Skip to main content
. 2021 Mar 30;70:102892. doi: 10.1016/j.scs.2021.102892

Table 4.

Factors that correlated with a city’s time to contain the spread of COVID-19 (interaction term: moderating effects).

(1) (2) (3) (4) (5) (6)
VARIABLES time time time time time time
lninflow 1.344*** −5.660** 3.469*** 0.526*** 1.002*** 1.043***
(0.267) (1.775) (0.693) (0.139) (0.222) (0.187)
lngarbage 3.188*** 3.169*** 9.195*** 1.972*** 18.870* 3.124***
(0.414) (0.460) (1.447) (0.387) (8.653) (0.401)
lndensity 1.923*** −4.522* 1.853** 2.181*** 8.451* 3.574***
(0.511) (1.892) (0.524) (0.429) (3.776) (0.710)
bidoctor 0.004 −0.012*** −0.014*** −0.069*** −0.012*** 0.087**
(0.011) (0.002) (0.002) (0.006) (0.002) (0.030)
hubei 6.357*** 7.464*** 5.771*** 7.361*** 7.648*** 7.443***
(1.021) (0.851) (0.778) (0.599) (0.906) (0.754)
Doctor*inflow −0.002
(0.001)
Density*inflow 0.721***
(0.179)
Garbage*inflow −0.633***
(0.159)
Doctor*garbage 0.011***
(0.001)
Density*garbage −1.707
(0.920)
Density*Doctor −0.011**
(0.003)
Constant −15.180** 47.481** −34.569*** −4.493 −72.321* −27.674***
(5.559) (18.127) (9.142) (3.990) (35.056) (6.959)



Observations 119 119 119 119 119 119
R-squared 0.636 0.637 0.650 0.671 0.641 0.644

Notes: (1) The t value in parentheses is calculated by using the Chinese 7 major geographic regions level clustering robust standard error; (2) *, **, *** are significant at the 10 %, 5%, and 1% levels, respectively; (3) Samples in the table only include cities outside Hubei Province.