for CAD/MI

GWAS SNPs (leadþproxies) that overlapped the peaks extracted

from the following data sources: GEO: GSE157306 (HepG2

H3K27ac inflammatory time course generated for this study),

GEO: GSM646355-6 (HepG2 H3K27ac), GEO: GSM646356

(HepG2 H3K4me1), GEO: GSM1112808-9 (Liver H3K27ac),

GEO: GSE98983 (HepG2 p65 ChIP-seq), GEO: GSM816662

(HepG2 DNaseHS), and GEO: GSM2400294 (Liver DnaseHS). In

addition, TF binding peaks in HepG2 cells were downloaded

from the ENCODE20 database under ‘‘Transcription Factor ChIP-

seq Uniform Peaks from ENCODE/Analysis’’ and strong common

DNase hypersensitive peaks assayed in a large collection of cell

types were downloaded from source files found under ‘‘DNase I

Hypersensitivity in 95 cell types’’ (hotspots) and ‘‘wgEncodeRegD-

naseClusteredV3.bed.gz’’ (score equal or above 1,000). The overlap

analysis was performed using the HOMER v.4.1022 command

‘mergePeaks’ -cobound.

The following computational pipeline was used to generate

198 bp sequences representing up to 5 haplotypes at each locus

of interest (Table S6). HOMER-formatted peak files were generated

using human genome reference coordinates in build hg19 demar-

cating the regions of interest for the STARR-seq library. Phased al-

leles within these regions were subset for European samples from

the VCF files of the 1000 Genomes phase 3, version 5a using tabix

with the options ‘‘–regions peak.file–print-header’’ using a custom

R script. The HOMER program annotatePeaks.pl was used by

inputting the peak file from step 1 along with the options ‘‘-vcf

phased.vcf.file-size given’’ which output another HOMER-

formatted peakfile with columns noting the bp positions within

each peak and alleles of each haplotype. The sequence of the refer-

ence hg19 human genome was retrieved within each peak bound-

aries using the R package seqinr().57 A custom R script was then

used to iterate through each peak to paste custom sequences

together for each haplotype. Specifically, strings of non-polymor-

phic sequence were separated from polymorphic alleles using
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coordinates in the previous peak file, and then these were pasted

together again for each haplotype. Resulting sequences were

compared along each haplotype, and duplicated sequences were

removed, which sometimes arose when peak sequences were iden-

tical between haplotypes.

The selected regions were cloned to hSTARR-seq_ORI plasmid

(Addgene, #99296)58 backbone. 230-bp DNA inserts containing

198 base pairs of the SNP containing enhancer sequence, a 2-

bp barcode at the 50 end of the enhancer sequence, and 15-bp

adapters at both ends matching the Illumina NGS sequencing

primers were synthesized by Agilent. First round of emulsion

PCR using Micellula DNA Emulsion & Purification Kit (Robo-

klon) was performed to complete the sequencing primers and

to double-strand the oligos. The second round was used to

amplify the material. The plasmid was linearized using AgeI

and SalI restriction enzymes and inserts were cloned to the

linearized plasmid in 17 reactions using the standard InFusion

cloning (Clontech) protocol. The cloned DNA library was trans-

formed to XL-10 gold ultra-competent bacteria (Agilent) in 15 re-

actions and the plasmid was purified using EndoFree Maxiprep

kit (QIAGEN). The plasmid library was transfected following

the manufacturer’s instructions in triplicates to 7 3 107 HepG2

cells using Lipofectamine-3000 transfection reagent (Invitro-

gen). Cells were harvested 24 h post-transfection and the total

RNA was extracted using RNeasy midi kit (QIAGEN).

Messenger-RNA was purified from the bulk RNA using Dyna-

beads Oligo(dT)25 beads (Invitrogen) with 2:1 beads to total

RNA volume ratio. The purified mRNA was treated with Turbo

DNaseI (Ambion) and purified using RNeasy MinElute clean up

kit (QIAGEN). Reverse transcription was performed using UMI-

primers. Unique molecular identifiers (UMIs) were added during

cDNA synthesis to tag identifiable replicates of the constructs,

which improves the data analysis by accounting for PCR dupli-

cates.59 The samples were pooled and RNase A treated and

cDNA was purified with AMPure XP beads using a 1.8:1 beads

to cDNA ratio. The libraries were amplified using junction PCR.

The junction PCR for the RNA library was implemented with

junction_RNA_fwd and junction_RNA_rev primers,58 which

allow the amplification of correctly inserted enhancer sequence

cDNA. The jPCR products were purified using AMPure XPbeads

with a beads to sample ratio of 0.8. A second PCR step was per-

formed to add the index primers (NEBNext Multiplex Oligos

for Illumina Dual Index Primers Set 1 and 2). PCR products

were purified using SPRIselect beads (Beckman) (bead to sample

ratio 0.8). Next generation sequencing was performed on the

NextSeq 500 platform in paired end 75 cycle dual index runs.

The sequencing reads weremapped using Bowtie aligner60 using

the set of synthesized oligo sequences as a reference genome.

Then, UMI-tools61 was used to remove duplicates. To identify en-

hancers displaying allele-specific expression, QuASAR-MPRA62

and Fisher’s method63 were applied.
CRISPRa via VPR
To determine the effect of the enhancers on the transcription of

hub genes, a guide RNA (gRNA) CRISPR-dCas9-derived activator

systemwas used.64–66 The gRNAs oligos were designed with an on-

line tool (IDTDNA) and cloned into a pSPgRNA plasmid (a gift

from Charles Gersbach; Addgene plasmid # 47108) as previously

described.66

Three gRNAs targeting different regions within each enhancer

were cloned (Table S7) and the identity of final constructs was
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verified by sequencing. HepG2 cells were co-transfected with a

gRNA plasmid and a CRISPR VPR activator plasmid (addgene ID:

63798) in a 1:1 mass ratio (ng) using Lipofectamine 3000 (Invitro-

gen). At 48 h post transfection, RNA was purified using RNeasy

Mini Kit (QIAGEN) and the cDNA was prepared with RevertAid

First Strand cDNA Synthesis Kit (Thermo Fisher Scientific). The

mRNA level of the hub genes was measured by SYBR green chem-

istry qPCR using specific primers (Table S8) in StepOne real-time

PCR system (Thermo Fisher Scientific). All gRNAs were tested in

a pilot experiment and the two most effective ones per enhancer

were selected for the replication. Three independent experiments

with four technical replicates were performed. Data (DCt values)

were checked for normal distribution before performing statistical

tests. Paired Student’s t test (two-tailed) was used for data that fol-

lowed normal distribution and equal variance. Otherwise, Mann-

Whitney U test was used. p < 0.05 was used to define a significant

difference between the groups.
CRISPR enhancer deletion
To delete the targeted enhancer regions, guides were designed us-

ing the custom Alt-R CRISPR-Cas9 guide RNA design tool

(IDTDNA; Table S9). gRNAs predicted to produce the highest on

target effect with the lowest off target risk were chosen. Positive

(HPRT) and negative (non-targeting) crRNA (IDTDNA) were used

as controls for the experiment. crRNA positive control are the

ones that target HPRT in human and crRNA negative control are

the one that contains a 20 nt ‘‘protospacer’’ sequence that is

computationally designed to be non-targeting in human. Each

RNA oligo Alt-R CRISPR-Cas9 crRNA and tracrRNA (IDTDNA)

were resuspended in a duplex buffer at a final concentration of

100 mM. Two RNA oligos in equimolar concentrations were mixed

in a sterile microcentrifuge tube to a final duplex concentration of

44 mM. The duplex was heated at 95�C for 5 min and allowed to

cool on a bench to room temperature. For each electroporation,

an Alt-R S.p. HiFi Cas9 enzyme (IDTDNA) was diluted to a working

concentration of 36 mM in a resuspension buffer. An RNP complex

was prepared by combining guide RNA (crRNA:tracrRNA duplex)

with a Cas9 enzyme. The mixture was incubated at room

temperature for 10–20 min. 1.2 3 105 HepG2 cells were electropo-

rated with 1,300V for 30 ms with 1 pulse for each well and plated

on 24-well plates. To avoid clonal heterogeneity that could cause

significant genetic drifting and bias to the gene expression pro-

files,67,68 we opted on using pools of transfected cells for the

analysis of the deletion effects. To achieve this, the cells were lysed

after 48 h of transfection. The RNA extraction, cDNA synthesis

and qPCR protocols were the same as those used for the CRIPSRa.

Three independent experiments with 4 technical replicates were

performed.
Results

A large fraction of CAD/MI GWAS SNPs are associated

with liver-related traits

To investigate how a large fraction of the GWAS SNPs asso-

ciated with CAD and its important clinical manifestation

of MI could exert their function through liver-specific ef-

fects on cholesterol or lipid metabolism, we studied the ge-

netic associations of the previously identified CAD/MI

GWAS SNPs69 with liver-related traits, including choles-

terol, triglycerides, and liver diseases using the UK Biobank
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data. The results demonstrated that of the 12,169 CAD/MI

GWAS SNPs (lead and proxies in LD, r2 > 0.8), �37%

(representing 99/262 risk loci) were associated with choles-

terol or triglycerides and could thus act through liver tissue

(Figure 1A) while 8% (30/262 loci) were further associated

with blood pressure, T2D, BMR, and BMI possibly acting

through other tissues. Altogether, this suggests that a sig-

nificant fraction of risk loci exhibit pleiotropy between

liver-related traits and CAD/MI and thus could provide

a mechanistic explanation for these loci in disease

development.

Characterization of the hepatocyte chromosomal

interactions harboring CAD/MI GWAS SNPs

Among the 12,321 CAD/MI GWAS SNPs, 152 SNPs (48 loci)

were located within exons, and only 26 SNPs (24 loci) were

further predicted to produce altered proteins (Figure S1; Ta-

ble S10). Of the remaining SNPs, 20% (2,426/12,169 in 262

loci) were localized to hepatocyte-specific enhancers and

12% (1,446/12,169 in 262 loci) were localized to liver en-

hancers and could thus act by regulating gene expression

in the liver. To pinpoint potential target genes for these en-

hancers, we prepared HindIII-digested PCHi-C libraries

fromHepG2 hepatocellular carcinoma cell line as described

in Garske et al.25 (Table S11). In total, 91,498 promoter in-

teractions were detected (Table S12). As expected, the

majority of the interactions were enriched for active chro-

matin marks (H3K4me1/2/3 and H3K27ac) and transcrip-

tion factor bindings and depleted for H3K9me3-marked

heterochromatin, based on ChIP-seq from HepG2 cells

(Figure 1B; Table S13). This suggests that we were mainly

detecting interactions involving active regulatory regions,

such as enhancers. Furthermore, risk SNPs associated with

CAD/MI, HDL, and LDL were significantly enriched within

promoter-interacting fragments compared to SNPs associ-

ated with non-liver-related diseases (Figure 1C). Altogether

the CAD/MI GWAS SNPs interacted with 621 genes with a

median distance of 165 kb from the promoter. Lower-reso-

lution Hi-C data from the liver70 confirmed 101 of these

candidates (Table S14). This included SORT1 for which

causal SNPs were traced to an enhancer located 33 kb

from the promoter8 (Figure 1D). Finally, genes interacting

with fragments containing CAD/MI SNPs were more likely

to be enriched for disease-relevant functional annotations

such as metabolic process, chylomicron, and triglyceride-

rich lipoprotein (Figure 1E), supporting the importance of

the identified genes in disease etiology.

Cell type-specific expression of liver cis-eQTLs and PCHi-

C target genes

To complement the identification of liver-specific target

genes of CAD/MI GWAS SNPs, we performed a cis-eQTL

analysis using 263 individuals from the Kuopio Obesity

Surgery (KOBS) cohort29,30 and collected published cis-

eQTL information from GTEX v7,36 STARNET,37 and other

publications.38–40 Altogether, 138 cis-eGenes were identi-

fied for CAD/MI risk SNPs (leadþproxies) corresponding
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Figure 1. CAD/MI SNPs are enriched in regulatory regions of hepatocytes
(A) Flower plot depicting the percentage of CAD/MI GWAS SNPs that are also associated with type 2 diabetes (T2D), triglycerides (TG),
high-density lipoproteins (HDL), total cholesterol, low-density lipoprotein (LDL), body mass index (BMI), basal metabolic rate (BMR),
blood pressure (BP), and nonalcoholic fatty liver disease (NAFLD) in the UK Biobank.
(B) Enrichment analysis of non-promoter regions in hepatocyte chromosomal interactions for enhancer- (H3K4me1-3, and H3K27ac)
and repressor- (H3K27me3, H3K9me3) associated histone marks, and DNase I hypersensitive sites (DNaseHS).
(C) Radar chart showing the enrichment of GWAS variants within HepG2 chromatin interactions.
(D) Washu genome browser shot showing the location of SORT1 (chr1:109782257–109979272), H3K27ac ChIP-seq track for liver and
HepG2, CAD-risk SNPs that fall within the looping ends, and PCHi-C interactions in HepG2 cells. Interacting restriction fragments are
represented as boxes connected by a line on the HEPG2 PCHi-C track.
(E) Gene ontology analysis of the target genes identified from PCHi-C data.
to 62 risk loci. Intersection of the HepG2 target genes

defined by PCHi-C and cis-eQTL analysis identified 25

genes common to both analysis (Figures 2A and S2).

Importantly, 23 of these genes corresponded to the same

SNP-eGene pair. These included SORT1 and APOC48 that

have been functionally associated with lipid metabolism.

No studies reporting a role in CAD or risk factor-related
The Ameri
traits exist for other identified genes, including N4BP2L2,

CD164L2, and ZKSCAN1. Importantly, only 19.7% of the

genes identified by PCHi-C and cis-eQTL analysis corre-

sponded to the GWAS annotated nearest gene.

The low overlap of PCHi-C identified target genes in

HepG2 cells and cis-eQTL analysis from the liver could be

due to a heterogeneous tissue composition that does not
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Figure 2. Identification of target genes regulated by CAD SNP harboring enhancers using PCHi-C and cis-eQTL analysis
(A) Venn diagram showing the intersection of cis-eQTL genes and PCHi-C target genes. The names of the 25 most common genes are
shown.
(B) Expression of CAD GWAS SNP target genes (cis-eQTL and PCHi-C) in different cell types of the human liver based on scRNA-seq.45 A
zoomed-in heatmap is shown for hepatocyte-specific genes.
capture cell-type-specific regulatory landscapes. To better

understand the cell-type-specific gene expression in the

liver, we examined the expression of the 734 SNP target

genes (PCHi-Cþcis-eQTL) using published liver scRNA-seq

data.45 Altogether, 492 SNP target genes were found ex-

pressed in any given cell type in the liver scRNA-seq data

of which 14% (69) were specific to hepatocytes. These

were exemplified by the 3- to 50-fold higher expression of

apolipoproteins (APOA1/A4/B/C1/C2/C4/E/M) and choles-

terol efflux regulatory proteins (ABCA1/5/8) (Figure 2B)

compared to other cell types of the liver. We further discov-

ered that 15% (76/492) of the genes were expressed specif-

ically in endothelial cells (e.g., PROCR, KDM3A, and

CD164L2) and 26% (127/492) mainly in inflammatory cells

(e.g., MERTK in macrophages and FAS in T cells), whereas

the rest were shared among many cell types (Figures S2A

and S2B, Table S15). Importantly, 23/138 (20/62 loci) of

the eGenes for CAD-SNPs were specific to hepatocytes,

whereas the rest of them were predominantly expressed in

macrophages. This could suggest that the eQTL information

obtained from the KOBS cohort with participants display-

ing extreme obesity and/or NASH/NAFLD could reflect
418 The American Journal of Human Genetics 108, 411–430, March
potential macrophage accumulation that has been associ-

ated these conditions in recent single-cell studies.71,72

Hepatocyte-specific enhancer hubs

The finding that more than half of the target genes defined

by PCHi-C were not specific to hepatocytes also suggests

that many of the interactions are likely to be shared by

other cell types as shown forMERTK and LRRC16A (Figures

S3A and S3B). However, recent studies have demonstrated

that genes which are important for cell identify and tissue-

relevant disease SNPs are often enriched in cell-type-spe-

cific superenhancers73 and enhancer hubs74 that exhibit

a significantly higher frequency of 3D chromatin interac-

tions.75 We therefore sought to investigate whether the

hepatocyte-specific genes (genes primarily expressed in he-

patocytes) and CAD/MI GWAS SNPs were found near hepa-

tocyte super enhancers or enhancer hubs. Altogether, we

identified 497 super enhancers defined by linear clusters

of the H3K27ac-marked regulatory regions and 1,028

enhancer hubs that clustered in 3D space (see subjects

and methods). In line with the higher connectivity of su-

per enhancers,76 these two measures exhibited similarity,
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Figure 3. Identification of regulatory regions influenced by inflammatory conditions in hepatocytes
(A) Changes in H3K27ac signal and gene expression within enhancer hubs upon inflammatory stimulus. Hub promoters were ranked by
their median fold change (FC) in H3K27ac upon cytokine treatment (2–23 h), so that inflammatory-induced promoters are on the left of
the x axis. Similarly, median fold change in mRNA expression is shown for genes associated with each hub.
(B) Gene pairs located within the same super enhancer or enhancer hub region show higher expression correlation across inflammatory
treatment conditions than gene pairs from the random regions. p values were derived using the Kruskall-Wallis analysis of variance.
(C and D) Examples of coordinated inflammation-induced H3K27ac at chromatin hubs encompassing IL1A, IL1B, MERTK, and CEBPD.
with 27% (277/1,028) of enhancer clusters overlapping su-

per enhancers. Importantly, the hepatocyte-specific genes

were 1.6 timesmore enriched in the enhancer hubs (hyper-

geometric t test p¼ 1.523 10�4) compared to all expressed

genes. Supporting this, a large majority (58/68) of the he-

patocyte-specific genes fell within a subset of 41 enhancers

hubs suggesting they could exhibit features of regulatory

domains that control genes which are important for hepa-

tocyte function. Finally, we demonstrated that the CAD/

MI GWAS SNPs were significantly enriched in the

enhancer hubs and super enhancers compared to other

random regions (Figure S3C), supporting their functional

importance in the disease.

To explore the behavior of hepatocyte-specific hubs as

functional domains, we exposed HepG2 cells to IL1b stim-

ulus time course (0 h, 2 h, 8 h, and 23 h) to simulate the

low-grade systemic inflammation prevalent inCAD. Inflam-

mation induced the H3K27ac signal in 15,266 enhancers

and 700 promoters by at least 2-fold. Of the 700 promoters

that showed inflammation-induced H3K27ac in the hubs,
The Ameri
28.8% also exhibited an increase in mRNA expression (p <

0.05; Figure 3A). Importantly, super enhancer and enhancer

hub associated H3K27ac regions (enhancers/promoters)

demonstrated coordinated changes during the inflamma-

tory time course that were less evident in size-matched con-

trol regions within non-hub interactions carrying H3K27ac

(Figure 3B). Altogether, 48 hepatocyte hubs (0.5 < log2FC

<�0.5) were enriched for inflammation-regulated regulato-

ry elements as exemplified by IL1A, IL1B, MERTK, CEBPD

(Figures 3C and 3D), CXCL8, MTHFD2L, CXCL3, CXCL2,

and CXCL5 (data not shown) which contained altogether

97 CAD/MI-associated SNPs (42 loci, Table S16). This infor-

mation could be used to prioritize risk loci that are affected

by the inflammatory burden associated with CAD and play

an important role in hepatocyte function.

Understanding disease association through gene

function and expression

Next, we sought to understand the association of hepato-

cyte-specific genes with CAD by analyzing the target
can Journal of Human Genetics 108, 411–430, March 4, 2021 419



gene function and expression. First, we studied whether

the expression of the gene itself was correlated with the

liver-related traits in the KOBS cohort. Among the 714

identified target genes, 420 genes were found expressed

in the liver and 113 of them were nominally associated

with cholesterol-related traits such as HDL, LDL, and tri-

glycerides (Figure 4A), whereas 84 genes were associated

with glucose and insulin (Figure 4B; Table S17). These asso-

ciations (cholesterol- and glucose-related traits) were

confirmed for 96 genes in hyperlipidemic mice from the

Hybrid Mouse Diversity Panel77 (Figure S4).

Inflammation also links CAD to NAFLD, which covers a

spectrum of diseases from simple steatosis to non-alcoholic

steatohepatitis (NASH). NAFLD has been associated with

an increased risk of CAD, independently of classical CAD

risk factors.78 Therefore, we also studied the liver expres-

sion of the candidate genes in the KOBS cohort and tested

whether their expression was associated with NASH by

comparing diseased and the non-diseased samples. Out

of the 420 genes expressed in liver, the expression of 105

genes was significantly associated (FDR < 0.05) with

NASH compared to controls (Figures S5A and S5B, Table

S18). Among them, the expression of 70 genes was

also correlated with the levels of inflammatory cytokines

such as IL6, TNFa, MIP-1b, MCP1, and IL1A in the

atherosclerosis mouse model in the Hybrid Mouse Diver-

sity Panel43,77 (Figure S6). These included known genes

such as APOM,79 GALNT2,80 and MTAP81 but also candi-

date genes N4BP2L1 and ZKSCAN1 with no previous

association with cardiometabolic traits. Altogether, our

analysis provides a list of target genes whose liver expres-

sion changes could explain the SNP association with the

risk of CAD through lipid traits or inflammation.

Identification of susceptibility enhancers associated

with allele-specific enhancer activity

There is mounting evidence showing that SNPs within

enhancers affect gene regulation mainly by altering the

transcription factor (TF) binding.15 To provide a compre-

hensive characterization of CAD/MI susceptibility SNPs

located in liver-specific enhancer regions, we used a combi-

nation of computational and experimental approaches.

First, we used the DeepSEA deep learning-based algo-

rithmic framework to predict the differential allele-specific

binding of TFs. Altogether 225/12,169 SNPs passed the

functional significance score < 0.01 (Table S19,

Figure S1). As an example, rs17293632, previously vali-

dated eQTL for SMAD3,12 demonstrates that the ‘‘T’’ allele

greatly reduces the FOSL2 binding (Figure 5A).

Second, we took advantage of the extensive ChIP-seq

data resource from ENCODE evaluating the allele-specific

TF binding in HepG2 cells comprising of 210 TFs and

580 samples. Altogether, 3,824 heterozygous loci were

identified in HepG2, and 23.6% (908) of them exhibited

an allele-specific ChIP-seq signal (Figures 5B and S1; Table

S20). To investigate the possibility that certain TFs are

frequently mutated, or have a large effect on the
420 The American Journal of Human Genetics 108, 411–430, March
binding of other TFs (as has been shown for pioneering

factors15,83), we calculated the percentage of SNPs that

demonstrated a change in the binding and the percentage

of other TFs affected by the same SNP at least 2-fold (Fig-

ures 5C and S7). Interestingly, a clear negative correlation

was observed in which frequently observed SNPs were

less likely to affect the binding of other TFs. This was exem-

plified by the high frequency of SNPs affecting the binding

of TBX3 and ZNF24 and the low frequency of SNPs

affecting known pioneering factors, such as FOXA1 and

GATA4. This is in line with studies from us and others

demonstrating that SNPs affecting the binding of lineage

determining TFs are likely to affect other TFs that are

considered lower in hierarchy.15,83 Interestingly, our data

also show that FOXA1 and GATA4 mutations were less

frequent among all the SNPs that demonstrated allele-spe-

cific binding.

Altogether, 31 of the candidates investigated in this

study, representing 14% of the DeepSEA-predicted en-

hancers and 3.4% of the enhancers exhibiting ChIP-seq in-

tensity variation, showed an allele bias with bothmethods.

Among them, we selected the looping candidate of

N4BP2L2 (rs9591145) (Figure 5D, Table S21) for functional

validation using an electrophoretic mobility shift assay

(EMSAs) from nuclear extracts of HepG2. As shown in

Figure S8, rs9591145 was predicted to have a higher affin-

ity to the reference allele ‘‘T’’ while binding to CEBPB. The

EMSA results confirmed the reduced protein binding of the

alternate allele (G) compared to the reference allele (T) of

rs9591145, validating the computational predictions and

allele-specific ChIP-seq data for rs9591145, i.e., that the

‘‘T’’ allele increases the binding affinity of CEBPB.

Finally, to more broadly validate the allele-specific

enhancer activity of the susceptibility loci, we investigated

the functional effects of CAD/MI GWAS SNPs on the

enhancer activity using the STARR-seq84-based massively

parallel reporter assay. In contrast to previous single SNP-

centric studies, we took advantage of haplotype-specific in-

formation to design a reporter library that incorporated the

most common combinations of SNPs in the population

within a given 200 bp region. Altogether 3,661 SNPs located

within enhancer regions were included (see subjects and

methods). The plot between the input DNA ref-allele pro-

portions compared to the HEPG2 RNA-allele proportion is

shown in Figure 6A. The results demonstrated that 212 sus-

ceptibility enhancers, corresponding to 42/262 CAD/MI

GWAS loci, exhibited a significant allele-specific activity in

STARR-seq. These include the rs17293632 located in intron

1 of SMAD3, a key contributor to transforming growth fac-

tor-b pathway signaling, which in addition to CAD is found

to be associated with inflammatory conditions such as

Crohn disease and ulcerative colitis in GWAS.18 Recent

fine-mapping efforts have demonstrated causality for the

rs17293632 SNP in mediating an anti-proliferative effect

on vascular smooth muscle cells.12 Our HepG2 PCHi-C

further showed that rs17293632 (Figure S9) indeed inter-

acted with the promoter of SMAD3 although it was not a
4, 2021
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liver cis-eQTL. In addition, allele-specific enhancer activity

was also detected for an enhancer harboring rs6475604, a

SNP located in intron 3 of CDKN2B-AS1 that was recently

found to be associated with atherosclerosis using fine map-

ping of 9q21.85 Altogether, 79 SNPs (38 loci) identified in

STARR-seq had a predicted target gene identified by PCHi-

C analysis, closely annotated genes or cis-eQTL (Figures

6B–6D), including important players in lipoprotein meta-

bolism such as APOC1/4, APOE, and LIPA. Altogether, our
422 The American Journal of Human Genetics 108, 411–430, March
analysis summarized in Table S22 provides a resource for

further prioritization and functional characterization of

causal enhancer SNPs and their target genes associated

with the risk of CAD in the liver.

Genetic perturbations of hepatocyte-specific enhancer

hubs

Among the STARR-seq-validated susceptibility enhancers

with a high probability of causality, we selected seven
4, 2021
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targets for genetic perturbations. We prioritized enhancers

located within hepatocyte-specific hubs (Figures 6B–6D,

marked with x) for their potential to perturb several genes

within the same regulatory environment.74 First, we

selected two loci for CRISPR-Cas9-mediated deletion of

the susceptibility enhancer (Figures 7A and7B).Wedemon-

strate that a 300 bp deletion of an enhancer harboring

rs17680741 led to downregulation of all three genes

MAT1A, FAM23A, and TSPAN14 in the hub, while deletion

of rs2297787-enhancer led to the downregulation of

AS3MT, NT5C2, SFXN2, ARL3, and CNNM2 (Figures 7C

and 7D). Importantly, the deletion effect on the non-target

genes on adjacent hubs was often not significant, support-

ing a model where variant carrying enhancers primarily

regulate the genes within the same chromatin interaction

space. To further confirm these findings with a different

approach, we employed CRISPRa-mediated activation of

six loci (Figures 7A, 7B, S10, and S11). Importantly, this vali-

dated the effect of the enhancer containing rs17680741 in

regulating the expression of MAT1A, FAM23A, and
The Ameri
TSPAN14 (Figure 7E, hub-6). In addition, activation of five

other susceptibility enhancers led to the activation of 12

genes including the well-established disease associated

genes APOB, LIPA, and FAS (Figure 7E, Table S23). Alto-

gether, ourfindingsdemonstratehowa single enhancer car-

rying a risk variant in a large 3Dhub is able to regulatemany

genes, which supports the concept of enhancer interaction

hubs acting as functional regulatory domains.
Discussion

The involvement of the liver in the progression of coro-

nary artery disease is incompletely understood. Especially,

the causality of the associations and the mechanisms

behind the SNP-disease interactions outside the well-char-

acterized lipid associations86 have remained largely un-

known. This is mostly due to the fact that a majority of

the CAD GWAS variants are located in non-coding re-

gions.3,4 In this study, we performed a comprehensive
can Journal of Human Genetics 108, 411–430, March 4, 2021 423
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Figure 7. CRISPR-mediated genetic perturbations of enhancer hubs
(A and B) Washu genome browser shots of two enhancer hubs containing (A) TSPAN14 and (B) SFXN2 where the CRISPR-Cas9 system
was used to delete the enhancer region harboring a CADGWAS variant. GRO-seq showing enhancer RNA (eRNA) for HEPG2 comes from
GSE92375 (GSM2428726).
(C and D) Analysis of the effect of enhancer deletion on gene expression within the TSPAN14 and SFXN2 hubs in HepG2 cells. qPCRwas
performed for genes located in the same hub as well as for genes in adjacent hubs.
(E) Analysis of the effect of CRISPRa-mediated activation of enhancer variants in six selected chromatin hubs. For locus information, see
Figure S9. Gene expression data are presented as the mean 5 SEM of three independent experiments. The statistical
significance was evaluated using a two-tailed Student’s t test or Mann-Whitney U test. For all bar plots, significance is denoted with
asterisk. *p < 0.05, **p < 0.005, and ***p < 0.0005.
identification of target genes in hepatocytes using eQTL

analysis and PCHi-C while providing prioritization of

regulatory SNPs using computational predictions, allele-

specific ChIP-seq analysis, and STARR-seq. Among the sus-

ceptibility loci, we were able to identify hundreds of poten-

tially causal enhancer SNPs and target genes. Importantly,

we add to the growing evidence that the nearest gene

defined by GWAS studies does not always represent the

causal gene for disease association.87

Chromatin interactions are important for gene regula-

tion and they have been recently used to identify target

genes of variants in adipocytes,13 endothelial cells,88

pluripotent stem cells (iPSCs),89 iPSC-derived cardiomyo-

cytes (CMs),90 and even hepatocytes.91 In line with our

data and others, PCHi-C data predict significantly more

target genes compared to cis-eQTL analysis. This could be

partially due to underpowered eQTL studies but also by

the fact that physical chromatin interaction does not
424 The American Journal of Human Genetics 108, 411–430, March
necessarily mean functional interaction between an

enhancer and a gene. Instead of a direct functional interac-

tion, three additional types of interactions have been

proposed, namely random interactions, bystander interac-

tions (i.e., DNA close to a direct interaction will be also

close as a consequence of the former), and interactions

due to sharing of the same nuclear structure.92 This limita-

tion was also evident in our data where chromatin interac-

tions were shared between hepatocytes, macrophages, and

endothelial cells, despite the cell-type-specific expression

of a gene. One advantage of chromatin interactions, how-

ever, is the limited effect of the environment on the inter-

actions,93 which largely impacts an eQTL analysis.94 In

addition, a cis-eQTL analysis relies on RNA-seq data that

represents a sum of transcriptional and post-transcrip-

tional gene regulation, making it less ideal for the analysis

of regulatory variants. Future studies based on the analysis

of nascent RNAs are hoped to overcome this limitation. On
4, 2021



the other hand, limited overlap of the PCHi-C and cis-

eQTL based target gene identification can also be explained

by the PCHi-C being limited to a HepG2 hepatocellular

carcinoma cell line solely representing hepatocyte-like

cells that represents about �60% overlap with bulk liver

DNaseHS-sites.20 Still, we believe that a more robust target

gene identification can be achieved by applying both

PCHi-C and cis-eQTL analysis approaches and that further

functional validations should be conducted to verify the

effect of regulatory variants on gene expression. These

data could be further stratified by deconvolution of the

cellular composition of bulk RNA-seq based on scRNA-

seq to shed light on the functional impacts of cell-type-spe-

cific genetic variation.95

Our study represents one step forward in the path to

comprehensively understand the function and regulation

of CAD/MI risk genes in the liver. Previous efforts to anno-

tate the genesmapped to CAD loci have identified 32 genes

which are likely to regulate lipid metabolism and inflam-

mation. However, we provide evidence that the number

of susceptibility genes acting through similar mechanisms

could be higher. This was supported by the observation

that �37% of the CAD/MI GWAS SNPs (99/262 loci)

were associated with cholesterol and triglyceride levels

and the expression of more than a hundred target genes

(PCHi-C/cis-eQTL) exhibited correlations with lipid traits,

NASH, and inflammatory molecule levels. Interestingly,

we also identified interaction hubs where several genes

were shown to be similarly regulated in response to an in-

flammatory stimulus and where the perturbation of a sin-

gle enhancer was able to modulate the expression of most

genes within the hub. These are highly similar to the 3D

hubs that were previously described in pancreatic islets

to exhibit coordinated glucose-dependent activity and

which have the ability to predict a T2D risk driven by islet

regulatory variants.74 Future studies further focusing on

hepatocyte-specific enhancer hubs should thus be evalu-

ated for the quantification of genetic risks acting through

inflammatory pathways. Previous work have demon-

strated that with increasing dietary cholesterol intake,

the liver switches from a resilient, adaptive state to an in-

flammatory, pro-atherosclerotic state.96 Therefore, future

studies investigating the effect of the genotype and dietary

saturated fat intake on CAD could improve our under-

standing of gene-environment interactions acting to shape

the regulatory wiring at inflammatory enhancer hubs in

the liver.

We also provide a comprehensive analysis of the effect

of the regulatory SNPs on transcription factor binding.

Altogether, 9% of the SNPs exhibited allele-specific TF

binding using computational predictions or ChIP-seq

data. To provide the most comprehensive characteriza-

tion of CAD/MI regulatory variants in hepatocytes, we

also performed the first massively parallel STARR-seq

reporter assay with all hepatocyte-specific enhancers car-

rying risk SNPs. To this end, we studied common haplo-

type combinations for each of 200 bp regions. This iden-
The Ameri
tified 212 enhancer SNPs (6% of the studied regions)

with allele-specific enhancer activity. While STARR-seq

does not prove causality, it does substantially reduce

the test space of alleles linked to a trait locus and pro-

vides a concise list of high-priority targets for follow-

up. Interestingly, STARR-seq identified such enhancer

SNP variants for APOC1/4, APOE, APOB, and LIPA. All

of these genes have established roles in lipoprotein meta-

bolism, and common exonic variants for APOE

(rs429358, rs7412) have been associated with LDL

cholesterol, apoB levels, and Alzheimer disease,97,98 and

common exonic variants for LIPA (rs1051338) have

been shown to be associated with the risk of CAD,

obesity-related metabolic complications, and blood pres-

sure.99,100 Our results suggest that common enhancer

variants could represent an additional layer of regulation

that together with exonic variants affect gene expression

and disease susceptibility. However, despite the demon-

stration of potential functional roles of the enhancers

(CRISPR-perturbation) and the SNP variants (STARR-

seq) in our study, we recognize that in the case of coex-

isting pathogenic exonic variants, further follow-up

studies are needed to confirm whether indeed multiple

SNP(s) are responsible for the GWAS associations. As a

preliminary evidence of such mechanism, we demon-

strate that the activation of the enhancer variant locus

for APOB and LIPA results in a significant effect on

gene expression. Therefore, similar to SORT1,8 common

variation within the enhancers of lipoprotein genes

could contribute to clinical liver phenotypes.

Since the increased understanding of the importance of

enhancers as the key regulators of gene expression, it has

become increasingly important to understand the effects

of genetic variation on enhancer function and target

gene expression. Here, we studied all known CAD/MI-asso-

ciated GWAS SNPs located within the liver and hepatocyte-

specific regulatory regions in an effort to understand the

possible mechanisms through which they contribute to

disease. Overall, our findings expand the repertoire of

genes and regulatory mechanisms acting in the liver and

governing the risk of CAD development.
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91. Çalışkan, M., Manduchi, E., Rao, H.S., Segert, J.A., Beltrame,

M.H., Trizzino, M., Park, Y., Baker, S.W., Chesi, A., Johnson,

M.E., et al. (2019). Genetic and Epigenetic Fine Mapping of

Complex Trait Associated Loci in the Human Liver. Am. J.

Hum. Genet. 105, 89–107.

92. Dekker, J., Marti-Renom, M.A., and Mirny, L.A. (2013).

Exploring the three-dimensional organization of genomes:

interpreting chromatin interaction data. Nat. Rev. Genet.

14, 390–403.

93. Niskanen, H., Tuszynska, I., Zaborowski, R., Heinäniemi, M.,
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