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Obstructive sleep apnea (OSA) is a common sleep-related respiratory disorder. Around the world, more and more people are
suffering from OSA. Because of the limitation of monitor equipment, many people with OSA remain undetected. +erefore, we
propose a sleep-monitoring model based on single-channel electrocardiogram using a convolutional neural network (CNN),
which can be used in portable OSA monitor devices. To learn different scale features, the first convolution layer comprises three
types of filters.+e long short-termmemory (LSTM) is used to learn the long-term dependencies such as the OSA transition rules.
+e softmax function is connected to the final fully connected layer to obtain the final decision. To detect a complete OSA event,
the raw ECG signals are segmented by a 10 s overlapping sliding window. +e proposed model is trained with the segmented raw
signals and is subsequently tested to evaluate its event detection performance. According to experiment analysis, the proposed
model exhibits Cohen’s kappa coefficient of 0.92, a sensitivity of 96.1%, a specificity of 96.2%, and an accuracy of 96.1% with
respect to the Apnea-ECG dataset. +e proposed model is significantly higher than the results from the baseline method. +e
results prove that our approach could be a useful tool for detecting OSA on the basis of a single-lead ECG.

1. Introduction

Obstructive sleep apnea (OSA) is a major sleep-disordered
breathing (SDB) syndrome that is an independent risk
factor of coronary heart disease, hypertension, and ar-
rhythmia [1]. According to the manual of the American
Academy of Sleep Medicine (AASM) [2], OSA in adults is
scored when there is a 90% or more reduction in the
baseline of the oral and nasal respiration amplitude for 10
s or more, occuring during sleep. +is condition is as-
sociated with repetitive airflow limitation and sleep
fragmentation, decreasing the sleep time and degrading
the sleep quality of the OSA patients [3]. OSA not only

causes excessive daytime neurocognitive deficits, drows-
iness, depression, fatigue, and heart stroke [4–6] but can
also cause a brain stroke, high blood pressure, arrhyth-
mias, myocardial infarction, and ischemia [7–9].
According to the AASM [2], polysomnography (PSG) is
considered to be the gold standard for OSA detection,
which is based on a comprehensive evaluation of the sleep
signals [10]. PSG involves overnight recording of the
patient and the measurement of many signals using the
sensors attached to the body, e.g., an electroencephalo-
gram (EEG), electromyogram (EMG), electrocardiogram
(ECG), and electrooculogram (EOG), to monitor the
respiratory effort and other biophysiological signals [1].
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After collecting the PSG data, physicians inspect them
using statistical tools to score the OSA events.

However, PSG has several disadvantages. First, patients
need to sleep in the hospital for at least one night, which
consumes a considerable amount of time and is expensive.
Furthermore, many patients cannot sleep well in hospitals.
Second, many electrodes have to be connected to the body of
a patient. +ese electrodes will interrupt their sleep, which
will result in the deviation of the measurement results.
+erefore, it is important to develop methods that can re-
liably diagnose OSA with a few signals and that can be used
at home. According to Mietus and Peng [11], the heart beat
interval of patients fluctuates periodically during the oc-
currence and recovery of OSA. Zarei and Asl [12] indicated
that significant changes in heart rate or abnormal activities
of the heart may indicate OSA. Additionally, according to
our clinical research, patients’ compliance is very low when
they wear the pressure transducer sensor to obtain the oral
and nasal respiration. Patients often pull out the nasal
cannula. +erefore, when compared with the ECG signal,
nasal airflow data can be unstable due to lead falling off.
Hence, in this study, we use ECG signals to detect OSA
events.

Traditional visual OSA scoring is a very tedious and
time-consuming process for a physician to conduct.
+erefore, many alternative OSA detection methods have
been developed [13]. +ese methods were based on bio-
signals such as the respiratory [14], snoring [15–17], SpO2
[8, 9, 18], and ECG [12, 19–24] signals, and many authors
have obtained a high performance level in terms of OSA
detection. However, almost all these methods involved
data preprocessing, feature extraction, feature selection,
and classification. Although feature extraction is essential
to ensure good performance, this process requires con-
siderable domain expertise and is particularly limited to
high-dimensional data [25].

Deep learning is an attractive alternative because it
can automatically learn and extract features from raw
data and can be merged with a classification procedure. In
particular, convolutional neural networks (CNNs), which
are a popular deep-learning model, have gained con-
siderable success owing to their excellent performance in
various domains, including visual imagery [26], speech
recognition [27], and text recognition [28]. CNNs have
also been applied to biosignal classification problems. For
example, in our previous study [29], a CNN can be used to
score the sleep stages. Banluesombatkul et al. [30] used
metalearning classify sleep stages. Piriyajitakonkij et al.
[31] proposed a SleepPoseNet to recognize sleep postures.
An event-related potential encoder network was applied
to ERP-related tasks [32]. Wilaiprasitporn et al. [33] used
a deep-learning approach to improve the performance of
affective EEG-based person identification. Recently, some
models based on CNNs have been employed to detect
OSA. Urtnasan et al. [25] proposed a method for the
automated detection of OSA from a single-lead ECG
using a CNN. Ho et al. [10] developed an approach for
OSA event detection using a CNN and a single-channel
nasal pressure signal. Banluesombatkul et al. [34] used a

CNN to extract ECG signal features and fully connected
neural networks for OSA events detection. McCloskey
et al. [35] used a CNN and wavelets to analyze the nasal
airflow and detect the OSA events. However, most of
these methods score OSA events by minute-by-minute
analysis. According to the AASM ruler [2], OSA events
occur in 10 s or more. +erefore, minute-by-minute
analysis will lose some OSA events. At the same time, the
duration of each OSA event is different. Multiple OSA
events can occur as briefly within only a single minute
(i.e., one epoch); at times, one OSA event can be pro-
longed over multiple epochs. +erefore, it is difficult to
detect complete OSA events for these methods.

According to Guilleminault et al. [36], there is a relation
between the OSA events and heart rate variability. +ey
indicated that the heart rate decelerates at the beginning of
an OSA event and that it suddenly increases when normal
breathing is resumed [36]. Because long short-termmemory
(LSTM) maintains internal memory and utilizes feedback
connections to learn temporal information from sequences
of inputs, in this study, we propose a new method for OSA
detection using the CNN and LSTM. +e LSTM [37] is used
to learn these dependencies, such as the transition rules
employed by physicians, to identify future OSA events from
previous ECG epochs. To detect complete OSA events, a
window overlapping method is required to accurately detect
the OSA events, which can identify the start and end po-
sitions of the event. +erefore, the proposed method can
alert for OSA events of long duration, which will reduce the
rate of sudden death caused by OSA events [38].

+is study is organized as follows: the datasets are
presented in Section 2, and the methods are presented in
Section 3. +e experimental results and discussion are
presented in Section 4, and Section 5 concludes this study.

2. Dataset and Preprocessing

+e Apnea-ECG dataset [39], downloaded from https://
www.physionet.org/content/apnea-ecg/1.0.0, was used to
evaluate the proposed approach. +e dataset comprises 70
PSG recordings, among which 35 are used in the training set
and 35 are used in the test set. +e training set was used to
update the parameters of the proposed model, and the test
set was used to perform independent performance assess-
ments. Each recording contains a continuous digitized ECG
signal, a set of apnea annotations (derived by human experts
on the basis of the simultaneously recorded respiration and
related signals), and a set of machine-generated QRS an-
notations. +e sampling rate for the ECG was 100Hz with a
12 bit resolution.+e records contain variable lengths from 7
to 10 hours. +e age of the subjects is between 27 and 63
years, and their weights are 35–135 kg.

First, according to Urtnasan et al. [25], a Chebyshev
type-II band-pass filter (5–11Hz) was used to remove un-
desirable noise from the single-lead ECG data. Second, the
data were segmented into epochs (10 s long) to train the
proposed model. Table 1 presents the distribution of all the
epochs in the training and test sets. Abnormal epoch means
an OSA event.
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3. Methods

3.1. Convolutional Neural Network. In this study, we used a
one-dimensional (1D) CNN to classify the ECG signals. +e
CNN comprised convolutional, pooling, and fully connected
layers. +e net input of neuron j in layer l is defined as
follows:

Z
l
j � 􏽘

i∈Mj

w
l
j,i ∗ x

l−1
i + b

l
j, (1)

where Mj represents the selection of input maps, wj,i de-
notes the weight or the filter associated with the connection
between neurons j and i, xl−1

i is the output signal from
neuron i in layer l− 1, bl

j is the bias associated with neuron j
in layer l, and (∗) denotes vector convolution. To acquire an
output map, an activation function is required as follows:

x
l
j � f z

l
j􏼐 􏼑. (2)

When compared with other activation functions, a
rectified linear unit (ReLU) exhibits robust training per-
formance. Hence, in this study, we used ReLU as the acti-
vation function for the output maps, which can be expressed
as follows:

f z
l
j􏼐 􏼑 � max 0, z

l
j􏼐 􏼑. (3)

After the convolutional layer, a pooling layer was
placed, which was used to reduce the dimensions of the
feature maps, network parameters, and the computa-
tional cost associated with successive layers using specific
functions to summarize the subregions, such as by
considering the average value or the maximum value.
Additionally, the pooling layer allowed the CNN to learn
features that were scale invariant or can be attributed to
the orientation changes [40]. +e pooling operation
consisted of sliding a window across the previous feature
map. Herein, max pooling was used after the convolu-
tional layer was activated. Finally, a dense layer, which
was generally used in the final stages of the CNN, was
fully connected to the outputs of the previous layers.

3.2. Batch Normalization. During the training of a CNN, a
change in the distribution of the inputs of each layer will
affect the outputs of all the succeeding layers. +is can result
in difficulty when attempting to train models with saturated
nonlinearities [41].+erefore, batch normalization (BN) was
used to solve this problem.

Suppose X� {x1, x2, · · · , xd} is the input to a layer with
dimension d. +e corresponding minibatch ismb. +e mean

of all the inputs in the same minibatch can be expressed as
follows:

μ �
1

mb
􏽘

mb

i�1
xi. (4)

+e variance of the input in aminibatch can be expressed
as follows:
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􏽘
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+erefore, BN can be expressed as follows:

yi � cx
∼

i + β, (6)

where x ∼
i � xi − μ/

�����
ε + σ2

√
, c, and β are learnable param-

eters. +e training efficiency of a CNN can be improved
using BN. At the same time, BN helps the CNN to train faster
and provides high accuracy [41].

3.3. Long Short-Term Memory. LSTM controls the cell state
via three gates, i.e., a forgetting gate, an input gate, and an
output gate. +e output features obtained from the previous
dense layer of a CNN layer are passed to the gate units. +e
memory cells constituting the LSTM update their states via
the activation of each gate unit controlled to a continuous
value between 0 and 1.+e hidden state of the LSTM cell ht is
updated after every t steps. +e input gate, forget gate, and
output gate can be written as shown in equations (7)–(9)
[37], respectively.
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where ∘ represents point-wise multiplication.
+e cell states and hidden states can be expressed using

equations (10) and (11), respectively.
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+e CNN and LSTM can be used as backpropagation
algorithms to update the parameters of the model during
training.

4. Experiments

4.1. Statistical EvaluationMethods. In this study, we use the
kappa coefficient (KP) [42], which is a robust statistical
measure of the inter-rater agreement, to evaluate the per-
formance of our method. Additionally, the total accuracy
(TAC), sensitivity (SE), specificity (SP), positive predictive
value (PPV), and negative predictive value (NPV) were

Table 1: +e number of normal epochs (NE) and abnormal epochs
(AE).

Training set Test set
NE AE NE AE
210680 130050 213830 13102
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calculated according to an epoch-by-epoch analysis as
follows:

TAC �
TP + TN

TP + FN + FP + TN
%, (12)

Sensitivity �
TP

TP + FN
%, (13)

Specificity �
TN

TN + FP
%, (14)

PPV �
TP

FP + TP
%, (15)

NPV �
TN

TN + FN
%, (16)

where TP, TN, FP, and FN denote the true positive, true
negative, false positive, and false negative, respectively. We
implement our experiments on a workstation with a
GeForce GTX2060 GPU in a Windows environment. +e
TensorFlow framework is used to train the proposed model.

4.2. <e Proposed Deep Model Architecture and Parameters.
To build an optimal OSA detection architecture, we need to
understand the characteristics of the input data. +e sam-
pling rate of the ECG was 100Hz, and the 10 s input di-
mension was 1000. To extract different scale features, we
need to set up different size filters. +erefore, experiments
are implemented while varying the filters size of the con-
volution layer to identify the optimal parameters for auto-
mated OSA detection. According to existing study [25, 29],
we design a network model, which contains a convolution,
BN, pooling, dropout, and dense layer, as shown in Figure 1.
N denotes the number of the filters. +e parameters and
results are shown in Table 2. From Table 2, we can see that
model_2 performs best andmodel_1 is the second. However,
the parameters of model_2 are large than those of model_1.
For portable OSA devices or real-time OSA analysis systems,
model_1 is more appropriate. +erefore, model_1 is used to
learning the features representation of ECG. To learn the
transition rules of OSA, LSTM is used. +e proposed model
contains the BN, convolutional, pooling, LSTM, and dense
layer, as shown in Figure 2.

+e detailed parameters of the proposed model are pre-
sented in Table 3.+is table shows the number of filters, the size,
and stride in each convolution layer, the size and stride of the
kernel in each pooling layer, and the output size of each layer,
including the LSTM layer. +e batch size is 30, the training
epoch is 100, and the learning rate is 0.1. Figure 3 shows the
learning results in terms of accuracy and loss obtained as the
number of epochs is varied. +e results show that the accuracy
and loss reach stable values after several iterations of learning
when applied to the validation dataset. Figure 4 shows the filter
morphology and training time with each training epoch. From
Figure 4(a), we can see that, after 90 training epochs, the
morphology of the filter almost does not change. Figure 4(b)
indicates that the speed of model training is fast.

4.3. Performance Results. Table 4 presents the performances
of the proposed model for the automated detection of OSA
from a single-lead ECG signal. When applied to the test
dataset, we obtained a KP of 0.92, an SE of 96.1%, an SP of
96.2%, a TAC of 96.1%, a PPV of 97.6%, and an NPV of
93.8%. As can be seen, the proposed model performed very
well for the detection of OSA.

From Table 4, we can observe that 3.9% of the AEs
were misclassified as NEs and that 3.8% of the NEs were
misclassified as AEs. According to our research, these
misclassifications could have been caused by two prob-
able reasons. One reason is that a transition epoch from
NE to AE or AE to NE is difficult to classify. For example,
Figure 5 shows a transition epoch from NE to AE,
whereas Figure 6 shows a transition epoch from AE to
NE. A skilled physician would be able to classify these
epochs based on the contextual information. However,
the proposed model does not use the contextual infor-
mation to score OSA, making it unable to distinguish the
transition epochs. +e other reason may be that the
proposed model finds it difficult to score the artifact
epochs. +e ECG signals can be polluted by unwanted
noise signals, including body movement. Figure 7 shows a
polluted ECG epoch. Because the artifact epochs are few
and varied, the proposed model was unable to learn the
distributions of all the artifact epochs. +erefore, it is
difficulty for the proposed model to detect the OSA of
artifact epochs. In this case, the usage of handcrafted
features seems to be considerably robust.

Input

BN

Conv_1 Conv_2 Conv_N

Pooling_1 Pooling_2 Pooling_N

Concatenate

Mp_4: MaxPooling

Add

Dense

Dropout

GlobalPooling

Dense

Figure 1: Schematic of the proposed CNN model for the auto-
mated detection of OSA.
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4.4. Benefits of Long Short-Term Memory. +e major ad-
vantage associated with the usage of LSTM is that it can be
trained to learn long-term dependencies, including the
transition rules that are used by the physicians to identify the
next possible OSA event(s) from a sequence of ECG epochs.
To validate the usefulness of LSTM, we removed the LSTM
layer from the model (Figure 2) and then reimplemented the

experiment. +is test was named CNN_1. Table 5 shows the
comparison results, where we can see that the proposed
model (CNN+LSTM) results in a gain of 1.3% over the TAC
of CNN_1. In addition, KP increased by 0.03 when LSTM
was added, verifying our assumption.

Figure 8 shows an example of the NE ECG signal. When
the proposed method (CNN+LSTM) is used, the epoch is
classified as an NE. However, when CNN_1 is used, this
epoch is scored as an OSA event. +e reason for OSA
misclassification is that the heart rate is slow at the center of
this epoch. According to a previously conducted study [11],
the heart rate decelerates when OSA occurs. +erefore,
CNN_1 learned this feature. However, from Figure 8, we can
observe that the heart rate changes very little. At the same
time, the heart rates of previous epochs are similar to those
of this epoch. However, because the LSTM learns long-term
dependencies, the CNN+LSTM method accurately detects
the epoch, which is the benefit associated with the usage of
LSTM.

4.5. OSA Detection. As mentioned previously, long OSA is
dangerous because it can lead to sudden death. To identify
long OSA, the window overlapping method can be used to
detect the start and end positions of an OSA event. In this
way, long OSA can be detected Figure 9 shows that the
proposed model can detect complete OSA events from the
ECG signals. From the nasal airflow signal, we can observe
that the OSA events detected by our model have been ac-
curately identified.

4.6. Comparison of the ProposedMethodwith Existing Studies.
+e comparison of various methods of automatic OSA
detection is difficult because different datasets, feature sets,
and classifiers are used in different studies. For ensuring a
fair comparison with existing studies, Table 6 shows the
classification performances of different methods based on
single-lead ECG signals. From Table 6, we can observe that
the proposed model achieved better performance when
compared with those achieved in the previous studies. More

Input

BN

Cn_1: Conv1D Cn_2: Conv1D Cn_3: Conv1D

Mp_1: MaxPooling Mp_2: MaxPooling Mp_3: MaxPooling

Concatenate

Mp_4: MaxPooling

Add

Dense

Dropout

GlobalPooling

LSTM

Dense

Figure 2: Architecture of the proposed model.

Table 2: +e parameters and TACs of the different models.

Name N Layer Units Size Stride TAC (%)

Model_1 3
Cn_1 24 125×1 1× 1

94.832Cn_2 24 15×1 1× 1
Cn_3 24 5×1 1× 1

Model_2 4

Cn_1 24 125×1 1× 1

94.835Cn_2 20 100×1 1× 1
Cn_3 24 15×1 1× 1
Cn_4 24 5×1 1× 1

Model_3 4

Cn_1 24 125×1 1× 1

93.92Cn_2 20 50×1 1× 1
Cn_3 20 15×1 1× 1
Cn_4 20 5×1 1× 1

Model_4 3
Cn_1 24 100×1 1× 1

94.78Cn_2 24 15×1 1× 1
Cn_3 24 5×1 1× 1

Model_5 2 Cn_1 30 125×1 1× 1 90.4Cn_2 30 15×1 1× 1
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Table 3: +e parameters of the proposed model.

Layer Layer type Units Unit type Size Stride Output size
Input 1000×1
BN 1000×1
Cn_1 Convolutional 24 ReLU 125×1 1× 1 876× 24
Cn_2 Convolutional 24 ReLU 15×1 1× 1 986× 24
Cn_3 Convolutional 24 ReLU 5×1 1× 1 996× 24
Mp_1 Max pooling 24 2×1 1× 1 438× 24
Mp_2 Max pooling 24 2×1 1× 1 493× 24
Mp_3 Max pooling 24 2×1 1× 1 498× 24
Concatenate 24 1429× 24
Mp_4 Max pooling 24 3×1 1× 1 476× 24
Add Add 24 1000× 24
Dense Fully connected 48 LeakyReLU 1000× 48
Dropout Dropout 1000× 48
Gp Global pooling 48×1
LSTM LSTM 64×1
Dense Fully connected 2 Softmax 2
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Validation data
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Figure 3: Accuracy and loss of the proposed model for automated OSA detection. (a) Loss curve. (b) Accuracy curve.

20
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Epochs

(a)

0.00003h

0.00008h

0.0001h

0.0002h

(b)

Figure 4: Filters morphology and training time with each epoch. (a) Filter morphology. (b) Training time.
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Table 4: +e performances of the proposed model for automated detection of OSA.

NE AE KP SE (%) SP (%) TAC (%) PPV (%) NPV (%)
NE 202460 4940 0.92 96.1 96.2 96.1 97.6 93.8
AE 8220 125110

Figure 5: A transition epoch from an NE to an AE. Blue denotes the ECG signal, and black denotes the nasal airflow signal.

Figure 6: A transition epoch from an AE to an NE. Blue denotes the ECG signal, and black denotes the nasal airflow signal.

Figure 7: An ECG artifact epoch. Blue denotes the ECG signal, and black denotes the nasal airflow signal.

Table 5: Comparison of classification performances.

Model KP TAC (%)
CNN_1 0.89 94.8
CNN+LSTM 0.92 96.1

Computational Intelligence and Neuroscience 7



importantly, our method can be used in conjunction with
wearable medical devices, which is very important for home
OSA monitoring.

5. Conclusions

In this study, we developed an automated OSA event
detection method using a CNN, where the feature ex-
traction and selection processes were not required. +e
proposed method detected the start and end positions of
the OSA events based on the overlapping epochs in the
ECG signal dataset. Our method automatically extracted
the time-invariant features from raw ECG signals without
utilizing any handcrafted features. +e proposed ap-
proach is robust and completely automated, and the
method can be easily adapted to other physiological

signal analyses and prediction problems. +e TAC and
KP of the proposed model applied to the single-channel
ECG reached 96.1% and 0.92, respectively. +e experi-
mental results showed that the proposed method could
accurately score the OSA events and that it achieved
comparable performance with other state-of-the-art
studies. More importantly, our method can prevent
sudden death from OSA, which is important for the
patients who are severely affected by OSA.

+ere are some limitations associated with our CNN
method. First, the proposed model can only detect OSA
and normal events but not hypopnea events. Although
hypopnea is not as serious as OSA, it is still prevalent in
sleep-disordered breathing patients. Second, it is difficult to
score transition epochs using our method. In the future, we
will improve the discrimination ability of our method for

OSA OSA OSA OSA

Figure 9: +e start and end positions of multiple OSA events.

Table 6: Comparison of performances of different methods.

Input Author Method TAC (%) SE (%) SP (%)

ECG

Jafari [43] Handcrafted features, SVM 94.8 94.1 95.4
Chen et al. [44] Handcrafted features, SVM 82.1 83.2 80.2

Urtnasan et al. [25] CNN 96 96 96
Banluesombatkul et al. [34] CNN 79.45 77.6 80.1

Zarei and Asl [12] Handcrafted features, SVM 94.63 94.43 94.77
Tripathy [45] Handcrafted features, kernel extreme learning machine 76.37 78.02 74.64

Hassan and Haque [46] Handcrafted features, RUSboot 88.88 87.58 91.49
Hassan [47] Handcrafted features, AdaBoost 87.33 81.99 90.72
Our method CNN 96.1 96.1 96.2

82 8380 81 8176 76 74 71 73 81 81 8179 79

Figure 8: A normal ECG epoch.
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AEs and NEs. In addition, the automated anomaly de-
tection of ECG based on the CNN, which is important to
rapidly assess the quality of the ECG data, will be studied.

Data Availability

+e Apnea-ECG dataset, downloaded from https://www.
physionet.org/content/apnea-ecg/1.0.0, was used to evalu-
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