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National Council on Radiation Protection and Measurements, Bethesda, MD and Massachusetts
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Abstract

The limited impact of treatments for COVID-19 has stimulated several Phase 1 clinical trials of
whole-lung low-dose radiation therapy (LDRT; 0.3 — 1.5 Gy) that are now proceeding to Phase 2
randomized trials worldwide. This novel but unconventional use of radiation to treat COVID-19
prompted the National Cancer Institute, National Council on Radiation Protection and
Measurements, and National Institute of Allergy and Infectious Diseases to convene a workshop
involving a diverse group of experts in radiation oncology, radiobiology, virology, immunology,
radiation protection, and public health policy. The workshop discussed the mechanistic
underpinnings, rationale, and preclinical and emerging clinical studies, and developed a general
framework for use in clinical studies. Without refuting or endorsing LDRT as a treatment for
COVID-19, the purpose of the workshop and this review is to provide guidance to clinicians and
researchers who plan to conduct preclinical and clinical studies, given the limited available

evidence on its safety and efficacy.

Introduction

To improve clinical outcomes for COVID-19 patients, a variety of experimental treatments
are being evaluated, including clinical trials for whole-lung low-dose radiation therapy
(LDRT) (1, 2), defined hereas 0.3 to 1.5 Gy delivered in a single fraction, which is lower
than doses used in clinical radiotherapy and higher than the 50 mSv/year occupational
exposure limit and 1 mSv/year limit to the general public (https://ncrponline.org/shop/
reports/report-no-180-management-of-exposure-to-ionizing-radiation-radiation-protection-
guidance-for-the-united-states-2018-2018/).

Clinical trials currently testing whole-lung, LDRT for COVID-19 are listed in Table 1. Most
of these trials are open-label, single institution, non-randomized studies, but some
randomized trials are also emerging. Among several hospital centers worldwide, enroliment
of 982 patients is planned to date. To address this unconventional treatment’s unigueness and
accompanying scientific controversy (3, 4), the National Cancer Institute (NCI), National
Council on Radiation Protection and Measurements (NCRP), and National Institute of
Allergy and Infectious Diseases (NIAID) convened a virtual workshop on July 23, 2020 to
discuss available data concerning potential risks/benefits of LDRT. One main goal of the
workshop was to develop guidelines for future clinical trials by developing components for
inclusion in clinical studies, taking into consideration pros and cons of several parameters
that would address the pathogenesis and underlying mechanisms of COVID-19.

The workshop brought together a diverse group of scientific experts in radiation oncology,
pulmonary virology, immunology, vascular- and radiation-biology, radiation protection, and
public health policy. There were 3 sessions: clinical trials/trial design, preclinical studies,
and radiobiological/ immunological mechanisms of LDRT. The available results of clinical
trials conducted to date, including those just accruing patients and those being implemented
and in the final planning phase, served as a key focal point of debate about the need for
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preclinical data prior to initiating trials and the protocol design and methodology. Issues
discussed included those related to COVID-19 biology, low-dose radiation biology, radiation
lung injury and how these complex mechanisms might interact. Given the use of ionizing
radiation for a purpose other than treating cancer, potential life-time radiation risks and
regulatory aspects of the use of radiation for LDRT were discussed. Without supporting or
refuting LDRT for COVID-19 as a treatment, this review is to provide guidance to clinicians
and researchers who plan to conduct preclinical and clinical studies, given the limited
evidence on its safety and efficacy. Also, we recognize the need for novel treatments for
patients in a dire clinical condition, however, it is essential that any use of LDRT for
COVID-19 be on a clinical trial with Institutional Review Board (IRB) oversight, and
investigators must provide complete details of trials including patient selection, tracking
those who were eligible, consented, received LDRT, and report both short- and long-term
results.

Clinical trials and trial design

The workshop participants recognized the dire need for effective treatments as well as
scientific consensus from the NCRP (https://ncrponline.org/shop/reports/report-no-186-
approaches-for-integrating-information-from-radiation-biology-and-epidemiology-to-
enhance-low-dose-health-risk-assessment-2020/), the United Nations Scientific Committee
on the Effects of Atomic Radiation (UNSCEAR; https://www.unscear.org/unscear/en/
publications/2006_1.html), and others that radiation doses > 0.1 Gy carry long-term risks,
which include cancer and cardiovascular events, modulated by several factors such as age at
time of exposure and sex (3, 5, 6).

The impetus for LDRT comes from case studies of patients treated with thoracic radiation
for pneumonia between 1905 and 1943, which suggest clinical improvement (7, 8). As the
studies lacked a randomized control arm without radiation exposure, it is difficult to
establish whether treatment impacted the course of the disease. Given the paucity of
preclinical data and limited interpretability of the historical data, some workshop
participants insisted on the need to establish the efficacy of LDRT in animal models of
SARS-CoV-2 before testing in human clinical trials, opining that LDRT is not indicated (9).
Others argued for continuation of IRB-approved clinical trials based on the need to
investigate treatments that aim to reduce COVID-19 morbidity and mortality and on initial
Phase I trial observations. While several other COVID-19 therapies are being evaluated, to
date, only two drugs have shown improved outcomes: the steroid Dexamethasone lowers the
odds of death (10), and the antiviral Remdesivir shortens oxygen dependency and recovery
time but does not improve survival (11). Ultimately, management of this pandemic will be
modified by improved understanding of pathogenesis of tissue injury, immunological/
inflammatory response, the availability of preventive and therapeutic vaccines, and
continually updated clinical guidance (https://www.cdc.gov/coronavirus/2019-ncov/hcp/
clinical-guidance-management-patients.html).

The risk/benefit considerations for LDRT include the possibility of short-term worsening of
the disease course (to be determined by Phase 1 and 2 clinical trials) and long-term
population-based radiation risks should a large number of patients live many years/decades
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vs. the potential benefit of reduced mortality and morbidity in the most severely ill patients
in the immediate term (days/weeks). While speculative, it is conceivable that whole-lung
LDRT could exacerbate SARS-CoV-2 infection. Autopsies of patients who died from
COVID-19 show infection of endothelial cells with associated endothelial inflammation,
vasculopathy, and microangiopathy (12, 13). In general, exposure to doses >2 Gy are likely
to induce endothelial activation (14). Endothelial molecules, ICAM-1 (15) and E-selectin
(16), are upregulated in a dose- and time-dependent manner, in part due to NF-xB activation
(17), in preclinical studies. Because the endothelial cells in small vessel capillaries in the
lung can potentially be damaged by ionizing radiation (14), it is conceivable that LDRT
might promote endothelial cell injury and coagulopathy in the COVID lungs due to
combined injury. Further, there might be differences in the dynamics of response of
endothelial cells between preclinical models and humans to a given dose of radiation.
Therefore, characterization of dose-effect and time-course responses of endothelial cells to
radiation are essential to fully understand the adverse effects of LDRT.

The general rationale for LDRT is that it could inhibit the cytokine storm that promotes the
virus-induced pulmonary dysfunction contributing to the development of Acute Respiratory
Distress Syndrome (ARDS). It is also likely that the potential anti-viral effect of LDRT
could be due to the activation of immune and endothelial cells and inhibition of subsequent
viral loading. However, preclinical data are necessary to support or refute this notion. LDRT
as a treatment for COVID-19 patients to prevent respiratory failure, based on its role in
treating inflammatory and degenerative diseases, is reviewed (18). Use of LDRT requires
meticulous planning to overcome the challenges, including: (i) determining the optimum
time, if any, during disease progression to treat COVID-19 with LDRT, considering its safety
and efficacy, (ii) safety of healthcare personnel during patient transport to the RT facility,
(iii) rapid deterioration of eligible and enrolled patient’s medical condition, and (iv)
availability of RT facilities only on certain days (in many centers), potentially causing a
delay between obtaining informed consent and the actual treatment delivery. Patients who
deteriorate during this delay and fail to receive LDRT influence the interpretation of the
existing preliminary Phase 1 data.

The first published peer-reviewed results from the U.S. are from a safety trial of 1.5 Gy
LDRT in elderly patients (median age 90), with bilateral pulmonary infiltrates, oxygen
dependence without mechanical ventilation, and high comorbidity burdens — factors known
to predispose patients to a worse outcome (2). A pre-specified interim safety analysis on day
7 was the primary endpoint: 7 patients were enrolled (but 1 was transferred to the ICU and 1
expired prior to LDRT); thus, 5 received radiation. No acute worsening of the cytokine storm
nor acute events were noted in 4 patients whose clinical status improved over 3 to 96 hours
post LDRT. The trial met the primary safety endpoint with day 7 survival in the 5 irradiated
patients.

In Iran, 5 patients with COVID-19 on supplemental oxygen were treated with 0.5 Gy whole
lung RT: 1 died, 1 withdrew consent, and 3 showed clinical improvement so that they could
be discharged, with one patient discharged with oxygen support at home (1). As these
patients were not treated with Dexamethasone, the death of 1 of 4 evaluable patients from
COVID-19 is consistent with the expected mortality of 25% for hospitalized patients on
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supplemental oxygen (19). The authors reported a response rate of 4 out of 5 initially
enrolled patients, based on an initial improvement in oxygen saturation and body
temperature within 1 day after LDRT. Collectively, these studies established the feasibility
of 0.5 to 1.5 Gy whole lung irradiation in COVID-19 patients on supplemental oxygen.

Two trials underway that were discussed include i) a Phase 2, single-arm study of 30-day
mortality for patients requiring mechanical ventilation (NCT04427566) to receive 0. 8 Gy
LDRT and possibly other investigational treatments; and ii) a randomized, multi-institutional
study for patients requiring hospitalization for hypoxemia, fever, or pulmonary compromise,
but not mechanical ventilation (NCT04466683). In addition to experimental drugs, initial
randomization is to LDRT either 0.35 Gy or 1 Gy; following interim pre-specified
evaluation, randomization will be to standard of care (SOC) or SOC plus the more
efficacious/safer LDRT dose.

Preclinical translational approaches

The Food and Drug Administration (FDA) informed that RT devices are cleared for certain
indications such as treating tumors in adults and children, but their use in treating
COVID-19 or modulating the inflammatory response in patients with COVID-19 are not
cleared indications. Other regulatory pathways available include Emergency Use
Authorization (EUA) (https://www.fda.gov/emergency-preparedness-and-response/mem-
legal-regulatory-and-policy-framework/emergency-use-authorization) and Investigational
Device Exemptions (IDEs) (https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/
CFRSearch.cfm?CFRPart=812&showFR=1). EUAs are in effect only during a public health
emergency; no RT devices currently have an EUA for COVID-19. A physician may choose
to use RT to treat a patient for COVID-19 associated pathologies as part of the practice of
medicine; however, treating clinicians should be well-informed about the treatment and base
their decision on solid scientific and medical evidence. IRB oversight and informed consent
may be required by the physician’s institution before treatment. The practice of medicine
does not include use of a device in clinical trials.

The importance of considering correlative, preclinical work in the design and conduct of
LDRT clinical studies was discussed using a schema of the clinical and pathological
evolution of COVID-19 infection. Figure 1 shows the chronology of events that leads to the
cytokine storm in SARS-CoV-2 infection, causing a dysfunctional immune response and
ultimately ARDS (20).

The pathological evolution toward severe ailment does not always depend on viral load and
culminates in a combination of symptoms. These include lymphopenia, with a relative
abundance of abnormally functioning or exhausted CD8* T cells, high neutrophil-to-
lymphocyte ratio, increased antibody-secreting B cells, and monocytopenia with a relative
increase in inflammatory CD14* and CD16™ monocytes. Also observed are increases in
multiple cytokines (e.g., IL-2, IL-6, IL-7, IL-10) and chemokines responsible for recruiting
neutrophils to the lung. The evidence for some effectiveness of anti-viral therapy during the
moderate phase and steroid therapy during the severe phase was also presented. Based on the
discussions, suggested correlative studies for clinical trials, are provided in Table 2.
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A reanalysis of several animal datasets from experiments performed decades ago testing RT
for bacterial and viral pneumonia reveal that results are heterogeneous, but collectively
indicate lack of efficacy of RT after infection (https://arxiv.org/abs/2008.02625v3). Animal
models of SARS-CoV-2 infection (while not identical to human COVID-19) include non-
human primates, hamsters, and transgenic mice expressing the human ACE2 receptor.
However, no studies of LDRT in these models are available (3), and some workshop
participants called for such pre-clinical experiments before continued testing of LDRT in
COVID-19 patients.

Radiobiological and immunological mechanisms

Using X-rays to treat non-malignant disorders, including pneumonia (23) was more common
in the U.S. until the 1950s, although LDRT is used in Germany, mainly for degenerative,
hyperproliferative or inflammatory diseases (24), where single doses of 0.5 — 1.0 Gy and
total doses of 3.0 — 6.0 Gy are delivered to patients > 40 yr.(24) Rapid decreases in pain and
edema are commonly reported. The relevance to LDRT for COVID-19 can be questioned;
however, efficacy suggests an anti-inflammatory action, supported by preclinical studies
(25).

Our understanding of the biology of SARS-CoV-2 is constantly evolving and studies on the
effects of radiation on COVID-19 are limited and challenging. This complex biology adds to
the debate about the essential need for preclinical data and clinical trials, to include carefully
specified indications, exclusions, treatment regimens, biomarkers and clinical outcomes, and
the importance of a randomized study comparing radiation vs. drug therapy or drug therapy
+/- LDRT. Selecting radiation dose may be from a randomization (noted in the study above)
or by the investigators’ choice.

SARS-CoV-2 in the lung targets primarily bronchial and alveolar epithelial cells, but other
targets are likely, including immune cells. Pathogen-associated molecular patterns are sensed
by innate pattern recognition receptors (PRR) on resident immune and non-immune cells,
leading to the production of chemokines and cytokines. These molecules activate leukocyte-
endothelial interactions to allow an influx of immune cells into the inflammatory site. The
PRRs that sense the presence of SARS-CoV-2 have yet to be fully identified, but are likely
important for the outcome of infection and could explain why this virus stimulates a
vigorous hyperinflammatory response (26). Irradiation is known to modulate toll-like
receptor (TLR) expression, which could alter early innate immune response (27), although it
is unknown whether LDRT can do this. Immune cells, especially the myeloid subsets, are
activated to phagocytose debris in the inflammatory site while dendritic cells (DC) present
antigen to stimulate adaptive immunity in primary lymphoid tissues. Myeloid cells, however,
appear to be dysregulated (see later) and conventional DCs and pDCs are decreased in
COVID-19 patients (28), but whether the generation of anti-viral immunity is affected is, as
yet, unclear.

Inflammation is a multistep process involving many cell types and mediators such as
reactive oxygen species (ROS), nitric oxide, prostaglandins, and pro-inflammatory
chemokines and cytokines especially interleukin (IL)-1, tumor necrosis factor-a (TNF-a),
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IL-6, IL-8, and IL-12. Pro-inflammatory cytokines also tie into coagulation pathways and
fibrin deposition, which is important in the later stages of COVID-19 pathogenesis. Vascular
endothelial cells play a central role in responding to and producing cytokines that further
drive cytokine production and lead to a coagulation response, mainly through the extrinsic
pathway involving tissue factor and Factor Vlla. Such inflammatory, pro-coagulation events
can overwhelm host defenses, leading to disseminated intravascular coagulation and
multiple organ failure. Coagulopathy is frequently associated with excessive systemic
inflammation and is a distinct feature of advanced COVID-19 (29). The ability of single
high doses of radiation to induce inflammation and trigger clotting has been known for
decades (30). In contrast, little is known as to how LDRT might affect the coagulation
process, particularly in ARDS. The effects of LDRT on ongoing inflammatory processes
have been investigated in other model systems. However, detailed dose-response and time-
course studies are essential to deciphering the pro-survival immune-modulatory response vs.
cytotoxic effects of LDRT on lung vascular endothelial cells. Since endothelial cells are
relatively radiosensitive, LDRT-mediated benefit may be linked to an inhibitory effect on
coagulopathy, which needs to be verified.

The effects of LDRT on many inflammatory processes have been investigated, but data are
not consistent with respect to radiation dose and time of response. A general picture however
has emerged of anti-inflammatory actions of doses in the range 0.1 — 1.0 Gy with notably
reduced immune cell/endothelial cell adhesion and production of inflammatory mediators
such as reactive oxygen species, nitric oxide, and cytokines /n vitrothat translated /n vivoto
LDRT efficacy on experimental collagen-induced arthritis (31, 32), experimental
autoimmune encephalomyelitis (33), TNF-induced polyarthritis (34), and decreased
neuroinflammation in mouse models of Alzheimer’s disease (35, 36). Although these LDRT
studies were performed in the context of inflammatory conditions, it should be noted that
LDRT was often delivered just before or after a challenge. There is a paucity of data on the
effects of LDRT in preclinical animal models in the context of viral infection. Many factors,
including 1L-6 (37), affect radiation responses, and the use of an appropriate animal model is
crucial as a preexisting inflammation can dramatically alter the response to radiation,
especially if it is hyperinflammatory.

Pathophysiological changes in vessel-lung interface due to SARS-CoV-2 infection leading to
the loss of vascular integrity, activation of the coagulation pathway, and inflammation have
been recently published (38) (Fig. 2). In its worst form, COVID-19 is a complex
pathophysiological disease state, which includes severe pneumonia, ARDS, septic shock
syndrome, disseminated intravascular coagulation, and multiorgan failure (39, 40). In
patients, IL-2, IL-4, IL-6, IL-7, IL-9, IL-10, G-CSF, IP10/CXCL10, MCP1/CCL2, MIP1A,
CCL3, and TNF-alpha are frequently elevated.(41) High levels of a subset of these pro-
inflammatory chemokines and cytokines, especially IL-6, correlate directly with disease
severity and could be responsible for at least some of the disease’s pathological features
(42). Given these findings, it is not surprising that attempts are being made to target
inflammation in COVID-19 (43), including IL-6 blocking antibodies, IL-1R agonists,
NADPH oxidase (NOX) inhibitors, dexamethasone, JAK1 inhibitors, and now LDRT.
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Figure 3 illustrates the timeline of dynamic changes in lungs resulting from SARS-CoV-2
exposure, causing anti-viral immune response and inflammatory response, leading to ARDS
and multiorgan failure due to hyperinflammation. This mechanistic understanding of
pathophysiological processes resulting from early infection and pulmonary phase to the
development of ARDS due to hyperinflammation, provides a “hypothetical window of
opportunity” to intervene in the disease progression with LDRT; however, this concept needs
to be tested and confirmed with biomarkers of immune and inflammatory responses (see
Tables 2 and 3) alongside tissue oxygenation status (Fig. 3).

In considering the cytokine profile of COVID-19, the lack of type 1 interferon (IFN)
production in response to SARS-CoV-2 infection is striking. Other coronaviruses are known
to interfere with IFN synthesis (44), and SARS-CoV-2 may have similar attributes. Since
Type 1 IFNs are important for antigen presentation, viral impairment of IFN production
could have profound effects on development of adaptive anti-viral immunity and allow
unrestricted viral replication. Recently, IFN-alpha has shown promise, either alone or with
HIV-specific protease inhibitors, in treating coronavirus infections, including COVID-19
(45).

Myeloid cells appear to be dysregulated in COVID-19 and, although reports are inconsistent,
increases in pro-inflammatory monocytes that produce high levels of IL-6 and other
cytokines and have low MHC class-I1 expression may be related to dysfunctional innate and
adaptive immunity and disease status (46). Dysfunction of alveolar macrophage by SARS-
CoV-2 has also been proposed as a driver of the cytokine storm.(47) Other features of the
disease that correlate with its severity are T and NK cell depletion and exhaustion (48).
Along with increases in myeloid suppressor cells (49), these outcomes contribute to a high
neutrophil to lymphocyte ratio (41).

SARS-CoV2 infection evolves rapidly, as will the microenvironment within the tissue to be
irradiated with LDRT. Understanding the time-dose dependency of LDRT effects will be
very challenging but crucial for dissecting LDRT’s therapeutic potential, if any. Many
questions about the anti-inflammatory action of LDRT in infectious diseases, therefore,
remain, and appropriate animal models of COVID-19 are urgently needed.

Previous studies with mouse models using combined radiation and influenza A exposure led
to the hypothesis that prior lung irradiation might increase severity/susceptibility to SARS-
CoV-2 and elevate the risk of pulmonary fibrosis (50). Prior SARS-CoV-2 exposure and
recovery may also promote sensitivity and susceptibility to RT-mediated lung injury and
fibrosis in cancer patients. Notably, increased morbidity and mortality from SARS-CoV-2
infection was reported among lung cancer or lung metastasis patients in a multicenter study
while cancer patients without lung metastasis had no statistically significant differences
compared to COVID-19 patients without cancer (51). COVID-19 patients with a history of
lung RT had a poor prognosis and higher mortality risk with a mathematical survival model
having a nearly linear relationship between mortality risk after COVID-19 diagnosis and
mean lung RT dose (52).
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LDRT includes exposure of whole lungs to radiation. Data from survivors of the atomic-
bombings in Japan, who had average organ doses of about 0.2 Gy, indicate that the lifetime
risk of lung cancer is higher in females than in males, the excess risk at 1 Sv for acute
exposures being 2.6%-6.7% vs. 1.3%-2.0%, respectively (6). These ranges reflect
differences in age at exposure for adults, statistical and dosimetry errors and the use of
absolute vs relative risk projection/transfer models.

Other epidemiological studies provide similar estimates (6). The risk of fatal cancer and
circulatory diseases after 1 Gy acute exposure is estimated by modeling at about 2 to 6% (3,
53, 54), with morbidity risk about 2-fold higher. Smoking has a major effect on risk, as does
inflammation. Overall COVID-19 mortality is <5%, with a higher loss of life expectancy
than death from radiation-induced cancer or circulatory disease. However, persons above age
70 y may have a much higher risk than 5%. Risk estimates for adverse events from LDRT
should be weighed against other treatment approaches.

Overall perspectives

While there was a general consensus that LDRT for COVID-19 should be utilized only
within a framework of rigorous and well-designed clinical studies, there was no agreement
on whether safety data are sufficient and whether there is adequate rationale to proceed with
clinical trials. Placing the role of LDRT in context of safe and effective vaccines as well as
improved anti-viral and anti-inflammatory strategies is essential.

Although the workshop did not reach consensus on whether or not clinical trials of LDRT
for COVID-19 are appropriate, based on biological knowledge and clinical experience to
date with the pandemic and LDRT to treat COVID-19, one major goal of the workshop was
to suggest guidelines to consider for a well-designed clinical study. Taking into
consideration the pros and cons of many parameters, a possible framework for a protocol
was developed (Table 3). However, this framework is not a blueprint; rather, it provides
guidance for those who are committed to testing LDRT as a treatment option for the
COVID-19 public health crisis.

Conclusions

It is clear that more preclinical data, ideally derived from a robust model reflective of SARS-
CoV-2 pathophysiology, are needed, and that little data exist regarding the
pathophysiological effects of treating a lung with LDRT in the midst of a viral vasculopathy
and pneumonia. However, the efforts of radiation biologists to reveal the potential
mechanistic interplay between radiobiologic response and virus-induced cytokine response
in a target organ was recognized. Without supporting or refuting LDRT for COVID-19 as a
treatment, this review intends to assist clinicians and researchers who plan to conduct
preclinical and clinical studies, given the limited evidence on the safety and efficacy of
LDRT for COVID-19. Recognizing that improved treatments for severely ill patients with
COVID19 are necessary, any trial that is performed must be done cautiously, with full
appropriate IRB oversight and must be cognizant of rapid changes in the biological
understanding of the phases of the illness and the standard of care in this patient cohort.
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Also, the workshop participants recognize the potential of these novel trials to enhance
understanding of the effects of radiation in modulating host immunity and anti-inflammatory
response, which is why inclusion of biomarkers in all studies is crucial. Workshop
participants spanned the entire arc of opinions from for to agnostic/neutral to against the
clinical application of LDRT while generally agreeing that collaborative pre-clinical

research and rapid reporting of results from any clinical trials are necessary.
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Search strategy and Selection Criteria

Two authors independently searched the clinicaltrials.gov for currently registered clinical
trials using “Low Dose Radiation Therapy” and the PubMed using MeSH terms
“Arthritis / radiotherapy; Inflammation / radiotherapy; lonizing radiation / anti-
inflammatory effects; Pneumonia / radiotherapy; Germany / radiotherapy; Radiotherapy
dosage; Radiation injury / blood; Oxidative stress / radiotherapy; COVID-19 / SARS-
CoV-2 / lung innate immunity; Coronavirus infection / blood; Betacoronavirus / blood
coagulation; Coronavirus infection / pathology; Cytokine release syndrome;
Encephalomyelitis, autoimmune, experimental / gamma rays; Alzheimer’s disease /
radiation; Interleukin-6 / radiation; Cytokines / low-dose radiation; Nrf-2 / radiation;
Myeloid cells / low-dose radiation” for published literature from 1999-2020 for this
review, prepared as the Workshop Report on LDRT for COVID-19.
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FIG. 1.
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Dysfunctional Immune Response and Ultimately ARDS (modified with permission)(20).
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Timeline of the dynamic changes resulting from SARS-CoV-2 exposure. The current

understanding of the pathophysiological processes from the early anti-viral immune
response to the development of ARDS and multi-organ failure due to hyperinflammation,
opens a “hypothetical window of opportunity” for intervention with LDRT. However, this is
a concept that needs to be tested and confirmed with biomarkers of immune and
inflammatory response (see Tables and 3 for potential biomarkers) alongside tissue
oxygenation status. The LDRT window of opportunity will likely follow the principle of ‘as
early as possible and as late as necessary’ but the suggestion is that LDRT will be most
effective during the early stages of inflammation, with the caveat of potential adverse effects
of lung radiation exposure and combined injury.

1duosnuepy Joyiny

1duosnue Joyiny

Radiat Res. Author manuscript; available in PMC 2021 March 30.



Page 19

Prasanna et al.

VSN ‘01y0 ‘snquunjoQ ‘1eius)
[edIpaN ANsIanlun 811S 01y
18 8IMIISU| Y21easay 8A0|0S pue

asiwoldwo) Alojelidsay
pue 6T-AIAOD YNM Siudired

99G/¢¥¥0LON ve 1Y uoneipey [endsoH Jsoue) sauwer ‘9 INYUY 6T-AINOD o 10} 1Y Bun 8oy 8soQ Mo
ureds ‘plpeN ‘sojred
ues 091uj|D [endsoH “eoidelslolpey
06€0¢770LON 144 1y ‘uoneipey ©160]00UQ 3P OIINIBS 6T-dINOD d shiuownsud 6T-AIAOD 40} 14a
ureds sisoubold peg
‘uojalse) ‘eue|d € 8@ U9|[8Ised [elIN 10 uondsyu| 6T-AIAOD YUM siualred
€62y Tyy0LON 114 147 Bun :uoneipey ‘U0||3)SBD 8P [BIOUIAOI] [BHASOH  ‘eruownaud |QIAOD HAN ur uonelpels] Areuowingd 8sog mo-
BIPU| ‘1Y]ag MaN ‘SaousIos elUoWnaud Apns 10]1d
€6.76EV0LON 0T 14@T :uoneipey |eJIP3IAl JO 31nnsul elpul |1V l6T-AINOD a ] V ‘eluownsud 6T-AINOD 10} 1HA1
qewnzifoo] :Bnig
|uonoalul proJssoanio) :6niq |urreday
1yB1am Jejndsjow mo :Bniqg |weloeqozey
oeladid :6niq |uidAwoiynzy
:6ni@ [auinboio|yoAxoipAH
:6nu@ |ineuoni/nineurdo :6nig
|Adesayy uabAxo yum poddns Alorejiuan ureds ‘pupen wio01s aupjolfy 6T-AINOD 01 pajedljddy uoneipey
28TY6EV0LON GT :801A9Q | 1Y 9sOp-mo1-eajN :UuoneIpey  ‘asedsIsauss ‘esolbeli e [edsoH ||RNIA ‘elUOWNBUY d yum Adelay] Jo sesog mo-enn
VSN ‘VIN ‘uolsog eluowNaud
8¥6£6EY0LON 8y Z 8seyd :uonelpey T aseyd :uopelpey ‘[e}1dSOH S, UsWOM pue weybug Z N\0D-SHVS S| 6T-AIAOD J04 uonelpen| bun
ZT¥06EY0LON S 1HQ@T :uonelpey  UeJ| ‘UBJYSL ‘[eIdSOH UIBSSOH Wew] SYvSs [aINn0D S| eluownaud 6T-AIAOD Ul 14a7
Ajddns uabAxo
18919 |uteday 1ybram Jejndsjow
Mo :Bniq |protsisodio) :Bnig
JuroAwoiynzy :6niq |[edwaloy] uonoslug
qewnzijioo] :6niq [Jineurdoj/aineuony 6T-AINOD
:6nuq [e1eyns auinboiojyaAxoipAH ureds ‘euobeure] Aq eluownaud Jo uawieal] ay:
8T808E¥0LON 90T :Bru@ | L4a uonelpey 'snay ‘snay ap ueor Jues [endsoH [eJIA ‘eluownaud S| 1o} 14 Alojewwepyul-nuy 8sog mo
(61-4071092) 1y Bun
LLyLLEV0LON 0g  1d Bunj sjoym uonoely a1BuIS uonelpey Arey "e1osa1g ‘NIAID1EPadS 1SSV 61-AINOD S| 950 M0 shiuownaud 6T-AINOD
(61-T 3NOS3Y)
Bluownaud 6T-AINOD Jo} Juswieal] Aeq-T
VSN 'V "Blue[ly ‘sniisu| 1sdued SHVS| 6TAINOD Se BWdPT Pax23yauN pue SauoIAD
T6/99€70LON 0t 14T :uoneipey  diysuim ‘[endsoH Ansieaiun Asows [eruownaud d Buiwiols sajeulwi|3 uonelpey
puUBIAZIMS “INYD ‘uspuangnels
|endsoH [euoiue) ‘ABojoouQ siuownaud
smuownaud 6T-AIAOD Y sjusired uopelpey 4o simnsu| ‘dnolo shiuownaud 6T-AIAOD YUM siuslied J8pjO 40}
762€6¥70LON 005 13p|o 1oy 14@7T Buny ajoy/n :uoneipey  Adessujolpey d1IeLISS [BUOIRUIBIU| 6T-pIA0D YAN  Adessyroipey Bun ajoym ssog moT
W |joJug
pIrofsferiL eolund parewls3 SuoljuBABIU | Suo17ed0 ] suolipuod sneis [fetiLayljospL

Author Manuscript

AOBs[eLIL[e21uND By} Ul pasalsiBay 6T-AIAOD 10} 14T Buni-8joys uo sjet [eaiun]d Butobuo pue palejduwio)d

‘TalqeL

Author Manuscript

Author Manuscript

Author Manuscript

Radiat Res. Author manuscript; available in PMC 2021 March 30.


http://ClinicalTrials.gov
http://ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT04493294
https://clinicaltrials.gov/ct2/show/NCT04366791
https://clinicaltrials.gov/ct2/show/NCT04377477
https://clinicaltrials.gov/ct2/show/NCT04380818
https://clinicaltrials.gov/ct2/show/NCT04390412
https://clinicaltrials.gov/ct2/show/NCT04393948
https://clinicaltrials.gov/ct2/show/NCT04394182
https://clinicaltrials.gov/ct2/show/NCT04394793
https://clinicaltrials.gov/ct2/show/NCT04414293
https://clinicaltrials.gov/ct2/show/NCT04420390
https://clinicaltrials.gov/ct2/show/NCT04427566

Page 20

Prasanna et al.

Buninioal 194 10U ‘YAN Buninigal 'y suoirIeIgayY

A9 00T uonreIpes 8s0p YBIH :uonelpey VSN ‘0lYy0 ‘snquinjo Usius] eluownaud [zA00 eluownaud (6T-AINOD) 2-A0D

€8999%770LON 00T [A92 Gg uoneipes 8sop moT :uonelpey [e21paIAl ANIsIBAIUN 81elS 0140 -SI1es |6T-p1n0D HAN -SHVS YNIM swualied 104 14A7
pauLIIu0)
-A1ojeloqe]

uonasjul 6T-AINOD
onewoldwAs

[owolpuhs 6T-AIAOQD JO JudBWIeaIL
VSN ‘YO ‘BB ‘9INMISU| JadueD Aiojesidsay amnoy 8y} 4o} 1Y BunT 8joya 8sog Mo
676EEYY0.LON 25 14Q@7 :uoneIpey [8o19eid 158g Yyl diysuipn ‘[endsoH Alsiealun Aiow3 8JaA9S [eluownaug d  INOYNM JO Yum areD aaioddns 1seg
uawIj0Jug
p| AoB'sfell] [ealuld parews3 SUOIUBARIU | SUOITe00 suolIpuoD snies [erilayl joail
Author Manuscript Author Manuscript Author Manuscript Author Manuscript

Radiat Res. Author manuscript; available in PMC 2021 March 30.


http://ClinicalTrials.gov
https://clinicaltrials.gov/ct2/show/NCT04433949
https://clinicaltrials.gov/ct2/show/NCT04466683

1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuen Joyiny

Prasanna et al.

Table 2:
Suggested Correlative Studies in the Clinic (21,22)

« Peripheral blood mononuclear cells (PBMC) — flow cytometry, CyTOF®

« Plasma — cytokines, miRNA, exosomes, proteins/metabolites, neutralizing antibodies, hypoxia markers
O Radiation pneumonitis markers (TGF-B, KL-6, surfactants, IL-1ra, IL-6, STNF, C3, C4b-binding protein-a.)
O Endothelial/cardiac injury markers (hscTnT, CKMB, NT-proBNP, ANP)
O Systemic inflammation markers (CRP, LDH, ferritin, D-dimer, IL-6)

« Bronchial secretions (BAL fluid) — viral load, flow cytometry

« Pulmonary function tests, oxygen requirements, ventilator settings, radiographic imaging, dosimetry

« Stool - viral load

« Co-morbidities — concurrent medications, prior treatments, quality-of-life

Radiat Res. Author manuscript; available in PMC 2021 March 30.
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