
An investigation of the effect of freezing storage on the biaxial 
mechanical properties of excised porcine tricuspid valve 
anterior leaflets

Grace Duginski1, Colton Ross1, Devin Laurence1, Cortland Johns1, Chung-Hao Lee1,2

1Biomechanics and Biomaterial Design Laboratory, School of Aerospace and Mechanical 
Engineering, The University of Oklahoma, Norman, OK 73019, USA

2Institute for Biomedical Engineering, Science and Technology, School of Aerospace and 
Mechanical Engineering, The University of Oklahoma, Norman, OK 73019, USA

Abstract

The atrioventricular heart valve (AHV) leaflets are critical to the facilitation of proper 

unidirectional blood flow through the heart. Previously, studies have been conducted to understand 

the tissue mechanics of the healthy AHV leaflets to inform the development of valve-specific 

computational models and replacement materials for use in diagnosing and treating valvular heart 

disease. Generally, these studies involved biaxial mechanical testing of the leaflet tissue specimens 

to extract relevant mechanical properties. Most of those researchers used freezing-based storage 

systems based on previous findings for other connective tissues such as aortic tissue or skin. 

However, there remains no study which specifically examines the effect of freezing storage on the 

characterized mechanical properties of the AHV leaflets. In this study, we aimed to address this 

gap in knowledge by performing biaxial mechanical characterizations of the tricuspid valve 

anterior leaflet (TVAL) tissue both before and after a 48-hour freezing period. Primary findings of 

this study include: (i) a statistically insignificant change in the tissue extensibilities, with the 

frozen tissues being slightly stiffer and more anisotropic than the fresh tissues; and (ii) minimal 

variation in the stress relaxation behaviors between the fresh and frozen tissues, with the frozen 

tissues demonstrating slightly lessened relaxation. The findings from this study suggested that 

freezing-based storage does not significantly impact the observed mechanical properties of one of 

the five AHV leaflets—the TVAL. The results from this study are useful for reaffirming the 

previous researchers’ methodologies, as well as informing the tissue preservation methods of 

future investigations of AHV leaflet mechanics.
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1. Introduction

The atrioventricular heart valves (AHVs) are critical in ensuring unidirectional flow of blood 

from the atria into the ventricles. The AHVs include the mitral valve (MV) and the tricuspid 

valve (TV), which are composed of soft tissue leaflets that facilitate proper blood flow by 

cyclically opening and closing throughout the cardiac cycle. When these valves fail to 

properly close, a regurgitant jet of blood occurs from the ventricles into the atria during 

systole, leading to insufficient blood in the ventricles and long-term health problems, such as 

an increased possibility of heart failure (Waller et al., 1994; Waller et al., 1995). Currently, 

research has been focused on the development of computational models and biomimetic 

materials for better understanding and treatment of valvular heart disease, such as valve 

regurgitation (Arzani and Mofrad, 2017; Kidane et al., 2009; Kunzelman et al., 1997; Lee et 
al., 2015; Sun et al., 2014). These studies were based on an understanding of the mechanical 

properties and behaviors of the heart valve leaflets. Determinations of the valve leaflets’ 

properties are generally performed using a mechanical testing procedure, most primarily in 

the form of cyclic biaxial mechanical loading. Many of these prior studies of the AHV 

leaflets have utilized freezing-based storage systems to preserve the freshness of the leaflet 

tissues for extended periods of time (Eckert et al., 2013; Grashow et al., 2006; Huang et al., 
2012; Jett et al., 2018; Laurence et al., 2019; Liao et al., 2007; Pham et al., 2017; Pham and 

Sun, 2014; Pokutta-Paskaleva et al., 2019; Stella et al., 2007; Stella and Sacks, 2007) based 

on the findings in the previous literature for mechanical testing of other biological materials.

Previously, studies have had mixed or contradictory results regarding the effect of freezing 

on the mechanics of biological tissues. Some researchers have examined the efficacy of 

freezer storage for bone tissue (Kaye et al., 2012; Linde and Sørensen, 1993; Pelker et al., 
1983) or cartilage (Changoor et al., 2010), by performing mechanical characterizations of 

the structures both before and after freezing of the tissue. These researchers found that there 

was no significant change in the mechanical properties of these tissues influenced by 

freezing storage. Those researchers investigating tendons (Clavert et al., 2001; Giannini et 
al., 2008; Matthews and Ellis, 1968; Smith et al., 1996), on the other hand, did find 

significant changes in the mechanical properties following freezing. Other researchers have 

looked specifically at soft biological tissues such as arteries (Delgadillo et al., 2010; 

Venkatasubramanian et al., 2006), aortic tissue (O’Leary et al., 2014; Stemper et al., 2007), 

skin (Foutz et al., 1992) and liver (Santago et al., 2009). Researchers analyzing freezing 

effects on soft tissues have mixed results, where some studies found no significant changes 

in the observed mechanical properties due to freezing (Delgadillo et al., 2010; O’Leary et 
al., 2014; Stemper et al., 2007), while others observed notable changes in the tissue’s 

mechanical properties, such as the elastic modulus or failure strain (Santago et al., 2009; 

Venkatasubramanian et al., 2006). Furthermore, the storage methods for the tissues vary 

greatly from study to study, including refrigeration at 4 °C, freezing at temperature levels 

ranging from −20 °C to −80 °C (or even as low as −196 °C), several freeze-thaw cycles or 

rates of freezing, and the use of liquid nitrogen.

To elaborate on these inter-study variations, for example, Delgadillo et al. used 

cryoprotective solutions when freezing arterial tissue, which may explain why they did not 
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observe a change in the tissue mechanical response as compared to Venkatasubramanian et 
al., who observed a change in the elastic modulus using the same tissue type and storage 

temperature as Delgadillo et al. Stemper et al. noticed a change in mechanical response of 

porcine aortas due to refrigerator storage (4 °C) but not freezer storage (−20 °C or −80°C). 

Additionally, Santago et al. found a difference in failure strain for liver tissue, which they 

explained was due to the microstructure of the tissue. Santago et al. proposed that the liver 

tissue has a greater proportion of cells compared to other tissues, such as tendon, and that 

the cells sustained damage due to the freezer storage. The differences in the freezing storage 

methods or type of biological tissue may explain the variety of results from these researchers 

in the soft tissue biomechanics literature.

Although the effect of freezing on the mechanical properties of many other soft biological 

tissues has been investigated, there still exists a gap in literature on the freezing-induced 

effects on the observed mechanical properties of the atrioventricular heart valve leaflets. 

Previous researchers of the AHV leaflets employed a freezing-based storage system for their 

studies based on the assumption that results from studies of other soft biological tissues, 

such as arteries, skin or aortic tissue—analogous for the heart valve leaflets, which may not 
necessarily be valid. Therefore, our primary goal in this study is to fill this gap in knowledge 

by examining the effects of freezing-based storage on the characterized tissue mechanics of 

one of the five AHV leaflets—the tricuspid valve anterior leaflet (TVAL). This investigation 

was done by performing biaxial mechanical testing and stress relaxation testing of the 

selected AHV leaflet tissue specimens before and after freezer storage. Our findings in this 

study will provide helpful insight into the AHV leaflet-specific storage methods, which will 

be informative to the future use of freezing storage in AHV leaflet tissue experiments.

2. Methods

2.1 Tissue acquisition and preparation

Healthy, adult porcine hearts (80–140 kg, 1–1.5 years of age, a female-to-male ratio of 1:1, 

n=10) were obtained from a local USDA-approved slaughterhouse (Chickasha Meat Co., 

Chickasha, OK). Then, the tricuspid valve anterior leaflet was excised from the heart within 

3 hours of animal death. The TVAL was selected due to its large size relative to the other TV 

leaflets (Rogers and Bolling, 2009). Once excised, the leaflet was sectioned into a 10 × 10 

mm square (Fig. 1a), and the tissue’s circumferential and radial directions noted by labelling 

the top-right corner of the square tissue specimen using a surgical pen. The tissue thickness 

was measured with digital calipers (Westward 1AAU4 – 0.01 mm resolution) three times per 

sectioned leaflet. The three thickness measurements were then averaged to account for 

regional variations in tissue thickness. The tissue specimen was then mounted to a 

commercial biaxial mechanical testing system (BioTester, CellScale, Canada) using five-

tined BioRakes. The fresh tissue specimens were mounted with an effective edge length of 

6.5–8.5 mm, and the frozen tissues were mounted with a smaller effective edge length of 

6.0–7.0 mm. Next, using a surgical pen, four fiducial markers were applied in a square 

configuration in the middle third of the tissue for later digital image correlation (DIC) 

methods (cf. Section 2.3). The tissue was submerged in a phosphate-buffered saline (PBS) 
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solution bath heated to 37 °C to emulate the physiological conditions for the biaxial 

mechanical testing as described in the next subsection.

A range of edge lengths were used in this study due to limitations based on the retrievable 

sizes of the tissue specimens. Additionally, different effective edge lengths were used 

between the fresh and frozen tissue samples because the same tissues were used both before 

and after freezer storage (cf. Section 2.2) and overlapping holes from the previous BioRake 

mounting could result in tissue tearing during testing. Additionally, preliminary results of an 

investigation in our lab suggest that the various edge lengths employed have a negligible 

effect on the measured tissue mechanical properties.

2.2 Biaxial mechanical testing

To compare the mechanical response of the fresh tissue specimen to the response after 

freezer storage, a sequential testing procedure was performed: (1) biaxial mechanical testing 

of a fresh (control) specimen, (2) freezing of the tissue for 48 hours, and (3) thawing and 

biaxial mechanical testing of the previously-frozen tissue using the same protocols as in Step 

(1). First, for biaxial mechanical testing of the fresh TVAL tissue specimen, a 12-cycle 

preconditioning protocol was performed that stretched the tissue specimen to a targeted 

membrane tension of 75 N/m (Fig. 1b). Tissues were tested to a membrane tension of 75 

N/m to emulate both the physiological loading and the stress-overloading conditions of the 

TVAL (Ayoub et al., 2017; Khoiy and Amini, 2016; Pant et al., 2018). After 

preconditioning, mechanical testing protocols were performed as developed in our prior 

work for the TVAL tissues (Jett et al., 2018) with some minor modifications. These 

modifications included reducing the number of repetitions from 10 cycles to 4 cycles for 

each loading ratio and reducing the number of loading ratios from Tcirc:Trad=1:1, 1:0.75, 

0.75:1, 1:0.5, and 0.5:1 to Tcirc:Trad=1:1, 1:0.5, and 0.5:1 (Fig. 1b), where Tcirc and Trad are 

the applied membrane tensions in the tissue’s circumferential and radial directions, 

respectively. Data was collected from the last unloading cycle of each protocol.

Next, a stress-relaxation protocol was performed during which the tissue was stretched to the 

displacement associated with the peak membrane tension, held at the same displacement for 

15 minutes, and the force decrease over time monitored (Fig. 1b). Throughout the biaxial 

testing and stress-relaxation 1280×960 images were captured at a rate of 15 Hz using a CCD 

camera mounted to the biaxial tester. In the meantime, load cell force and tine displacement 

readings were recorded by the biaxial tester. All protocols were performed on both fresh and 

frozen tissues. For freezer storage, the fresh tissue samples at room temperature were placed 

in plastic containers immediately after testing, and the containers stored in the freezer of a 

standard refrigerator (Frigidaire FRT18L4JW7) at −14°C for two days before further biaxial 

mechanical testing.

2.3 Tissue stress-stretch analysis

For more details on the stress and stretch calculations, refer to our previous publication (Jett 

et al., 2018). Briefly, the DIC function of the BioTesting system software was used to 

determine the time-dependent pixel coordinates of the four fiducial markers. These marker 

positions were then used to calculate the deformation gradient F using a four-node bilinear 
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finite element (Sacks, 2000; Tadmor et al., 2012). Next, principal stretches in the 

circumferential and radial directions (λcirc and λrad) were calculated by taking the square 

roots of the principal values of the Cauchy-Green deformation tensor C=FTF. Tissue 

stretches were calculated with respect to different deformation states, including the peak 

stretch ( λ0
2 ), which was the tissue stretch at the peak membrane tension with respect to the 

mounted tissue configuration (Ω0), the preconditioning stretch ( λ0
1 ), defined as the tissue 

stretch observed at the end of the preconditioning protocol determined between 

configuration Ω0 and the post-preconditioning configuration (Ω1), and the mechanical stretch 

λ1
2 , which was the tissue stretch at the peak membrane tension with respect to configuration 

Ω1. The tissue stretches can be related by λ0
2 = λ1

2 λ0
1 .

As for the tissue stress calculation, the membrane tensions in both tissue directions (Tcirc 

and Trad) were determined by dividing the load cell’s force reading by the effective edge 

length of the tissue specimen. Other stress measures, such as the Cauchy stress σ, the first 

Piola-Kirchhoff stress P and the second Piola-Kirchhoff (2nd-PK) stress S, can be computed 

using the thickness t of the tissue specimen (Reddy, 2013; Tadmor et al., 2012). In addition, 

we also calculated the low-tension modulus (ELT), the high-tension elastic modulus (EHT), 

the index of extensibility (λ*), and the anisotropy index (AI), which are described in more 

detail in previous studies (May-Newman and Yin, 1995; Pham et al., 2017; Wells et al., 
2012). As illustrated in Figure 1c, ELT refers to the tangent modulus at the pre-transitional 

region, EHT denotes the tangent modulus at the post-transitional region, λ* is the stretch as 

the intercept of the extended line of the post-transitional tangent, and AI represents the level 

of anisotropy of the tissue defined as the ratio λ0
2

circ/ λ0
2

rad.

The stress-relaxation behavior of the tissue was also analyzed by calculating the initial slope 

(Ṫ 1) and the saturated slope (Ṫ 2) of the 900-second stress relaxation data. The initial slope of 

stress-relaxation was determined by using the first 5-second stress relaxation data, whereas 

the saturated slopes were considered as the stress relaxation between 500 seconds and 900 

seconds (Fig. 1d). Here, the over-dot operator denotes the time derivative, i.e., Ṫ = dT /dt.

2.4 Statistical analysis

To determine statistically significant differences in the mechanical responses of the paired 

fresh and frozen tissue samples, a nonparametric Mann-Whitney U test was performed using 

an in-house MATLAB (MathWorks, Natick, MA) program. This nonparametric test was 

chosen after analyses of the normality of the data using the quantile-quantile (Q-Q) plots, 

which showed that the data did not follow a normal distribution (Figs. S1–S2). Next, in our 

statistical analyses, the null hypothesis was that the difference in the mean between the 

control (fresh) tissue group and the frozen tissue group was equal to zero, meaning that the 

freezing storage had no statistically significant effect on the mechanics of the TVAL tissue 

sample. All quantities presented in this study are reported as mean ± standard error of the 

mean (SEM).
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The quantities that were analyzed include data from biaxial mechanical testing (Fig. 1c): the 

peak tissue stretches ( λ0
2

circ and λ0
2

rad), the preconditioning stretches ( λ0
1

circ and λ0
1

rad), the 

mechanical stretches ( λ1
2

circ and λ1
2

rad), the elastic moduli at the high tension regime (Ecirc
HT

and Erad
HT), the elastic moduli at the low tension regime (Ecirc

LT  and Erad
LT ), and the indices of 

extensibility (λcirc*  and λrad* ). Quantities from biaxial stress relaxation testing were also 

analyzed (Fig. 1d): the percentage reductions in the membrane tensions, the time history of 

the membrane tensions (Tcirc(t) and Trad(t)), the initial slopes of stress relaxation (Ṫ circ
1  and 

Ṫ rad
1 ), and the saturated slopes of stress relaxation (Ṫ circ

2  and Ṫ rad
2 ). Significance was 

considered as statistically significant (p<0.05), nearly statistically significant (0.05≤p<0.1), 

and statistically not significant (p≥0.1).

3. Results

3.1 Thickness measurements

Measurements of the tissue thickness before and after freezing showed only a minimal 

change (<1%) in the tissue thickness: fresh TVAL, 0.35±0.04 mm; frozen TVAL, 0.35±0.04 

mm. The thickness measurements and the effective testing edge lengths for all specimens are 

summarized in Table 1.

3.2 Biaxial mechanical testing results

The results from biaxial mechanical testing are summarized in Figures 2–4, the peak stretch 

values are summarized in Table 1, and the p-values from statistical comparisons are 

summarized in Table 2, which showed statistically insignificant differences in most 

parameters between the fresh and frozen tissue responses (Fig. 2a–c). Specifically, under 

equibiaxial loading (Tcirc:Trad=1:1), there was only a 3.4% difference observed in the 

circumferential peak stretch ( λ0
2

circ) between the fresh and frozen tissues (p=0.427) (Table 

1). Similarly, the circumferential preconditioning stretch ( λ0
1

circ) had a 2.8% difference 

(p=0.308) (Fig, 3a), and the mechanical stretch ( λ1
2

circ) had a 0.6% difference (p=0.970) 

(Fig. 3b). As for the radial direction, similar trends were observed: λ0
2

rad, 4.8% difference 

(p=0.791); λ0
1

rad, 7.1% difference (p=0.241) (Fig. 3a); and λ1
2

rad, 1.4% difference (p=0.734) 

(Fig. 3b). Values for the peak tissue stretches (Fig. 2b and Fig. 2c), the preconditioning 

stretches (Fig. 3c), and the mechanical stretches (Fig. 3d) associated with the other two 

biaxial loading protocols (Tcirc:Trad=0.5:1 and Tcirc:Trad=1:0.5) were comparable, and none 

demonstrated statistically significant differences.

In addition, the radial elastic modulus of the low-tension regime (Erad
LT ) was noted to be 

statistically significant or nearly statistically significant at each of the three loading ratios 

(Fig. 4b and Table 2). At the Tcirc:Trad=0.5:1 loading ratio, statistical significance was 

observed (p=0.038), whereas nearly statistical significance was observed under the loading 

protocols Tcirc:Trad=1:1 (p=0.054) and Tcirc:Trad=1:0.5 (p=0.089). As for the circumferential 

direction, ELT was observed not to have a statistically significant difference (p=0.162). The 
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elastic modulus of the high-tension regime (EHT) was not statistically significant in etiher 

tissue’s direction: udner Tcirc:Trad=1:1 loading, the circumferential direction had a 6.1% 

difference (p=0.678) and the radial direction had a 17.8% difference (p=0.571). Other 

biaxial loading protocols had similar, statistically insignificant trends. The indices of 

extensibility (λcirc*  and λrad* ) and the anisotropy index (AI) followed similarly statistically 

insignificant trends across the three loading protocols (Table 2), with the fresh TVAL tissues 

demonstrating slightly greater extensibility and a lessened material anisotropy than the 

frozen tissues.

3.3 Stress relaxation testing results

Analysis of the stress relaxation parameters showed mostly statistically insignificant 

differences, and these statistical analysis results are summarized in Table 3. For the initial 

slope (Ṫ 1), there was a difference of 0.01 between the fresh and frozen tissues in the 

circumferential direction (p=0.909) and a difference of 0.04 in the radial direction 

(p=0.677). As for the saturated slope (Ṫ 2), the differences between the fresh and frozen 

tissues were found to be 0.9×10−3 N/m in the circumferential direction (p=0.069) and 

0.3×10−3 N/m in the radial direction (p=0.791) respectively.

4. Discussion

4.1 Overall findings

Comparison of the mechanical parameters between the fresh and the frozen TVAL showed 

minimal differences between the fresh and frozen tissues. Specifically, differences in the 

peak, preconditioning, and mechanical stretches between the two groups were statistically 

insignificant. Additionally, the elastic modulus of the high-tension regime and the index of 

extensibility were not significantly different. While the elastic modulus of the low-tension 

regime was found to have a statistically significant difference, this difference was only 

significant in the radial direction and was only nearly significant for most of the biaxial 

mechanical testing protocols. Finally, the analysis of the initial and saturated slopes of stress 

relaxation also showed no statistically significant differences. These findings suggest that 

freezing-based storage does not have a significant effect on the mechanical properties of the 

investigated atrioventricular heart valve leaflet tissue.

Although changes in the observed mechanical properties were statistically insignificant, the 

slight variations from the freezing storage observed in this study could impact the biaxial 

mechanical testing results of our previous studies (Jett et al., 2018; Laurence et al., 2019; 

Ross et al., 2019). Specifically, the frozen tissues were found to be slightly stiffer and more 

anisotropic than the fresh tissues (Fig. 2), and the frozen tissues had a slightly lessened stress 

relaxation behavior than the fresh tissues (Fig. 5). This trend could have bearing on the 

tissue mechanics observed in previous studies of the AHV leaflets, and possibly obscure the 

results. For example, in another study performed by our lab, glycosaminoglycans (GAGs) 

were removed from previously-frozen AHV leaflets and the mechanical responses were 

characterized (Ross et al., Under review). It was observed that the fully intact tissues were 

stiffer than tissues with a majority (>50%) of the GAGs removed, but part of this response 
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could be partially attributed to the freezing storage rather than the effect of the GAG 

removal. Overall, it is important to consider the method of tissue storage, when designing a 

study of soft biological materials such as atrioventricular heart valve leaflets. However, the 

effect of freezing on AHV leaflet mechanical properties was observed to be minimal, and 

our results suggest the mechanical responses of the tissues could be mostly preserved by 

freezing.

4.2 Study Limitations and Future Extensions

There are several limitations in this study. First, it is unknown whether the specimen size has 

a significant effect on the observed mechanical properties of the leaflets; however, 

preliminary investigations in our lab suggest this to have a minimal impact. There are also 

some limitations of our biaxial testing procedures, including: (i) the possibility for shear 

stress in the specimen using the tissue mounting hardware BioRake, while the shear 

deformations were found to be negligible if the tissue’s directions were aligned with the 

primary axes of the biaxial testing system; and (ii) the stress relaxation procedure (15 

minutes) was relatively short to capture the entire stress relaxation behavior of the TVAL 

tissue; however, it has been shown that the majority of relaxation occurs in the first 1000 

seconds (Grashow et al., 2006; Huang and Huang, 2015). There is also a potential limitation 

with the contact-based thickness measurement approach due to the possibility for slight 

tissue compression when performing the measurements. In our previous investigation we 

have shown reasonable agreement between our dial caliper-based approach and histological 

measurements (Jett et al., 2018). Additionally, the exact freezing rate for the tissue specimen 

was unknown, acting as another potential limitation. Finally, the investigation on porcine 

heart valves may not automatically extend to the human heart valve leaflets and further 

research using human valves may need to be performed to fully evaluate the effect of 

freezing on human heart valves.

Future extensions of this study of the freezing effect include an examination of the effect of 

freezing over varied periods of time. In this study, tissues were frozen for 48 hours, but 

tissues have been frozen for a week or more before testing in the previous literature. 

Furthermore, freezing times may have varied from specimen-to-specimen with the 

assumption that there would be no effect on the observed mechanical behaviors. Although 

this experiment showed no significant changes due to freezing, longer storage times may 

show some effect in the quantified mechanical properties of the tissue. Additionally, the 

effects could be examined from varying freezing temperature, freezing methods, number of 

freeze-thaw cycles, or the freezing rates. Another future work could include analyzing the 

effect of freezer storage on the tissue microstructure, which may be linked to the differences 

in the observed mechanical properties such as the radial low-tension moduli. The effects of 

freezing storage on the mechanical properties of other atrioventricular valve leaflets not 

included in this study could also be investigated.

4.3 Conclusion

Our results from biaxial mechanical testing and stress relaxation testing of the tricuspid 

valve anterior leaflet suggested that the commonly adopted freezing storage procedure does 
not significantly affect the observed mechanical properties of the examined atrioventricular 
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heart valve leaflet. Most parameters from the testing did not demonstrate a significant 

difference between the fresh and frozen tissues. From this study, greater confidence can be 

had in the continued use of a freezing-based storage system for the preservation of AHV 

leaflet tissues.

The presented work has a broader impact to the field of AHV leaflet mechanical 

characterizations because it demonstrates the effect of a highly-employed storage method on 

the observed mechanical properties of the tissues. The finding that the storage method has 

minimal effect on the mechanics is useful as it provides a confirmation for those researchers 

that their reported mechanical parameters of the AHV leaflets are not skewed by their 

storage method. As an extension, this also reassures those researchers performing 

computational studies utilizing mechanical data from studies with a freezer-based leaflet 

storage method.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1 –. 
(a) The tricuspid valve anterior leaflet was excised and sectioned into a central 10mm × 

10mm region before (b) biaxial mechanical testing involving a preconditioning protocol, 

biaxial loading to ratios of the peak membrane tension (Tcirc:Trad=1:1, 1:0.5, 0.5:1), and 

stress-relaxation testing. (c) Parameters analyzed from the biaxial loading include the index 

of extensibility (λ*), tangent modulus at the low-tension (ELT) and high-tension regimes 

(EHT), and the stretches (λ). (d) Parameters analyzed from the stress relaxation include the 

membrane tension decay, and the initial and saturated membrane tension rates of change (Ṫ 1

and Ṫ 2, respectively).
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Figure 2 –. 

Peak stretches ( λ0
2 ) of the fresh and frozen tricuspid valve anterior leaflet tissues under the 

(a) Tcirc:Trad=1:1, (b) Tcirc:Trad=1:0.5, and (c) Tcirc:Trad=0.5:1 loading ratios.
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Figure 3 –. 

(a) Preconditioning stretches ( λ0
1 ), and mechanical stretches ( λ1

2 ) at the 3 biaxial loading 

protocols: (b) Tcirc:Trad=1:1, (c) Tcirc:Trad=1:0.5, and (d) Tcirc:Trad=0.5:1 for the fresh and 

frozen tricuspid valve anterior leaflet tissues.
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Figure 4 –. 
Comparison of the (a) low-tension modulus (ELT), (b) high-tension modulus (EHT), (c) index 

of extensibility (λ*), and (d) anisotropy indices (AI) between the fresh and frozen tissues 

under 3 different biaxial loading protocols. *, statistically significant (p<0.05); **, nearly 

statistically significant (0.05≤p<0.1).
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Figure 5 –. 
The stress-relaxation of the fresh and frozen tricuspid valve anterior leaflet in the (a) 

circumferential and (b) radial directions, the percent reduction of the stress-relaxation in the 

(c) circumferential and (d) radial directions, and the (e) initial (Ṫ 1) and (f) saturated (Ṫ 2) 

slopes of the stress-relaxation reduction behavior. **, nearly statistically significant 

(0.05≤p<0.1).
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Table 1 –

Tissue thickness, effective edge length, and peak stretches for all the investigated TVAL tissue specimens.

TVAL Specimen 
ID

Fresh (Control) Frozen

Thickness (mm) Effective Edge 
Length (mm) λ0

2
circ λ0

2
rad Thickness (mm) Effective Edge 

Length (mm) λ0
2

circ λ0
2

rad

1 0.30 7.5 1.17 1.81 0.25 6.0 1.20 2.21

2 0.18 6.5 1.15 1.58 0.35 6.0 1.14 1.19

3 0.16 8.5 1.45 1.64 0.19 7.0 1.05 1.09

4 0.47 8.5 1.40 1.80 0.47 7.0 1.18 1.49

5 0.40 8.5 1.33 1.34 0.31 7.0 1.36 1.54

6 0.30 8.5 1.37 2.10 0.35 7.0 1.47 1.87

7 0.32 8.5 1.20 1.80 0.30 7.0 1.19 1.65

8 0.51 7.5 1.34 2.01 0.53 6.5 1.30 1.84

9 0.41 8.0 1.18 1.87 0.49 7.0 1.12 1.86

10 0.48 8.5 1.29 1.86 0.20 7.0 1.44 2.20

Mean 0.35 8.1 1.29 1.78 0.35 6.8 1.25 1.69

SEM 0.04 0.2 0.03 0.07 0.04 0.1 0.05 0.12
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Table 2 –

p-values from the statistical comparison of the quantities between the control (C) and frozen (F) TVAL tissue 

specimens (n=10). All values are reported as mean ± SEM.

Loading Quantity p-value (Fresh vs. Frozen)

Preconditioning λ0
1 circ 0.308

rad 0.241

Tcirc:Trad=1:1

λ0
2 circ 0.427

rad 0.791

λ1
2 circ 0.969

rad 0.734

EHT (N/m)
circ 0.678

rad 0.571

ELT (N/m)
circ 0.162

rad 0.054*

λ*
circ 0.473

rad 0.678

AI 0.570

Tcirc:Trad=0.5:1

λ0
2 circ 0.909

rad 0.678

λ1
2 circ 0.427

rad 0.791

EHT (N/m)
circ 0.791

rad 0.571

ELT (N/m)
circ 0.186

rad 0.038*

λ*
circ 0.791

rad 0.623

Tcirc:Trad=1:0.5

λ0
2 circ 0.345

rad 0.521

λ1
2 circ 0.850

rad 0.850

EHT (N/m)
circ 0.623

rad 0.678

ELT (N/m)
circ 0.308

rad 0.089*

λ*
circ 0.385

rad 0.385

*:
statistically significant (p<0.05)

**:
nearly statistically significant (0.05≤p<0.1)
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Table 3 –

Comparison of the stress-relaxation parameters between the control (C) and frozen (F) TVAL tissue samples 

(n=10). All values are reported as mean ± SEM.

Quantity Fresh (Control) Frozen p-value

Ṫ 1
 (N/m)

circ 1.01 ± 0.04 1.02 ± 0.05 0.909

rad 1.07 ± 0.02 1.03 ± 0.03 0.677

Ṫ 2
 (x10−3 N/m)

circ 5.50 ± 0.20 6.40 ± 0.30 0.069**

rad 5.20 ± 0.20 5.50 ± 0.40 0.791

**:
nearly statistically significant (0.05≤p<0.1)
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