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ABSTRACT: Severe cases of coronavirus disease 2019 (COVID-19), caused by
infection with SARS-CoV-2, are characterized by a hyperinflammatory immune
response that leads to numerous complications. Production of proinflammatory
neutrophil extracellular traps (NETs) has been suggested to be a key factor in
inducing a hyperinflammatory signaling cascade, allegedly causing both pulmonary
tissue damage and peripheral inflammation. Accordingly, therapeutic blockage of
neutrophil activation and NETosis, the cell death pathway accompanying NET
formation, could limit respiratory damage and death from severe COVID-19.
Here, we demonstrate that synthetic glycopolymers that activate signaling of the
neutrophil checkpoint receptor Siglec-9 suppress NETosis induced by agonists of
viral toll-like receptors (TLRs) and plasma from patients with severe COVID-19. Thus, Siglec-9 agonism is a promising therapeutic
strategy to curb neutrophilic hyperinflammation in COVID-19.

■ INTRODUCTION

Runaway inflammation in coronavirus disease 2019 (COVID-
19) is thought to lead to numerous complications, including
potentially fatal pneumonia and acute respiratory distress
syndrome (ARDS).1−3 While the specific causal factors of
inflammation in COVID-19-related ARDS are unknown and
likely multifarious, an emerging hypothesis posits that
hyperactivation of neutrophils initiates and drives this response
(Figure 1).4−12 Neutrophils are immune cells of the myeloid
lineage that are involved in numerous innate immune
functions. It has been suggested that neutrophils drive a
hyperinflammatory response in COVID-19 through a death
process called NETosis, in which neutrophils rapidly
decondense chromatin and spew out a neutrophil extracellular
trap (NET), an amalgam of genomic DNA, intracellular
proteins (e.g., histones), and tissue-damaging enzymes (e.g.,
neutrophil elastase, myeloperoxidase).13,14 Extracellular DNA
and tissue damage from NET-associated enzymes act as
proinflammatory signals to other immune cells15−17 and are
proposed to initiate the hyperinflammatory cascade in
COVID-19, leading to ARDS and potentially death. Consistent
with this hypothesis, NETs have been extensively observed
both at the site of infection (i.e., pulmonary tissue)18−21 and in
the periphery (i.e., sera and plasma).19,21

Both SARS-CoV-2 virions and serum/plasma from COVID-
19 patients have been shown to induce NETosis of neutrophils
isolated from healthy donors in vitro, consistent with the local
and peripheral inflammatory responses observed in COVID-
19.19,21,22 However, the specific signals that induce NETosis in

viral disease remain an open question; viral ligands for toll-like
receptors (TLRs), host damage-associated molecular patterns,
antiviral cytokines (e.g., IL-8 and IFNγ), and activated platelets
have all been implicated, but which if any of these is sufficient
to induce NETosis is still debated.21,23 Beyond viral disease,
NETosis has been linked to numerous inflammatory
pathologies, including thrombosis and sepsis, both of which
are observed in patients with COVID-19.4 During NETosis,
inflammatory stimuli signal neutrophils to import calcium ions,
which activate protein arginine deiminase 4 (PADI4).24,25

PADI4 mediates the conversion of arginine to the deiminated
citrulline on histones.25 The loss of positive charges induces
rapid unwinding of genomic DNA, which eventually ruptures
the nucleus and the cell.25 When this happens, intracellular
contents including genomic DNA, active PADI4, tissue-
damaging NET-associated enzymes, and citrullinated histones
are emitted into the extracellular space, all of which provoke an
inflammatory response.24,25 Thus, strategies to curb neutro-
phil-mediated inflammation could treat both COVID-19 as
well as other neutrophilic inflammatory pathologies.
Transcriptomic analyses of immune cells from severe

COVID-19 patients show that neutrophils upregulate the
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myeloid checkpoint receptor Siglec-9, a member of the sialic
acid-binding immunoglobulin-like lectin (Siglec) family that is
also found on macrophages and activated T cells.8,9,26−29 This
sialoglycan-binding immunosuppressive receptor has an intra-
cellular signaling domain similar to the prominent lymphoid
checkpoint receptor PD-1 and the myeloid suppressive
receptor SIRPα.30−32 Clustering of Siglec-9 by ligand engage-
ment leads to inhibitory signaling that quenches activation of
the immune cells.28 Both erythrocytes and host-mimicking
pathogens have been shown to engage Siglec-9 to suppress
neutrophil-mediated immunity, including inhibiting NETo-

sis.28,33−35 Furthermore, engagement of Siglec-9 on primary
neutrophils has been shown to induce apoptotic pathways,26 in
a manner similar to the engagement of Siglec-8 on eosinophils
as occurs with an FDA-approved Siglec-8 agonist for
eosinophilic inflammatory conditions.36 Given that Siglec-9 is
both an anti-inflammatory and pro-apoptotic checkpoint
molecule, we hypothesized that engagement of Siglec-9 could
simultaneously inhibit proinflammatory NETotic cell death
and induce quiet apoptotic cell death in COVID-19-related
inflammation. Notably, an agonist of the related myeloid
checkpoint receptor Siglec-10 (CD24Fc, trade name SACCO-
VID) has recently shown great promise in suppressing viral
hyperinflammation and is in a Phase III clinical trial.37,38

However, unlike the case for Siglec-10 for which CD24 is a
high-affinity and specific ligand, there is no comparable
glycoprotein ligand known for Siglec-9 and thus no biological
starting point for the design of therapeutic agonists.39

We recently reported40 the design and synthesis of a potent
Siglec-9 agonist comprising a lipid-conjugated glycopolypep-
tide bearing modified sialic acid residues that Paulson and co-
workers had previously found to bind Siglec-9 with high
affinity and specificity41 (pS9L, Figure 2). The lipid group
enabled passive insertion into cell membranes, leading to
engagement of Siglec-9 in cis on macrophage cell surfaces. This
cell-surface clustering, in turn, induced Siglec-9 signaling and
suppressed macrophage activation.40 We hypothesized that this
was due to induced distribution of Siglec-9 into actively
signaling clusters that we and others have observed.28,40 In this
former study, we also designed control glycopolypeptides
lacking either Siglec-9 binding glycans (i.e., the lactose-
functionalized glycopolypeptide pLac) or a membrane
anchoring lipid moiety (i.e., the soluble glycopolypeptide
pS9L-sol) (Figure 2). Notably, potent Siglec-9 agonism
required membrane anchoring and cis-engagement; the soluble
analogue pS9L-sol was unable to stimulate Siglec-9 signaling
and suppress macrophage activity, which we proposed was due

Figure 1. Local and peripheral inflammatory stimuli induce NETosis
and a subsequent hyperinflammatory cascade in COVID-19. Both
local inflammatory stimuli at the site of SARS-CoV-2 infection (e.g.,
virions) and peripheral inflammatory stimuli (e.g., the proinflamma-
tory cytokines IL-8 and G-CSF) associated with COVID-19 have
been shown to induce NETosis in vitro. These factors are suspected to
be causative agents of NETosis in vivo as well, initiating a deleterious
hyperinflammatory cascade leading to the symptoms of moderate and
severe COVID-19. Agonists of the neutrophil-associated checkpoint
receptor Siglec-9 could inhibit NETosis in COVID-19.

Figure 2. Synthetic glycopolypeptides bearing high-affinity Siglec-9 ligands engage Siglec-9 and induce clustering and signaling. (a) Membrane-
anchored, cis binding glycopolypeptide 1 (pS9L) induces Siglec-9 signaling, while a soluble control polypeptide 2 (pS9L-sol) or a nonbinding but
membrane-anchored control polypeptide 3 (pLac) does not. (b) Structures of the polypeptides pS9L, pS9L-sol, and pLac. Polypeptides are all
based on an O-lactosyl poly serine-co-alanine scaffold and in some cases bear terminal Siglec-9-binding sialic acid analogues and/or C-terminal
membrane-anchoring lipids.
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to clustering efficiency of membrane-associated ligands binding
cis versus soluble ligands binding in trans. We hypothesized
that pS9L might also suppress neutrophil activation and
NETosis by clustering Siglec-9 on neutrophils.
Here, we demonstrate that a synthetic cis-binding Siglec-9

agonist (pS9L, Figure 2b)40 inhibits NETosis in primary
neutrophils in models of local (TLR-7/8 agonist) and
peripheral (COVID-19 plasma) COVID-19-associated inflam-
mation. Using live cell microscopy, we showed that TLR-7/8
activation by the nucleoside analogue resimiquod (R848)
induces NETosis in primary human neutrophils. R848
treatment induces rapid citrullination of histone substrates,
consistent with PADI4-mediated NETosis, and this process
was blocked by Siglec-9 signaling induced by pS9L.
Significantly, pS9L inhibited neutrophil NETosis induced by
treatment with plasma from severe COVID-19 patients. In
light of these data, we propose that Siglec-9 agonists could be
therapeutic agents that inhibit COVID-19-associated inflam-
mation.

■ RESULTS AND DISCUSSION

TLR-7/8 Agonist R848 Induces NETosis of Primary
Neutrophils in Vitro. In COVID-19, evidence of extensive
NETosis can be observed in infected lungs,18−21 and SARS-
CoV-2 virions have been shown to infect and induce NETosis
of healthy neutrophils in vitro.20 These reports implicate TLR-
7 and/or TLR-8 in inducing NETosis of neutrophils at the site
of infection.20,42 Notably, TLR-7 and TLR-8 are single-
stranded RNA receptors with numerous substrates identified

in the SARS-CoV-2 genome.43 Consistent with the hypothesis
that SARS-CoV-2 induces TLR-7/8-mediated immunity,
human genetic variations in TLR7 are associated with severe
COVID-19.44 Thus, agonists of TLR-7/8 may provide a
convenient means of modeling local inflammation induced by
viral infection in vitro without using live virus.
We assayed TLR agonists using the live-cell imaging

techniques described by Gupta and co-workers.45 In this
assay, freshly isolated neutrophils are cultured in low-serum
media in the presence of a fluorogenic and membrane
impermeable DNA-intercalating dye (Cytotox Green). Upon
genomic DNA-externalization by NETosis, dye intercalates
and fluorescence increases. As previously demonstrated,45

because NETs are much larger than the nuclei of apoptotic
cells, NETotic cells yield much larger areas of fluorescence
than apoptotic cells, as observed by microscopy. Thus,
apoptotic cells can be filtered out by only counting large
(i.e., ≫100 μm2) fluorescent objects.
We found that a TLR-7/8 agonist, R848, was sufficient to

induce NETosis of healthy neutrophils in vitro (Figure 3a−c,
Figure S1). We also assayed the citrullination status of the
PADI4 substrate H3 by Western blot and observed that R848
rapidly induced citrullination at R2, R8, and R17 (Figure S2).
While citrullination is an important aspect of NETosis,24 the
extent of citrullination is not necessarily indicative of the extent
of NETosis as, for example, PMA-induced NETosis only yields
moderate citrullination (Figure S2).46 Additionally, we
performed quantitative phosphoproteomics47 with lysates of
neutrophils treated with media, phorbol-12-myristate-13-

Figure 3. A cis-binding Siglec-9 agonist (pS9L) inhibits R848-induced NETosis via Siglec-9 and SHP-1. (a−c) Primary neutrophils were cotreated
with R848 (10 μM) and glycopolypeptide (500 nM) in IMDM supplemented 0.5% hiFBS containing the membrane impermeable DNA
intercalators Cytotox Green or Red (250 nM). Images were acquired by fluorescence microscopy every 15 min for 12 h. The area of all green
fluorescent objects >300 μm2 was quantified, and the total area was averaged across three images per well. Relative NETosis was determined by
normalizing to the maximal NET area from R848 treatment alone (t = 8 h). (a) Representative phase contrast and fluorescence images from t = 8
h. Scale bars indicate 40 μm. (b) Quantitation of NETosis over time as area under the curve in (c). Error bars represent SD. (c) NET formation
and degradation as a function of time. Error bands represent SEM. (d) Treatment of R848-stimulated neutrophils with various glycopolypeptides.
Error bars represent SD. (e) HL-60 cells were transfected with siRNAs against SIGLEC9 (encoding Siglec-9), PTPN6 (encoding SHP-1), or a
scrambled control and then grown for 2 days. Cells were then cotreated with R848 (10 μM) and vehicle or pS9L (500 nM). Relative NETosis is
determined as in (b), except all objects >200 μm2 were quantified and the R848 maximum in dHL-60s was observed at 2.5 h post induction. Error
bars represent SD. Statistics were determined by two-way ANOVA (c) or one-way ANOVA (b,d,e). * p < 0.05; ** p < 0.01; *** p < 0.001; **** p
< 0.0001.
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acetate (PMA), or R848 (Figure S3, Table S1). We observed
results similar to previously published data sets using
neutrophils stimulated with either R84848 or PMA.49

Furthermore, several phosphosites were found to be differ-
entially regulated in both data sets, including those involved in
neutrophil degranulation and calcium flux, consistent with the
described mechanism of NETotic cell death.24,49 These results
indicate that the TLR-7/8 agonist R848 induces NETosis in
primary neutrophils. Thus, this compound can be used to
model local inflammation associated with viral infection,
including in COVID-19.
A Siglec-9 Agonist Inhibits TLR-7/8-Induced NETosis

via SHP-1. Previous work by von Gunten, Varki, and their
respective co-workers has shown that engagement of Siglec-9
leads to apoptotic and nonapoptotic death pathways as well as
immunosuppression in neutrophils.26,50 Thus, we hypothesized
that Siglec-9-mediated immunosuppression and cell death
could override the NETotic effect of antiviral TLR signaling.
To test this notion, we used our previously described Siglec-9
agonist, pS9L40 as well as the two control glycopolypeptides
pLac and pS9L-sol (Figures 2 and S4). We assayed anti-
NETotic activity by cotreatment of glycopolypeptide (500
nM) with R848 (10 μM) in primary neutrophils in the live-cell
assay described above (Figure 3). We observed that pS9L was

sufficient to inhibit NETosis induced by R848 treatment
(Figure 3a−c). Moreover, neither control polymer inhibited
R848-induced NETosis (Figure 3d). We also confirmed that
pS9L inhibits NETosis comparably to high concentrations of
cross-linked anti-Siglec-9 antibody (clone 191240) (Figure
S5).51,52 Previously, von Gunten and co-workers described the
generation of mitochondrial-derived reactive oxygen species
(ROS) as an important signaling step of Siglec-9-induced
apoptotic signaling.26 We found that treatment with pS9L, in
the absence of any TLR ligand so as to avoid NADPH-derived
ROS in inflammatory signaling, induced an oxidative burst, as
did treatment with a cross-linked anti-Siglec-9 antibody
(Figure S6). Furthermore, the oxidative burst was inhibited
by the addition of the SHP-1/2 inhibitor NSC-87877,
suggesting that SHP-1 and/or SHP-2 mediate pS9L-induced
oxidative burst in neutrophils, consistent with Siglec-9
engagement (Figure S6b).
We performed quantitative phosphoproteomics using lysates

of R848-stimulated primary neutrophils cotreated with vehicle,
pS9L, or pLac (Figure S3, Table S2). Notably, we found
increased phosphorylation of hyccin (HYCCI/FAM126A), a
key component in phosphorylation of phosphoinositides,53 a
class of signaling molecules implicated in mediating
NETosis.54 Additionally, we observed increased phosphor-

Figure 4. Siglec-9 agonist pS9L inhibits NETosis of neutrophils induced by COVID-19 plasma. (a, b) Analysis of publicly available single-cell
transcriptomics data8 for SIGLEC9 expression (a) and PADI4 expression (b) on neutrophils in peripheral blood from healthy donors or COVID-19
patients. Error bars represent SD. Statistics were determined using mixed effects model. ** = p < 0.01; *** = p < 0.001 (c, d) Primary neutrophils
were cultured in undiluted and citrate anticoagulated plasma from healthy donors or COVID-19 patients for 4 h. Cells were fixed, stained for
extracellular myeloperoxidase, and imaged in DAPI imaging media by fluorescence microscopy. Cells were treated in technical triplicate and imaged
across multiple fields of view. (c) Proportion of NET-positive cells (%) across all fields of view. Each dot represents and individual plasma sample.
(d) Representative images from a COVID-19 patient plasma sample with or without pS9L. Error bars represent SD. Statistics were determined
using mixed effects models to account for samples using repeat neutrophil donors. **** = p < 0.0001.
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ylation of RASAL3 (RASL3), a negative regulator of the
MAPK signaling pathway.55 These data suggest that pS9L
inhibits the calcium flux and NADPH activity necessary for
NETosis, as well as the MAPK-suppressive effects that have
been previously described for pS9L in macrophages.40

To determine whether the anti-NETotic effect of pS9L is
specifically mediated by Siglec-9 signaling, we recapitulated our
results in the promyelocytic leukemia cell line HL-60. These
cells can be differentiated into neutrophil-like cells (dHL-60)
using all-trans retinoic acid (ATRA, 100 nM) and dimethyl
sulfoxide (DMSO, 1.25% v/v). Notably, dHL-60 cells have
previously been used to study NETosis in vitro.31,56 Consistent
with those prior reports, R848 induced NETosis in dHL-60
cells (Figure S7). Furthermore, we observed that pS9L
inhibited NETosis and that siRNA knockdown of Siglec-9
(encoded by SIGLEC9) or SHP-1 (encoded by PTPN6)
abrogated the effect of pS9L (Figures 3e, S8 and S9).
Therefore, the Siglec-9 agonist pS9L inhibits TLR7/8-induced
NETosis via Siglec-9 and SHP-1.
Siglec-9 is Upregulated in Severe COVID-19 and Can

Suppress NETosis Induced by COVID-19 Plasma. Sera
and plasma from COVID-19 patients have been shown to
induce NETosis of neutrophils isolated from healthy donors in
vitro.19,21 The causative components are unclear; however,
potential factors include viral TLR ligands, damage-associated
molecular patterns that bind TLRs, activated platelets, and
(pro)inflammatory cytokines. Recent reports have described
increased levels of neutrophil-activating cytokines in COVID-
19 plasma, predominantly IL-8 and G-CSF.57 We also
observed that the combination of IL-8 and G-CSF was
sufficient to induce NETosis in vitro (Figure S10). Addition-
ally, transcriptomic analyses of peripheral myeloid cells8 and
neutrophils9 in COVID-19 patients have revealed increased
SIGLEC9 expression (Figure 4a, S11) and PADI4 expression
(Figures 4b and S11). We hypothesize that this is an
exhaustion-like phenotype in which Siglec-9 expression is
induced on hyper-NETotic neutrophils, similar to what has
been observed with Siglec-9 on exhausted tumor-infiltrating T
cells.51 These observations further support Siglec-9 an
attractive target for therapeutic blockade of hyperinflammatory
NETosis in COVID-19.
To test the hypothesis that pS9L can inhibit NETosis

induced by COVID-19 plasma, we treated neutrophils isolated
from whole blood of healthy donors with citrate-anticoagulated
heterologous plasma from healthy donors or COVID-19
patients. Neutrophils in undiluted plasma were cotreated
with pS9L (500 nM), the nonbinding analogue pLac (500
nM), or vehicle. To satisfy biosafety restrictions, cells were
incubated in the presence of COVID-19 plasma for 4 h and
then fixed before assaying for extracellular complexes of
myeloperoxidase (MPO) and DNA (DAPI) (Figure 4c,d). The
combination of these stains, which when observed extracell-
ularly is indicative of NETosis, has been previously used to
identified NET+ cells in the context of COVID-19.20 We
observed that COVID-19 plasma induced NETosis of
neutrophils from healthy donors, as indicated by the formation
of web-like NET structures (Figure 4d). As in previous
experiments with R848, COVID-19 plasma-stimulated NETo-
sis was inhibited by pS9L treatment (Figure 4c,d).
Furthermore, pLac did not inhibit NETosis induced by
COVID-19 plasma, and neither pS9L nor pLac affected
basal NETosis of in vitro cultured neutrophils (Figure 4c). We
performed similar experiments staining neutrophils treated

with 10% plasma in IMDM (Figure S12) or undiluted plasma
(Figure S13) for extracellular H1/DNA complexes, another
marker of NETs,58−60 and observed comparable results.
Collectively, these data demonstrate that Siglec-9 agonism

inhibits NETosis induced by COVID-19 patient plasma and
thus could inhibit peripheral inflammation in patients with
COVID-19. Additionally, Siglec-9 agonists could resolve NET-
associated pathologies observed in COVID-19 and elsewhere
such as immunothrombosis21 and sepsis.4,5

Safety Statement. For experiments using plasma from
patients with COVID-19, all experiments were performed in a
certified BSL-2+ biosafety cabinet with appropriate institu-
tional approval for working with blood products derived from
patients with COVID-19. All items that came in contact with
plasma were disinfected with 10% bleach for 30 min or fixed in
4% formaldehyde solution for 15 min before being removed
from the biosafety cabinet. Otherwise, no unexpected or
unusually high safety hazards were encountered.

■ CONCLUSION

We have demonstrated that Siglec-9 agonists can inhibit
NETosis induced by COVID-19-associated proinflammatory
signals. Thus, Siglec-9 is a therapeutic target to inhibit
potentially fatal hyperinflammation associated with COVID-
19 in an analogous fashion to the highly effective therapeutics
currently aimed at the Siglec-10/CD24 interaction. A CD24-Fc
fusion has been shown to engage Siglec-10 as an immune
checkpoint on macrophages and sequester the nuclear protein
HMGB1, which can act as a damage associated molecular
pattern by engaging TLR4.61 The Siglec-9 agonists described
here have previously been shown to inhibit macrophage TLR4
signaling and engage macrophage Siglec-9.40 Thus, Siglec-9
agonists may be multipurpose therapeutics, able to inhibit both
the clinically unaddressed problem of proinflammatory
NETosis and also subsequent inflammatory signaling from
tissue damage that is currently being clinically investigated.
The glycopolypeptides described here may have direct

translational potential. As lipid conjugates, they may have
sufficient reversible albumin binding activity as to achieve long
plasma residence times approaching those of antibodies or Fc
fusion proteins. As they are products of chemical synthesis,
modifications to enhance preferred drug properties would be
quite straightforward. Indeed, glycopolymers with lipid variants
that enhance membrane association or plasma membrane
residence time have been used for other purposes in our
lab.62,63 More broadly, however, the work herein provides
motivation to develop Siglec-9 agonists of any molecular
classes, including monoclonal antibodies or Fc fusion proteins.
Finally, Siglec-9 agonists have the potential to expand beyond
ARDS to other NET-related pathologies such as thrombo-
sis,64,65 atherosclerosis,66 and cystic fibrosis.67
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