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Abstract

Purpose: The RET proto-oncogene encodes a receptor tyrosine kinase which is activated by 

gene fusion in 1-2% of non-small cell lung cancers (NSCLC) and rarely in other cancer types. 

Selpercatinib is a highly selective RET kinase inhibitor that has recently been approved by the 

FDA in lung and thyroid cancers with activating RET gene fusions and mutations. Molecular 

mechanisms of acquired resistance to selpercatinib are poorly understood.

Patients and Methods: We studied patients treated on the first-in-human clinical trial of 

selpercatinib (NCT03157129) who were found to have MET amplification associated with 

resistance to selpercatinib. We validated MET activation as a targetable mediator of resistance to 

RET-directed therapy, and combined selpercatinib with the MET/ALK/ROS1 inhibitor crizotinib 

in a series of single patient protocols (SPPs).

Results: MET amplification was identified in post-treatment biopsies in four patients with RET 
fusion-positive NSCLC treated with selpercatinib. In at least one case, MET amplification was 

clearly evident prior to therapy with selpercatinib. We demonstrate that increased MET expression 

in RET fusion-positive tumor cells causes resistance to selpercatinib, and this can be overcome by 

combining selpercatinib with crizotinib. Using SPPs, selpercatinib with crizotinib were given 

together generating anecdotal evidence of clinical activity and tolerability, with one response 

lasting 10 months.

Conclusions: Through the use of SPPs we were able to offer combination therapy targeting 

MET-amplified resistance identified on the first-in-human study of selpercatinib. These data 

provide suggest that MET dependence is a recurring and potentially targetable mechanism of 

resistance to selective RET inhibition in advanced NSCLC.
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INTRODUCTION

Combination targeted therapy represents a compelling strategy for overcoming drug 

resistance in metastatic cancer. However, the clinical development of combination 

approaches has been challenging due to toxicity from combining two agents and the need for 

appropriate patient selection. While several combination therapies are approved (e.g. MEK 

inhibition with BRAF inhibition in BRAF-mutant melanoma; CDK4/6 inhibition with 

endocrine therapy in ER+ breast cancer)1-4, no drug combination has yet met the standard of 

regulatory approval for effective treatment of resistance to targeted kinase inhibitors (TKIs) 

in genotype-selected patients. Since resistance to targeted TKIs is universal, effective 

strategies to overcome acquired resistance are key to prolonging clinical benefit. To that end, 

combination approaches remain a compelling investigational strategy in oncogene-

dependent non-small cell lung cancer (NSCLC) with several clinical trials ongoing5-8.

The RET proto-oncogene encodes a receptor tyrosine kinase which is activated by gene 

fusion in 1-2% of NSCLC and rarely in many other tumor types. RET gene fusions are bona 

fide cancer drivers and they display the key characteristics of oncogene addiction 

preclinically9. Selpercatinib is a highly selective and potent anti-RET tyrosine kinase 

inhibitors (TKI) which has recently reported durable responses in lung and thyroid cancers, 

and these responses were maintained regardless of the specific RET alteration or prior TKI 

use, and also in the setting of the RET V804 “gatekeeper” mutation10. Selpercatinib was 

recently approved by the FDA for use in these cancers. Mechanisms of acquired resistance 

to treatment with selective RET inhibitors are not well understood. While a secondary 

mutation in the RET kinase domain has recently been reported11, activation of bypass tracts, 

such as MET amplification, also represent a recurring mechanism of resistance to driver 

genotypes in NSCLC12,13. Here we piloted combination therapy to target MET amplification 

detected in four RET-positive NSCLC patients (of a total 79 patients with NSCLC enrolled 

at all three sites) with resistance to selpercatinib. This was made possible through the use of 

multiple SPPs which allowed for the quick delivery of potentially effective combination 

therapy to patients with clear unmet clinical need.

METHODS

Analysis of resistance to selpercatinib

Patients were included in this analysis if they had received selpercatinib (LOXO-292) for 

RET-positive NSCLC on the first-in-human study of selpercatinib (NCT03157128) and 

exhibited evidence of MET amplification following drug resistance. All patients provided 

written informed consent wherever necessary. Genomic analysis of tumor and plasma 

cfDNA was performed independently at each participating site. All specimens were studied 

at each participating institution with IRB approval and were analyzed in accordance with the 

Declaration of Helsinki.

Preclinical RET-dependent models

HBEC-RET cell lines expressing a CCDC6-RET fusion were engineered to overexpress 

MET and a patient derived organoid was also established. These models were subsequently 
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studied to investigate the role of MET in selpercatinib resistance (see Supplemental 

Methods).

Single patient protocols of selpercatinib and crizotinib

Each single-patient protocol was sponsored by LOXO and drafted in collaboration between 

LOXO and the site primary investigator. Each protocol enrolled a single patient after review 

by the FDA and approval by the site IRB. Dosing was individualized per patient and dose 

escalation was permitted as tolerated up to the established tolerable dose for each drug. 

Patients initiated combination therapy directly after demonstrating resistance to prior 

targeted therapy (Table 1, Supplemental Figure 1).

RESULTS

MET-dependent resistance to selpercatinib in patients with advanced NSCLC

Case 1: The first patient was a 36-year-old female former smoker with stage IV NSCLC 

metastatic to bone, heavily pretreated. Molecular testing identified a RET rearrangement by 

break-apart fluorescence in situ hybridization (FISH; 83% of cells) as well as MET copy 

number gain (CNG) by FISH (6 copies). She initiated treatment with alectinib, an ALK TKI 

with some degree of anti-RET activity preclinically14, and progressed in less than 2 months. 

Next-generation sequencing (NGS) analysis of plasma circulating cell-free tumor DNA 

(cfDNA) then identified an EML4-RET fusion (AF 14%)15. She started treatment with 

selpercatinib and experienced a clinical response (decreased tumor-related pain and 

anorexia) with radiographic tumor reduction on imaging (−21% decrease in tumor burden 

after 16 weeks, Figure 1A, Table 1). She progressed after 4.5 months with growth of liver 

metastases and a new skin nodule on the neck. Biopsy of the skin nodule revealed metastatic 

adenocarcinoma and molecular analysis by next-generation sequencing (NGS) re-identified 

the EML4-RET fusion as well as increased MET copy number (56 copies, Figure 1B). 

Given ongoing clinical benefit, she continued on selpercatinib post-progression for a total 

treatment time of 6.5 months.

Case 2: The second patient was a 48-year-old male former light smoker with stage IV PD-

L1-positive NSCLC that harbored a KIF5B-RET fusion identified on tumor NGS. After 

progression on first-line pembrolizumab, he initiated selpercatinib and achieved a partial 

response after 3 months of therapy (best response of 49% decrease in target lesions, Table 

1). He eventually developed disease progression after 11 months on selpercatinib. NGS 

analysis of paired pre-treatment and post-progression tumor samples identified acquired 

MET amplification (9 copies) completely absent from the pre-treatment sample.

Case 3: The third patient was a 69 year-old Asian male nonsmoker diagnosed with stage 

IV NSCLC, and after developing a solitary brain metastasis he underwent craniotomy. 

Tumor NGS (Foundation One) identified a KIF5B-RET fusion and MET amplification (18 

copies) in brain. He initiated treatment with selpercatinib which resulted in shrinkage of 

pulmonary nodules and improvement in clinical symptoms, but he also developed a new left 

adrenal nodule, indicating disease progression. RNA sequencing was performed on the 

previously resected brain metastasis (Illumina TST-170) which confirmed high-level MET 
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mRNA expression. He then initiated crizotinib monotherapy given his MET gene 

amplification and overexpression, and he again demonstrated a mixed response, with 

decrease in size of the left adrenal nodule but growth of a right adrenal nodule and left hilar 

adenopathy; he remained on crizotinib for 3 months.

Case 4: The fourth patient was a 61-year old woman, never smoker, with stage IV lung 

adenocarcinoma metastatic to brain, PD-L1 positive. After progression on first-line 

pembrolizumab, tumor NGS identified a KIF5B-RET fusion and selpercatinib was initiated. 

The patient had a best response of stable disease (1% increase in the sum of tumor diameters 

at six weeks) but subsequently progressed after 6 months and discontinued treatment. NGS 

analysis of post-treatment tumor showed MET amplification (fold change 2.1), while the 

pre-treatment biopsy showed low-level MET CNG without frank amplification (Figure 1C-

D). By FISH, the post-treatment biopsy showed MET amplification (66% of cells) while the 

pretreatment biopsy noted MET polysomy (3-6 copies) in 78% of cells. The presence of 

MET overexpression was subsequently confirmed by immunohistochemistry at both 

timepoints (Figure 1E).

MET overexpression causes acquired resistance to selpercatinib preclinically and may be 
overcome by combining selpercatinib with the MET inhibitor crizotinib.

To determine the potential effect of MET overexpression on sensitivity of RET fusion-

positive tumor cells to selpercatinib, we overexpressed MET in RET fusion-positive human 

bronchioepithelial cells (HBEC-RET). HBEC-RET cells were designed to express a 

CCDC6-RET fusion cDNA and are sensitive to RET inhibitors (Figure 2A, 2B). HBEC-

RET+MET cells were far less sensitive to selpercatinib (Figure 2C, 2D, IC50=10.92 μM) 

compared to the isogenic control cells (IC50=0.09 μM), with a more than a hundred-fold 

shift in the IC50 values for growth inhibition in the presence of MET overexpression, 

suggesting that overexpression of MET drives resistance to selective RET inhibition.

Additionally, we derived an organoid culture from tumor cells isolated from pleural fluid of 

the patient described in Case 2. Analysis of the organoid by MET FISH confirmed high level 

MET amplification, and IHC confirmed high-level MET protein expression, consistent with 

the post-selpercatanib NGS analyses (Figure 2E). In vitro treatment with selpercatinib or 

crizotinib monotherapy was ineffective, but combined treatment with selpercatinib and 

crizotinib showed a cytotoxic effect (Figure 2F, 2G). As expected, only combined treatment 

resulted in decreased phospho-RET and phospho-MET levels concomitantly (Figure 2H). 

Selpercatinib alone blocked RET activity whereas the activity of AKT and ERK were 

retained possibly demonstrating a mechanism of resistance in this patient. Interestingly, 

crizotinib alone inhibited MET and AKT signaling but not pERK (Figure 2H). Lastly, the 

combination treatment successfully led to inactivation of both ERK and AKT, suggesting a 

potential mechanism for the utility of this drug combination in this RET fusion / MET 

amplification patient. These data demonstrate that MET amplification causes resistance to 

selpercatinib in RET fusion-positive NSCLC patients, which can be overcome preclinically 

by combined treatment with selpercatinib and crizotinib.
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Combination treatment with selpercatinib and crizotinib overcomes MET dependent 
resistance in patients.

We were motivated by the high selectivity and clean safety profile of selpercatinib and by 

the known feasibility of adding crizotinib to other targeted TKIs in other biomarker-selected 

subsets of NSCLC patients. Therefore, we treated the above four patients with the 

combination of selpercatinib and crizotinib, each using an FDA-allowed, independent review 

board (IRB)-approved SPP.

Case 1 (patient with minor response to selpercatinib, MET CNG before treatment and high 

MET amplification after treatment) started treatment at one-half the recommended phase 2 

(RP2D) of selpercatinib (80 mg BID) and one-half the approved dose of crizotinib (250 mg 

QD). After tolerating these doses for 4 weeks, the patient was escalated sequentially until 

reaching RP2D/approved doses of 160 mg BID/250 mg BID of selpercatinib and crizotinib, 

respectively. Treatment was tolerated with only mild nausea. Real-time pharmacokinetic 

(PK) analysis indicated selpercatinib exposure remained consistent with the patient’s 

exposure during selpercatinib monotherapy, while crizotinib exposure remained consistent 

with published exposures when used as monotherapy (Supplemental Figure 2A). She 

experienced clinical improvement in bone pain after 1 month of combination therapy; 

however, scans after 2.5 months revealed a mixed response with improvement in liver 

metastases but progressive pulmonary disease. Due to ongoing improvement in bone pain 

she continued on study therapy for a total of 3.5 months before dying of her cancer.

Case 2 (patient with partial response to selpercatinib lasting 11 months and acquired MET 
amplification) initiated treatment with the combination of selpercatinib and crizotinib, and 

pharmacokinetic analyses revealed the expected levels of each drug when used as 

monotherapy (Supplemental Figure 2B). The patient experienced a clinical and radiographic 

tumor response to combination treatment, with resolution of shortness of breath and 

maximal tumor diameter reduction of −38%. He responded for 10 months before 

discontinuing treatment for progression in the lungs and increase in ascites (Figure 3A). He 

tolerated treatment well, with AEs of lower extremity edema, possibly related to crizotinib, 

and reflux. NGS of a resistance biopsy showed persistence of the RET fusion but loss of the 

MET gene amplification (Figure 3B). Notably, the only other alteration detected was the 

ATM splice variant (c.8988-1G>C (splice)).

Case 3 (patient with mixed response on selpercatinib followed by mixed response on 

crizotinib, with pretreatment MET amplification) continued treatment with crizotinib while 

restarting treatment with selpercatinib at 80 mg BID which was subsequently dose escalated. 

He experienced a partial response by RECIST 1.1 (maximum tumor reduction −42% below 

baseline) after 1.5 months of combination therapy; he died unexpectedly of an unrelated 

cardiac event after 4 months. Combination treatment was otherwise well tolerated without 

AEs.

Case 4 (patient with best response of stable disease on selpercatinib, with pretreatment MET 
CNG and post-treatment MET amplification) initiated treatment at the full doses of 

selpercatinib at 160mg BID and crizotinib at 250mg BID. A brisk partial response (−40%) 

was achieved at 4 weeks (Figure 3C) with disease regression in a left lung mass and a left 
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chest wall mass. Although the patient tolerated combination treatment well without drug-

related AEs, she developed colitis (determined by the investigator to be unrelated to 

treatment) that ultimately required treatment interruption and surgery, and she elected to 

transition to hospice care.

DISCUSSION

We describe MET amplification as a targetable mechanism of resistance to selpercatinib in 

RET-rearranged NSCLC. As greater number of patients develop resistance to selpercatinib, 

it will be important to systematically quantify the prevalence of MET amplification and 

other potentially targetable resistance mechanisms, such as the secondary RET mutation that 

was recently described11. We do note that there are 79 NSCLC patients enrolled at our three 

centers, which does offer the reader a rough estimate of the rarity of this type of resistance. 

While the level of MET gene amplification clearly increased during selpercatinib 

monotherapy, in 3 of 4 cases, some degree of MET gain was already present prior to 

exposure to selpercatinib. This is reminiscent of EGFR-mutant NSCLC, in which rare clones 

with high level MET amplification may be detected at baseline, prior to EGFR inhibitor 

therapy16,17. It is notable that a recent early phase EGFR mutant / MET amplified NSCLC 

trial showed an ORR of 44% to osimertinib (EFGR-TKI) and savolitinib (MET-TKI)8.

While the median progression free survival has been reported at 18 months for selpercatinib 

in RET-positive NSCLC18, our patients in contrast had an unusually short benefit from 

selpercatinib. The cause of this modest PFS benefit is unknown, but this may be due to some 

degree of MET amplification present at baseline in these patients or may be related to the 

aggressive nature of the MET oncogene19. Additionally, these brief responses may be due to 

the presence of additional driver mutations, either through heterogeneity of resistance to 

selpercatinib at distinct metastatic sites, or by means of additional subclonal drivers not 

detected on NGS.

To better understand the clinical effect of this combination, prospective efforts will be 

needed to study combination therapy with selpercatinib plus MET inhibition. Additionally, 

treatment tolerability is difficulty to assess in individual SPPs – while these patients did not 

complain of intolerable toxicity while under treatment, one patient died of an apparently 

unrelated cardiac event, and a second patient experienced severe colitis. Both of these 

adverse events were thought to be unrelated to this drug combination, but the potential 

toxicities of such drug combinations will need to be studied in future prospective cohorts of 

patients with appropriate performance status and comorbidities. Lastly, we are hopeful that 

the use of newer, more specific MET inhibitors including capmatinib7,20 (which is FDA 

approved) and tepotinib21 in combination with selpercatinib may result in increased efficacy 

and better tolerability of this drug combination.

In these SPPs, the expeditious delivery of a potentially effective combination therapy to 

patients with high unmet clinical need was enabled by the availability of an approved second 

agent, the willingness of the sponsor to permit early use of combination therapy with an 

investigational therapy still being studied in a first-in-human-trial, and the rapid review and 

allowance of each SPP by the FDA and by local IRBs. Our experience provides further 
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evidence for the importance of robust, multi-cancer gene panel-based molecular analysis in 

patients with resistance to targeted therapies to enable the identification of potentially 

targetable acquired resistance mechanisms in a time frame that can help each patient. These 

cases provide evidence for the feasibility of this approach, and this may enable other 

potentially effective combination therapies with a clear biologic rationale to be offered 

immediately to individual patients without alternative treatment options, while also 

providing clinical proof-of-concept that may be validated in subsequent, prospective clinical 

trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Relevance

Molecular mechanisms of acquired resistance to selpercatinib, a highly selective and 

potent RET kinase inhibitor, are poorly understood. We identified MET amplification as a 

recurrent mechanism of resistance to targeted therapy in NSCLC patients treated with 

selpercatinib. We show that MET amplification is sufficient to cause selpercatinib 

resistance in vitro, and that the addition of the MET/ALK/ROS1 inhibitor crizotinib can 

rescue this phenotype. We then utilize a series of single patient protocols to treat these 

patients with combination therapy, and this combination treatment showed clinical 

activity, with one response lasting 10 months. These data suggest that MET dependence 

is a recurring and potentially targetable mechanism of resistance to selective RET 

inhibition in advanced NSCLC. Prospective clinical trials are needed to validate these 

findings and to identify effective combination therapies to treat acquired resistance to 

selpercatinib.
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Figure 1. MET amplification identified in RET fusion-positive lung cancers treated with a 
selective RET inhibitor.
A. Patient 1 had a symptomatic response to selpercatinib with radiographic tumor reduction 

on imaging (−21% decrease in tumor burden) after 16 weeks, but eventually developed 

resistance to drug. B. Tumor NGS at time of resistance showed, in addition to the original 

EML4-RET fusion, high amplification of MET (56 copies). C, D. In patient 4, NGS showed 

MET amplification in the post-treatment sample (T2), with lower level gain below threshold 

for amplification in the pre-treatment biopsy (T1)). E. The presence of MET overexpression 
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(right) was confirmed with MET IHC both pre-treatment (top) and at time of resistance 

(bottom).
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Figure 2. MET amplification drives resistance to selpercatinib and responds to MET inhibition in 
RET fusion-positive models.
A, B. RET fusion confirmed by RT-PCR using primers targeting CCDC6 (exon 1, forward) 

and RET (exon 12, reverse), and MET expression was confirmed by qPCR. C. Cells were 

treated with the indicated concentrations of selpercatinib for 96 hours and then the relative 

number of cells determined using proliferation dye. D. Viability data was analyzed and 

estimated IC50 values with the 95% confidence interval are shown. HBEC: bronchiolar 

epithelial cells. EV: empty vector. E. Patient-derived organoid from KIF5B-RET fusion-

positive NSCLC (Case 2) shows MET gain by both IHC and FISH. F, G. Cell viability of 
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dissociated cells from cultured organoids treated with either selpercatinib (0.3 μM) or 

crizotinib (1 μM) has little effect, but the combination is cytotoxic. H. Selpercatinib alone 

blocked RET activity whereas pAKT and pERK were retained, while combination treatment 

successfully led to inactivation of both AKT and ERK.
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Figure 3. Response to Selective Dual RET Inhibition and RET Inhibition.
A. In patient 2, combination treatment yielded a clinical and radiological response, until he 

eventually developed disease progression. B. NGS showing acquired amplification of MET 
at time of resistance to selpercatinib, then at time of resistance the loss of the MET 
amplification but with continued presence of RET fusion. C. Patient 4 pre-treatment (top) 

and on-treatment (bottom) imaging showing a partial response at 4 weeks to selpercatinib 

and crizotinib.
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