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Recent advances in understanding the Th1/Th2 effector choice
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Abstract

For over 35 years since Mosmann and Coffman proposed the seminal “type 1 T helper (Th1)/type 2 T helper (Th2)” hypothesis 
in 1986, the immunological community has appreciated that naïve CD4 T cells need to make important decisions upon their 
activation, namely to differentiate towards a Th1, Th2, Th17 (interleukin-17-producing T helper), follicular T helper (Tfh), or 
regulatory T cell (Treg) fate to orchestrate a variety of adaptive immune responses. The major molecular underpinnings of the 
Th1/Th2 effector fate choice had been initially characterized using excellent reductionist in vitro culture systems, through which 
the transcription factors T-bet and GATA3 were identified as the master regulators for the differentiation of Th1 and Th2 cells, 
respectively. However, Th1/Th2 cell differentiation and their cellular heterogeneity are usually determined by a combinatorial 
expression of multiple transcription factors, particularly in vivo, where dendritic cell (DC) and innate lymphoid cell (ILC) 
subsets can also influence T helper lineage choices. In addition, inflammatory cytokines that are capable of inducing Th17 cell 
differentiation are also found to be induced during typical Th1- or Th2-related immune responses, resulting in an alternative 
differentiation pathway, transiting from a Th17 cell phenotype towards Th1 or Th2 cells. In this review, we will discuss the recent 
advances in the field, focusing on some new players in the transcriptional network, contributions of DCs and ILCs, and alternative 
differentiation pathways towards understanding the Th1/Th2 effector choice in vivo.
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Introduction
The ability of naïve CD4 T cells to differentiate into distinct 
cytokine-producing effector T helper (Th) cell subsets has 
been well appreciated over the last 35 years. The initial hypoth-
esis set forth by Mosmann and Coffman in 1986 that at least 
two subsets of CD4 Th cell clonotypes could be distinguished 
based on the production of interferon (IFN)γ or IL-41 has since 
been expanded to encompass new Th subsets, including type 1  
IFNγ-producing Th (Th1) cells, type 2 IL-4/IL-5/IL-13-secreting  
Th (Th2) cells, IL-17A/IL-17F/IL-22-secreting Th (Th17) 
cells, T follicular helper (Tfh) cells, and regulatory T cell (Treg) 
populations2. Indeed, the initial hypothesis set forth sparked  
a period of discovery in which the major molecular and cellu-
lar events leading up to the differentiation of naïve CD4 T cells 
towards Th1 and Th2 effector cells were characterized using  
excellent reductionist in vitro models.

Th1 cells are key players in helping to mount a host defense 
against intracellular pathogens, including protozoa, bacteria, 
and viruses, but are also involved in the development of certain 
types of autoimmune diseases3–5. Lineage-specific master tran-
scription factors often play decisive roles in determining cell 
fate. Following Mosmann and Coffman’s hypothesis, T-bet was  
identified6–8 as the Th1-lineage master transcription factor, as  
T-bet directly regulates the production of IFNγ. Soon after,  
several distinct upstream regulatory pathways were described to 
promote Th1 cell differentiation. As T-bet can positively regulate  
IFNγ production, autocrine IFNγ–IFNγR–Stat1 signaling can 
reinforce T-bet expression to solidify the Th1 phenotype9,10. 
IL-12 can also potently induce T-bet expression and Th1 polari-
zation independent of IFNγ signaling11,12. Additionally, at the 
onset of an infection, IL-27 can induce IL-12R on naïve CD4 
T cells, making them more susceptible to IL-12-mediated  
T-bet expression and Th1 polarization13. Lastly, T-bet was 
reported to induce its own expression14. However, T-bet autoreg-
ulation may not be required in the presence of either IL-12 
or IFNγ. Nevertheless, T-bet and IL-12-induced pStat4 may  
synergize to remodel the Ifng locus and optimally induce IFNγ  
production12.

In contrast to Th1 cells, Th2 cells are primarily important in 
helping to mount a defense against helminth infections and 
exposure to venoms, but they also participate in different types 
of allergic diseases including asthma, atopic dermatitis, aller-
gic rhinitis, and food allergy15–19. Ten years after the Th1/Th2  
hypothesis, GATA3 was identified as the master transcription  
factor responsible for Th2 cell differentiation20–23. However, unlike 
T-bet, which is induced during Th1 cell differentiation, GATA3 
is already expressed by naïve CD4 T cells at low levels and is 
required for CD4 T cell development in the thymus24,25. Upon 
encountering antigen presentation and IL-4, activation of Stat6 is  
sufficient to induce GATA3 upregulation and Th2 polariza-
tion. However, GATA3 is also sensitive to the strength of T cell 
receptor (TCR) stimulation, as low-dose/weaker TCR stimu-
lation is sufficient to upregulate GATA3 expression in the 
absence of IL-4/Stat6 signaling26, consistent with the notion 
that TCR signaling strength could affect the fate of T cell  

differentiation27–29. Thus, there are IL-4-dependent and IL-4-
independent mechanisms of GATA3 induction and Th2 cell  
differentiation, particularly in vivo, and GATA3 is critical for Th2 
cell differentiation both in vitro and in vivo22. GATA3 directly 
binds to the Il4/Il13 gene locus. While GATA3 can induce Il5 
and Il13 transcription through binding to their promoters30,31,  
GATA3 mainly affects Il4 expression through regulating  
epigenetic modifications at the Th2 cytokine gene locus25.

Following the identification of T-bet and GATA3 as Th1- and 
Th2-polarizing transcription factors, respectively, it became 
readily apparent that lineage cross-regulation occurs in order 
to solidify one T effector fate over the other. For example,  
T-bet was shown to suppress GATA3 transcription12,32 and inhibit 
GATA3 function through direct protein–protein interaction33. 
In addition, T-bet and GATA3 both colocalize at key Th1- and 
Th2-related genes, and endogenous T-bet is sufficient to inhibit 
GATA3 function during Th1 polarization, thereby enforcing a 
Th1 program12,34,35. In contrast, during Th2 polarization, GATA3 
may suppress Stat4 expression, suppress Runx3-mediated  
IFNγ production, and epigenetically silence the Tbx21 locus  
to ensure Th2 polarization25,36,37.

In this review, we will discuss some recent interesting advances 
towards understanding the Th1/Th2 effector cell “choice”,  
particularly during in vivo immune responses, which include the 
role of new players in the transcriptional network, the contribu-
tions of dendritic cells (DCs) and innate lymphoid cells (ILCs) 
in the initiation of T cell differentiation, and the alternative  
differentiation pathways transiting from Th17 cells to Th1 
or Th2 cells. While some of the topics that will be discussed 
are also relevant to Th17-, Treg-, and Tfh-mediated cellular 
responses as well as their plasticity, these subsets will not be 
discussed in detail, and we refer the reader to several excellent  
reviews2,38–45.

New roles for known transcription factors in 
regulating the differentiation and functions of Th1 
and Th2 cells
Despite all that we have learned about the Th1/Th2 dichot-
omy in the past 35 years, there is still much to learn about the  
Th1/Th2 choice in the context of transcriptional networks.  
Specifically, non-lineage-specifying transcription factor net-
works can influence the quality of a Th1 or Th2 response by 
influencing their cytokine repertoire. Interestingly, several recent 
studies have highlighted non-lineage-restricted transcription  
factors, Bhlhe40 and B cell lymphoma 11B (Bcl11b), in affecting 
the cytokine repertoires of Th1 and Th2 cells.

Three reports have recently shown Bhlhe40 to be a key  
non-lineage-related cytokine modulator, demonstrating a role for 
Bhlhe40 in Th1 immunity in Toxoplasma gondii and Mycobac-
terium tuberculosis infection models and in Th2 immunity in a  
model of Heligmosomoides polygyrus infection46–48. Two 
groups independently demonstrated that Bhlhe40 plays a key 
role in suppressing IL-10 production by Th1 cells, function-
ing as a key inflammation/anti-inflammation switch. Yu and  
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colleagues46 demonstrated that a CD4 T cell-restricted knockout 
of Bhlhe40 resulted in increased IL-10 production and decreased  
IFNγ production by T cells in a T. gondii infection model. 
Bhlhe40 may suppress IL-10 production via suppression 
of c-Maf and/or Aiolos but promotes IFNγ production in a  
T-bet-independent manner. Similarly, Huynh and colleagues47 
demonstrated that Bhlhe40 is an essential repressor of IL-10  
during M. tuberculosis infection. In the context of H. poly-
gyrus helminth infection, Jarjour and colleagues48 found that 
Th2 cells require Bhlhe40 in order to mount an effective  
anti-helminth immune response. Interestingly, in their model, 
Bhlhe40 controlled the production of granulocyte-macrophage  
colony-stimulating factor (GM-CSF) and IL-5 cytokines 
within gut Th2 cells, and both cytokines are required for effi-
cient eosinophil recruitment and helminth control, suggesting 
that Bhlhe40 plays a key role in controlling the production of  
GM-CSF, IL-10, and other cytokines in multiple T cell subsets, 
including Th1, Th17, and Th2 cells. All together, these data 
suggest that Bhlhe40 plays an important lineage-independent 
cytokine-modifying role in Th1, Th2, and Th17 cells by  
promoting inflammation via inducing GM-CSF and suppressing  
IL-10.

There have also been several recent reports that have high-
lighted a non-lineage modulatory role for Bcl11b on Th1 and 
Th2 responses. Bcl11b is a critical transcription factor for early 
T cell development and is expressed by all T cells starting from 
the CD4/CD8 double negative (DN) stage 249. Bcl11b is criti-
cally required for Vβ-DJβ recombination and Tcrb expression  
at the DN3 to DN4 transition, as well as positive selection at the 
CD4+CD8+ DP stage50,51. In addition, Bcl11b plays an impor-
tant role in regulating the development and functions of mature 
T cell subsets52. Furthermore, Bcl11b suppresses the cell fate 
of natural killer cells and is important for the development  
of ILC2s53–57. Recently, Fang and colleagues58 have dem-
onstrated a novel role for Bcl11b in suppressing Th1 cell  
differentiation while simultaneously limiting the expression of 
Th2 cell-associated genes. In this study, it has been shown that 
Bcl11b physically interacts with GATA3 through protein–protein  
interaction and binds to common cis-regulatory elements of  
lineage-related genes that GATA3 binds in Th2 cells and thus 
limits IL-4, IL-5, and IL-13 production both in vitro and in vivo.  
Interestingly, GATA3 and Bcl11b also simultaneously sup-
pressed Th1-associated genes by modulating H3K27ac and 
DNase I hypersensitivity sites within these gene loci. Strikingly, 
while Bcl11b limits Th2 cell responses at a later stage, it plays 
an important role in the initiation of Th2 responses59. Deletion  
of Bcl11b in naïve CD4 T cells results in a reduced Th2 
response during helminth infection and in allergic asthma  
models, presumably because of a dysregulated balance 
between GATA3 and Runx3 expression in the absence of 
Bcl11b. Interestingly, Bcl11b may also play a role in restrict-
ing the expression of Th2 lineage genes within Th17 cells, as 
Bcl11b-deficient Th17 cells were shown to express GΑΤΑ3,  
IL-4, α4β7, and CCR9 in an experimental autoimmune encepha-
lomyelitis (EAE) model60. Therefore, Bcl11b is not only critical  
for T cell development in the thymus but also important for  

T cell differentiation in the periphery, and its functions are  
highly cell type (or developmental stage) specific.

Interestingly, the aforementioned effects of Bhlhe40 and Bcl11b  
on the activation and differentiation of Th2 cells were recently 
confirmed by Henriksson and colleagues61. Expanding on 
the previous work focused on the network of transcription  
factors involved with Th17 cell activation versus differentiation62,  
Henriksson and colleagues utilized a combination of genome-
wide CRISPR knockout libraries combined with RNAseq, 
ATAC-Seq, and ChIP-seq to dissect out the regulatory  
circuitry controlling the activation versus differentiation of  
Th2 cells in vitro. As a result of their efforts, they not only  
confirmed GATA3, Stat6, Batf, PPARγ, and IRF4 as key tran-
scription factors that are involved in Th2 cell differentiation 
and activation but also revealed Bhlhe40, Bcl11b, and Xbp1  
as transcription factors that are involved in Th2 cell acti-
vation. While more factors that are involved in regulating  
Th1/Th2 differentiation and functions are still being discov-
ered, including the p53 family protein p73, which affects Th1  
cell differentiation63, and Blimp-1, which regulates GATA3 
expression and thus Th2 cell differentiation64, the combination 
of novel genome-level technologies such as CRISPR knockout  
with high-throughput sequencing will hopefully reveal more 
non-lineage-related transcription factors in modulating CD4 T  
cell differentiation.

DC subsets in making the Th1/Th2 decision
In order for naïve T cells to differentiate towards Th1 or Th2 
effector cell fates in vivo, TCR stimulation via antigen pres-
entation, co-stimulation, and polarizing cytokine cues, such 
as IL-12, IL-27, etc., are required. DCs are the premier  
antigen-presentation cell population in vivo, and they are ulti-
mately required to activate and expand antigen-specific CD4 
T cells via peptide–MHCII–TCR interactions (Figure 1). 
As such, DCs and DC subsets have garnered attention in the  
literature based on their differences in antigen presentation 
and T cell polarization capabilities. While the topic of DC  
subsets has been expertly reviewed elsewhere43,65,66, briefly, there 
are several subsets of DCs: conventional type 1 DCs (cDC1s), 
conventional type 2 DCs (cDC2s), plasmacytoid DCs (pDCs),  
monocyte-derived DCs (moDCs), and Langerhans cells (LCs), 
which differ based on their anatomical locations, ontogeny, 
and antigen-presentation capacities. Interestingly, out of the  
aforementioned subsets, conventional DCs are the most abun-
dant and have been demonstrated to differ in terms of their  
abilities to induce Th1 or Th2 responses.

To efficiently polarize a naïve T cell to a Th1 phenotype, pro-
Th1 polarizing cytokines are required, such as IL-12 and IL-27. 
Interestingly, cDC1s are a major source of IL-12 in vivo67–69  
and have been reported to be superior in terms of their ability to 
generate Th1 cells in ex vivo coculture systems70 when they are 
compared to cDC2s. cDC1s constitutively express Il12b tran-
script and produce IL-12p40 protein in vivo71,72. Additionally, 
in experimental models of Th1 inflammation in the absence of 
cDC1s, the Th1 response is significantly compromised69,73–77,  
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suggesting that cDC1s play a major role in generating Th1  
responses in vivo. However, the following question arises: 
why are cDC1s able to produce basal levels of IL-12? The  
constitutive production of IL-12p40 doesn’t seem to depend on  
commensals or the specific acquisition of antigen, as cDC1  
IL-12p40 production is maintained in germ-free, naïve mice, 
suggesting that IL-12 production is either an intrinsic property 
of the cDC1 lineage or maintained by the microenvironment78.  
Homeostatic cDC1-derived IL-12 might function to support  
the generation of innate-like T-bethigh CD4 memory pheno-
type cells. Interestingly cDC1s aren’t the only DC subset that is 
able to initiate a Th1 response. There is some evidence to sug-
gest that moDCs are also capable of driving Th1 responses  
during T. gondii and Salmonella infections as well as in immu-
nizations with CpG or CFA-based adjuvants79–82, possibly in  
coordination with cDC1s. Furthermore, during inflammation, 
cDC2s may acquire a hybrid inflammatory cDC2 phenotype 
in a manner that is reminiscent of cDC1s and moDCs, and type 
1 IFN drives the generation of inflammatory cDC2s, which are 
capable of priming naive CD4 T cells to become IFNγ-producing  

Th1 cells83. Another recent study has also demonstrated that  
TNFR2+ cDC2 cells are able to drive Th1 responses follow-
ing an intranasal immunization with cyclic dinucleotide as an 
adjuvant84, suggesting that both the cDC subsets and the adju-
vant/PAMPs involved are important in determining the T cell 
differentiation outcome. Lastly, as one might expect, TLR3 
and TLR9 agonists enhance DC IL-12p40 production and thus  
Th1 cell differentiation.

In contrast to the role of cDC1s in generating and recruiting 
Th1 cells, cDC2s, including IRF4+ cDC2s (some of which also 
express the transcription factor Klf4) in the skin, lungs, and intes-
tinal lamina propria, are necessary for triggering Th2 responses 
in models of helminth infection or allergic diseases76,85–88.  
The exposure of cDC2s to helminth products, like Schisto-
soma mansoni egg antigen (SEA)-derived protein Omega1, 
can endow cDC2s with the capacity to induce Th2 cell differen-
tiation by inhibiting IL-12 production and limiting contact time 
with CD4 T cells, resulting in Th2-favorable antigen presentation  
conditions88–94. Interestingly, transcriptomic analyses of helminth 

Figure 1. Contributions of dendritic cell subsets in the initiation of classical and alternative differentiation pathways for the 
generation of Th1 and Th2 cells in vivo. Presented here is our updated view of the Th1/Th2 T effector decision in vivo. In response to an  
in situ immunological insult, local antigen-presenting dendritic cells acquire Ag and home to the nearest draining lymph node to present Ags. 
In the case of a pro-Th1 insult, such as a bacterial infection, bacterial Ag-laden dendritic cells can present bacterial Ags to naïve T cells and 
produce IL-12 in order to help generate bacterial Ag-specific Th1 cells (A). In parallel, some bacterial PAMPs can trigger Ag-laden dendritic 
cells to produce pro-Th17 cytokines, including IL-1β, IL-6, and TGFβ (B). Bacterial Ag-specific Th17 cells can subsequently respond to 
IL-12 and/or IL-23 in order to generate T-bet+ Th1-like Th17 cells (C) and ex-Th17-Th1-like cells (D) via unclear mechanisms. In contrast to 
a pro-Th1 insult, allergen exposure or a helminth infection is able to elicit a Th2 Ag-specific T cell response. In this scenario, helminth- or 
allergen-Ag-bearing dendritic cells home to the nearest draining lymph node, where they may select for Ag-specific naïve T cells to generate  
an Ag-specific Th2 cell response (E). In parallel, some helminth- or allergen-Ag-laden dendritic cells may instead help to generate Th17 cells, 
which may subsequently give rise to GATA3+ Th2-like Th17 cells (F) and ex-Th17-Th2-like cells (G). Ag, antigen; cDC, conventional dendritic 
cell; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; IL, interleukin; PAMP, pathogen-associated molecular 
pattern; TGFβ, transforming growth factor beta; Th1, type 1 T helper; Th2, type 2 T helper; Th17, interleukin-17-producing T helper; TNF, 
tumor necrosis factor.
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or allergen-conditioned DCs have identified TSLP as a key 
upstream pathway involved in the upregulation of pro-Th2 OX40L 
expression. CD301b+ dermal DCs can also support Th2 cell  
differentiation, as an immunization with OVA mixed with papain 
or alum is sufficient to drive Th2 cell polarization95. Interest-
ingly, allergen-activated TRPV1 neurons may trigger the migra-
tion of CD301b+ DCs to the draining lymph node via substance 
P to induce Th2 cell differentiation96. Thus, a combination of 
select DC subsets, pro-Th1 or pro-Th2 adjuvants, PAMPs, and the  
site(s) of antigen acquisition seem to ultimately determine 
the resulting Th1 or Th2 response in vivo rather than a T cell  
“choice” within the draining lymph node.

The involvement of local ILC populations on 
determining T cell differentiation
ILCs are innate lymphocytes that lack specific antigen receptors 
but are able to respond to alarmin cytokines in order to closely 
mirror T cell subsets in terms of their subsets and cytokine  
repertoires. As a result, ILCs have drawn interest in how they 
might regulate the initiation or quality of a Th1/Th2 response  
in situ. As ILCs have been expertly reviewed elsewhere97–99, we 
will briefly re-introduce them here. ILCs can be divided up into 
five major subsets: NK cells, which mirror CD8 T cells, express 
T-bet and Eomes, and produce IFNγ, Perforin, and Granzyme B; 
group 1 ILCs (ILC1s), which closely mirror Th1 cells, express 
T-bet, and produce IFNγ and TNF; group 2 ILCs (ILC2s),  
which closely mirror Th2 cells, express high levels of GATA3, 
and produce IL-5, IL-13, and IL-9; group 3 ILCs (ILC3s), 
which closely mirror Th17 cells, express RORγt (with some of 
them also expressing T-bet), and produce IL-22 and GM-CSF  
(also IFNγ for T-bet+ ILC3s); and lymphoid tissue inducer (LTi) 
cells, which express RORγt, produce RANK, lymphotoxins, 
TNF, and IL-17A, and are required for the formation of lymphoid  
tissues during development. Thus, as one might expect, ILC 
subsets are active participants during immune responses 
and have garnered interest in how they might influence the  
development of Th1 or Th2 immune responses.

The effects of ILC-derived cytokines on Th responses
So how might ILCs influence the generation of a T cell response? 
One obvious way would be via the secretion of pro-Th1 or  
pro-Th2 cytokines in response to tissue alarmins (Figure 2). 
As one might expect, type 2 immunity-inducing agents (e.g. 
helminth products, papain, Der p1, etc.) can disrupt the integ-
rity of the epithelium, resulting in the release of alarmins,  
including IL-33, IL-25, and TSLP. ILC2s can respond to  
IL-33 via T1/ST2 (IL-33R) and IL-25 via IL-17RB to locally 
produce the type 2 cytokines IL-4, IL-5, and IL-13, thereby  
setting up a pro-Th2 milieu in situ and helping to initiate and 
maintain a Th2 response17,100. With respect to IL-4, while ILC2s  
are relatively poor IL-4 producers compared to Th2 cells, there 
is some evidence to suggest that ILC2-derived IL-4 may support 
Th2 cell differentiation. During H. polygyrus infection, it 
seems that ILC2-derived IL-4 plays an important role in induc-
ing a Th2 response101. In addition, it has been shown that other 
inflammatory mediators, such as the leukotriene LTD4, may  
induce IL-4 production by ILC2s101–103. Furthermore, IL-13  
produced by ILC2s may promote the migration of lung DCs into 
the draining lymph node to initiate Th2 responses104. Similarly,  

in situ production of IL-4 and IL-13 by ILC2s or Th2 cells 
may further induce the expression of IL-25 to amplify type 2 
immune responses through recruiting more activated ILC2s105. 
Lastly, early production of IL-5 by in situ ILC2s can potentially  
support a Th2 response via the recruitment of IL-4-producing  
eosinophils106–110. Therefore, the crosstalk between ILC2s and 
Th2 cells may play an important role in mounting a robust type 
2 response, and such crosstalk may also serve as a target for  
treating chronic type 2 inflammation.

In response to an acute pro-Th1 infectious insult, such as 
T. gondii or MCMV infection, ILC1s are stimulated by  
cDC-sourced IL-12 in order to produce IFNγ and can help mount 
a Th1 response. However, one open-ended question consider-
ing this paradigm concerns how ILCs and DCs might interact 
or crosstalk in order to influence the generation of a Th1 or Th2  
response. As noted in the preceding section, while cDC1s are 
great at generating a Th1 response, given the right adjuvants 
TNFR2+ cDC2s can also elicit Th1 cells. Depending on the 
adjuvants and infection route/immunization route involved, the 
involvement of ILC1s versus ILC2s might differ, as the tissue  
distributions of both are quite different. Another open-ended 
question that has not been addressed in the literature concerns  
how opposed ILCs might respond during a Th1 or Th2 response. 
For example, the lung is host to a large population of ILC2s  
and a smaller population of ILC3s and ILC1s, and, as one 
might expect, ILC2s actively participate in Th2-mediated lung 
pathologies including allergy. However, what might happen to  
those ILC2s in the context of a strong Th1 infectious insult 
such as a viral infection or bacterial pneumonia? Is it possi-
ble that the activation status of ILC2s in the lung may deter-
mine the severity of SARS-CoV2-infected patients? Thus, while 
ILCs are active participants in setting up a local pro-Th1 or  
pro-Th2 environment, there is still much to learn.

The effects of ILC-mediated antigen presentation on Th 
responses
Another possible mechanism through which ILCs might affect 
the Th1/Th2 response is through potential antigen presenta-
tion. Unlike MHC-I, which is expressed by almost every cell, 
the expression of MHC-II is restricted to antigen-presenting  
cells, and, remarkably enough, some ILC2s and ILC3s are also 
endowed with the machinery to process and present peptides on 
MHC-II molecules and are thus potentially able to interact with 
T cells via TCR–peptide–MHCII complexes99,111,112. Interest-
ingly, ILC2s can stimulate T cells via peptide-loaded MHC-II,  
and one report demonstrated that the secretion of IL-2 by 
ILC2s in T cell/ILC2 co-cultures resulted in an expansion of  
ILC2s112. Thus, ILC2s might also be able to influence in situ 
Th2 responses via antigen presentation. At present, it isn’t clear 
how important this mechanism is in comparison to antigen  
presentation via professional antigen-presenting DCs.

Alternative differentiation pathways to Th1 & Th2 
cells via Th17 intermediates
In addition to Th1 and Th2 cells, a third type of CD4 effec-
tor T cell termed Th17 cells are interesting in the context of the 
Th1/Th2 fate decision owing to their less-committed, plastic 
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properties. Briefly, Th17 cells are a bona fide IL-17A/IL-17F/ 
IL-22-secreting CD4 T effector cell subset that plays a key role 
in the defense against opportunistic fungal or bacterial pathogens 
but may also participate in autoimmune and allergic diseases38.  
Following the discovery of IL-17A-producing CD4 T cells in 
2005113,114, the mechanisms of Th17 polarization were quickly 
described115–118. Conceptually, extracellular bacterial or fungal  
PAMPs result in antigen-presenting cell-mediated antigen  
presentation and the production of the pro-inflammatory cytokines 

IL-1β, IL-6, and IL-23, which drive the generation of Th17 
cells in a RORγt (TCR/NFAT/NFkB/AP-1) and pSTAT3 (IL-6  
and IL-23) dependent manner38,119. In addition, the master Th17 
lineage transcription factor RORγt can collaborate with other 
transcription factors, including IRF4, BATF, and Runx1/Runx3, 
to optimally induce the expression of Th17 lineage genes2,62,120.  
However, following these seminal discoveries, it became readily 
apparent that Th17 cell-mediated responses can exert both pro-
tective and pathogenic effects during immunological challenges,  

Figure 2. An updated view of the players in situ that help to shape a Th1/Th2 response. Presented here is our updated view of the 
Th1/Th2 T effector decision in situ/in vivo. In response to an immunological insult in a complex tissue, such as the lung, local innate immune 
cells respond appropriately to guide the downstream selection of Th1 or Th2 cells. In response to a pro-Th1 bacterial infection (A–C), in situ 
NK cells and ILC1s respond to alarmins to produce IFNγ and local dendritic cells acquire bacterial Ags (A). Ag-laden dendritic cells may 
then travel to the nearest dLN to present bacterial Ags and generate bacterial Ag-specific Th1 cell or a mixed Th17 and Th1 cell response. 
Bacterial Ag-specific Th1, Th17, T-bet+ Th1-like Th17, and ex-Th17-Th1-like cells can then home back to the site of infection or Th17 cells 
can generate T-bet+ Th1-like Th17/ex-Th17-Th1-like cells in situ (B) in order to coordinate with local NK cells, ILC1 cells, and macrophages to 
control the bacterial infection (C). The potential antagonistic effects between Th1 cells and lung-resident ILC2s in this context are unclear. In 
contrast to a pro-Th1 insult, allergen exposure or a helminth infection is able to elicit a Th2 Ag-specific cell response (D–F). In this scenario, 
a helminth infection is sufficient to drive the production of alarmins (IL-33/IL-25) from the lung epithelium and activate local tissue ILC2s 
(D). In situ ILC2s can produce IL-4/IL-13 in response and promote helminth Ag-bearing dendritic cells homing to the nearest dLN. Helminth 
Ag-specific naïve T cells are selected by the Ag-laden dendritic cell and helminth Ag-specific Th2 or a mixture of Th17 and Th2 cells are 
generated (E). Helminth Ag-specific Th2, Th17, Th2-like Th17 cells, and ex-Th17-Th2-like cells may then home back to the infected tissue in 
order to work in conjunction with locally recruited and activated eosinophils, B cells, and ILC2s in order to expel or kill the invading helminth 
(F). Ag, antigen; dLN, draining lymph node; GM-CSF, granulocyte-macrophage colony-stimulating factor; IFN, interferon; IL, interleukin; ILC, 
innate lymphoid cell; NK, natural killer; Th2, type 2 T helper; Th17, interleukin-17-producing T helper; TNF, tumor necrosis factor.
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suggesting that Th17 cells can be divided into “pathogenic” and 
“non-pathogenic” subsets. Functionally distinct homeostatic 
and inflammatory Th17 cells can be found in the intestine121.  
Several putative regulators of Th17 “pathogenicity” have been 
described, including IL-23, CD5L, REV-ERBα, and vari-
ous environmental factors such as commensal organisms and  
tissue salinity; however, the precise mechanisms governing the  
protective/pathogenic switch are still unclear and may involve 
supplemental non-lineage-related transcription factors122–128. To 
further complicate things, it has become readily apparent that  
Th17 cells can co-opt T-bet or GATA3 expression to assume 
aspects of the Th1 or Th2 lineage (termed Th17/Th1 or Th17/
Th2 cells) or to fully assume a functional Th1 or Th2 phenotype  
(ex-Th17-Th1-like cell or ex-Th17-Th2-like cell).

When the distinctions between Th17 and Th1 cells blur: 
Th17/Th1 and ex-Th17-Th1-like cells
To date, there are several lines of evidence to support the  
concept that Th17 cells may co-opt aspects of the Th1 lineage 
or even assume an ex-Th17-Th1-like cell fate in various in vivo 
contexts. In a study utilizing IL-17A+ Th17 cell fate mapping 
reporter mice (Il17aCreRosa26eYFP mice) and mouse models of  
Th17- and Th1-related inflammation (EAE and subcutane-
ous immunization with Candida albicans), a population of fate 
mapped ex-Th17 cells (IL-17A–eYFP+ cells) was identified129. 
Interestingly, subpopulations of T-bet+RORγt+IL-17A+ cells 
and IFNγ+IL-17A– arose amongst the IL-17A fate mapped 
cells, suggesting that a Th17 cell may generate a mixture of  
IFNγ+IL-17A+ Th17 cells and IFNγ+IL-17A– ex-Th17-Th1-like 
cell subpopulations. Furthermore, the generation of IL-17A  
fate mapped eYFP+ cells depends on IL-23-induced expression 
of T-bet, as an Il17aCreRosa26eYFPIl23r–/– variant failed to gener-
ate IFNγ+IL-17A+eYFP+ or IFNγ+IL-17A–eYFP+ fate mapped 
cells. Runx1 together with T-bet plays an important role in the 
generation of IFNγ-producing Th17 cells130. A similar pheno-
typic change from Th17 to Th1 cells has also been observed in 
a model of Helicobacter hepaticus-induced colitis, an in vitro  
polarized Th17 T cell transfer Rag2–/– colitis model, and an  
IL-22 Th17 fate mapping model in the gut, suggesting that 
Th17 cells are intrinsically plastic and can generate a popula-
tion of T-bet+RORγt+ Th1-like Th17 cells and a population of 
ex-Th17 cells that assumed a Th1 phenotype (ex-Th17-Th1-like  
cells)131–133. In addition, IL-23 was shown by Jain and colleagues 
to induce Blimp-1 expression within Th17 cells, and Blimp-1 
was shown to be necessary for the induction of T-bet-, GM-CSF-,  
and IFNγ-expressing Th17 cells within the gut, suggesting  
that IL-23 along with other transcription factors may synergize 
to induce a Th1-like phenotype within Th17 cells134. However, 
from a Th1/Th2-centric viewpoint, the later ex-Th17-Th1-like 
cell population poses an interesting philosophical dilemma: if  
Th17 cells can generate a subpopulation of cells that are essen-
tially Th1 cells and naïve T cells can directly differentiate into 
Th1 cells as well, what, if anything, would distinguish the  
two in vivo? In addition, are there any meaningful differences 
between former Th17-derived Th1 cells and de novo Th1 cells?  
Do they have distinct functionalities in host defense versus  
in inflammation? While these open questions remain to be 

addressed in the literature, Th1-like subpopulations of Th17 cells  
have been observed in various human patient populations, 
including multiple sclerosis, rheumatoid arthritis, psoriasis,  
inflammatory bowel disease, and M. tuberculosis patients and  
others, so Th1-like Th17 cells and ex-Th17-Th1-like cells may  
have some clinical relevance.

Th17 plasticity towards the other fate: Th17/Th2 and  
ex-Th17-Th2-like cells
Similarly, there is some limited evidence to suggest that Th17 
cells may also assume Th2-like properties in the context of  
allergic disease. In a study profiling human PBMC CD4 memory 
cells from atopic asthma patients, Wang and colleagues observed 
a population of CD4+CRTH2+CCR6+ T cells that were ele-
vated in allergic asthmatic patients versus healthy controls and  
co-expressed IL-4, IL-17A, IL-22, IL-5, IL-13, RORγt, and 
GATA3, suggesting that a population of Th2-like Th17 cells are 
generated during the development of atopic asthma and may 
be associated with the pathology. Interestingly, a similar popu-
lation of IL-4GFP+IL-17A+ Th17 cells were isolated from the 
bronchoalveolar lavage (BAL) fluid and lungs of Aspergillus  
Orazae + OVA challenged IL-4-GFP knock-in (4Get) mice,  
suggesting that both mouse and human Th17 cells may assume  
a partial Th2 phenotype in the context of allergy135. Similar 
results were observed by Irvin and colleagues in a study exam-
ining BAL T cell phenotypes from a different cohort of atopic 
asthmatic patients. In that study, IL-4+IL-17A+GATA3+RORγt+ T  
cells were observed and IL-4+IL-17A+ T cells correlated with 
eosinophil counts and occurred in the most severe subgroup of  
asthmatic patients136. Together, these observations of Th2-like 
Th17 cells suggest that Th17 cells may also assume characteris-
tics of Th2 cells and suggest that the formation of ex-Th17-Th2-
like cells (the Th2 equivalent of ex-Th17-Th1-like cells) may 
be theoretically feasible in the context of allergy or helminth 
infections. Indeed, a recent study showed that ~10% of the  
IL-17A–IL-4/5/13+ cells in the lung are IL-17A fate mapping 
positive137. Taken together, the available data indicate that close 
encounters between bona fide Th1/Th2 cells and Th17 plastic 
approximations of Th1/Th2 cells, which develop through the 
Th17 intermediate stage, may occur in vivo. While it is likely 
that the pro-inflammatory cytokines such as IL-1β and IL-6, both 
of which can be induced even during Th1 and Th2 responses, 
may determine these alternative differentiation pathways to Th1 
and Th2 cells, the precise regulation and contributions of these 
unconventional Th1/Th2 subsets relative to classical Th1/Th2  
cells during immune responses remain an open question (Figure 1).

Conclusion
In summary, despite the tremendous amount of work that has 
been accomplished since Mossman and Coffman’s seminal  
Th1/Th2 hypothesis in 1986, there is clearly more to dis-
cover about how Th1/Th2 effector fate decisions are made in 
vivo. While the present work was in no way designed to be all  
encompassing, we have highlighted some recent advances in 
the field that have contributed to our understanding of how 
Th1/Th2 immune responses are initiated and amplified in vivo.  
Ultimately, the decision to launch or modify the quality of a  
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Th1 or Th2 immune response can be distilled down to several  
variables: 1) the site(s) of antigen encounter and which DC 
subset(s) acquire and present the antigen(s), 2) which ILC sub-
sets are activated in situ to support the de novo adaptive immune  
response, 3) which differentiating cytokines are produced by 
the antigen-presenting DCs within the draining lymph node,  
4) whether or not there is Th17 cell involvement to contribute 
towards the overall Th1/Th2 cell response, and 5) the expres-
sion of Th1/Th2 response-modifying transcription factors, such  

as Bhlhe40 and Bcl11b, etc. New technologies including  
single cell RNA-Seq138 and single cell ATAC-Seq analysis of  
antigen-specific CD4 T cells as well as advanced imaging 
to visualize cell–cell interactions in vivo at different stages  
during immune responses will greatly help further our under-
standing of the differentiation process of Th1 and Th2 cells  
and ultimately contribute to the design of better and precise 
strategies in treating immunological diseases involving these  
two important lymphocyte subsets.
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