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Abstract

In the health and social sciences, two types of mixture models have been widely used by 

researchers to identify participants within a population with heterogeneous longitudinal 

trajectories: latent class growth analysis (LCGA) and the growth mixture model (GMM). Both 

methods parametrically model trajectories of individuals, and capture latent trajectory classes, 

using an expectation-maximization (EM) algorithm. However, parametric modeling of trajectories 

using polynomial functions or monotonic spline functions results in limited flexibility for 

modelling trajectories; as a result, group membership may not be classified accurately due to 

model misspecification. In this paper, we propose a mixture model (SMM) allowing for smoothing 

functions of trajectories using a modified algorithm in the M step. Specifically, participants are 

reassigned to only one group for which the estimated trajectory is the most similar to the observed 

one; trajectories are fitted using generalized additive mixed models (GAMM) with smoothing 

functions of time within each of the resulting sub-samples. The SMM is straightforward to 

implement using the recently released ‘gamm4’ package (version 0.2–6) in R 3.5.0. It can 

incorporate time-varying covariates and be applied to longitudinal data with any exponential 

family distribution, e.g., normal, Bernoulli, and Poisson. Simulation results show favorable 

performance of the SMM, when compared to LCGA and GMM, in recovering highly flexible 
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trajectories. The proposed method is illustrated by its application to body mass index data on 

individuals followed from adolescence to young adulthood and its relationship with incidence of 

cardiometabolic disease.

1. INTRODUCTION

In the health and social sciences, mixture models have been used to identify participants 

within a population with heterogeneous longitudinal trajectories.1, 2 Two types of parametric 

mixture models have been developed and widely used by researchers: the growth mixture 

model (GMM) proposed by Muthen et al and latent class growth analysis (LCGA) proposed 

by Nagin et al.3, 4 Both models allow different sets of parameter values for mixture 

components corresponding to different unobserved subgroups of individuals, and capture 

latent trajectory classes with different growth curves by using an expectation-maximization 

(EM) algorithm. The main difference between the two models is that GMM allows for 

variation across individuals within the same group while LCGA assumes individuals within 

groups are homogenous.5 Although mixture models with nonparametric, semiparametric, or 

smoothed trajectories have been developed for normally distributed outcomes, for discrete or 

categorical outcomes GMM and LCGA require specification of parametric functions (e.g., 

polynomial functions) for the trajectories.6–9 As a result, both GMM and LCGA have 

somewhat limited flexibility for modelling trajectories of non-normally distributed 

outcomes. Because of this lack of flexibility for modelling trajectories, group membership 

may not be classified accurately to represent the true unobserved subgroups due to model 

misspecification.

Semiparametric mixture models with smoothing functions of covariates have been 

developed.9–11 However, some limitations of these models are that they can only be applied 

to normally distributed data, they do not handle binary or count outcomes, and there is little 

existing software to implement them.12 We note that smoothing splines have been widely 

applied to model covariates nonlinearly in longitudinal data, e.g., in generalized linear 

models 13, 14 and generalized estimating equations.15–18 To allow for mixed effects in 

models for longitudinal data, they were further implemented within generalized linear mixed 

models (GLMM),19–22 creating a new class of models referred to as generalized additive 

mixed models (GAMM).23 GAMM provides nonparametric functions of covariates and uses 

random effects to account for correlation in longitudinal data.23 Although GAMM is 

computationally intensive, it is straightforward to apply using the package ‘gamm4’ (version 

0.2–6) in R 3.5.0, which performs well not only for continuous data, but also for binary and 

count data.24 As GAMM can model covariates with a high degree of flexibility and accounts 

for within-individual correlation, a natural extension is to consider a GAMM applied to 

trajectory analysis within latent classes. Similar to GMM and LCGA, which are essentially a 

combination of GLMM with latent class analysis, in this paper we develop a smoothing 

mixture model (SMM) allowing for smoothing functions of trajectories by combining 

GAMM with latent class analysis.

As parameter estimation of our model based on maximum likelihood estimation (MLE) 

would be very computationally demanding, we use a more convenient approach to mixture 
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modelling known as “classification maximum likelihood (CML)”.25 The key difference 

between classification and conventional mixture modelling approaches is that in the former 

each observation is assigned to a single, unique class whereas in the latter each observation 

is assigned a probability of originating from each class. Results from a simulation study that 

compared CML to the conventional maximum likelihood (ML) approach for mixture models 

do not suggest a general superiority of mixture ML over the CML approach in finite 

samples.26 Adopting this CML approach, we use a modified algorithm in the M step that 

simplifies parameter estimation: rather than assigning to all classes with different 

membership probabilities, each individual is assigned to only one class with the highest 

membership probability; the existing package ‘gamm4’ is applied directly to estimate model 

parameters within each group.24 This algorithm avoids having to maximize intractable 

likelihoods, greatly simplifying model development and application.

2. METHOD

In this section, we introduce some notation and describe the main features of the proposed 

mixture model (SMM) allowing for smoothing functions of trajectories.

2.1. Notation.

Let the sample consists of n individuals. Consider the data on individual i to consist of a 

vector Y i of p repeated measurements over time Ti, and a (p x q) matrix Xi of q covariates. 

The components of Y i can be continuous, count, or binary data. For example, Y i could be 

repeated measures of lifestyle factors across adulthood. Let k denote the number of latent 

classes or groups.

2.2 Log-likelihood (LL) of SMM.

The density of observing Y i in latent group m can be expressed as 

dm Y i = ∏j = 1
p d Y ij | g−1 Xi

Tβm + fm tj + Zi
Tbmi , where Y ij is the outcome for individual i

at the jth time-point tj, g .  is the link function, fm .  is a non-parametric penalized 

smoothing function of time, βm is a q × 1 vector of regression coefficients associated with 

covariates Xi, bmi are independent b × 1 vectors of random effects associated with covariates 

Zi (the latter usually a subset of Xi and/or T i). The marginal density of Y i is the weighted 

sum of the density of observing Y i in each latent group, where the weight πim is the 

probability individual i belongs to group m, and can be expressed as 

d Y i = ∑m = 1
k πimdm Y i . Thus, the log-likelihood ll  for the observed data is given by 

ll = ∑i = 1
n log d Y i .

In principle, the model parameters can be estimated using the EM algorithm. Theoretically, 

in step 1, we would randomly assign individuals into k groups to obtain an initial estimate of 

πim and posterior estimates βm, bmi, fm. In step 2, we would calculate dm(Yi) and obtain the 

posterior probabilities of individual i belonging to group m as 
πm dm Yi

∑m = 1
k πmdm Yi ,

. In step 3, 
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we would use the estimates of πim to obtain estimates of βm, bmi, fm by maximizing the ll. 
The EM algorithm iterates steps 2 and 3 until the ll remains unchanged. However, a practical 

difficulty with implementing the EM algorithm is that maximizing ll in step 3 is difficult and 

time consuming, due to the smoothing function of time (fm), correlation between repeated 

measures of Y i, and the inclusion of random-effects (bmi).

Therefore, in this paper, we propose estimation of the model parameters using a modified 

algorithm in the M step. Instead of calculating the probabilities of individual i belonging to 

each group and maximizing the ll, we use the CML approach of assigning individuals to the 

group with the highest probability. In this case, the ll is replaced by 

cll = ∑m = 1
k (∑i = 1

nm log(dm Y i) = ∑m = 1
k llm , where nm is number of individuals in group m. 

Maximizing this cll is equivalent to fitting models g E Y i = Xi
Tβm + fm tj + Zi

Tbmi within 

each group and maximizing the ll within each group,llm. That is, in the proposed algorithm 

we directly fit GAMM models within each group, modeling time with flexible smoothing 

functions and incorporating random effects to account for correlation between repeated 

measures. The estimates of βm, bmi, fm, and llm can be directly obtained from ‘gamm4’ 

package (version 0.2–6) in R3.2.5.

2.3. Model estimation of SMM

Initially, we divide participants into k groups according to the mean value (or any other 

suitable summary) of a participant’s observed trajectory. Let individual i be assigned to the 

mth group. The group assignment, and estimation of the smooth trajectories for each group, 

is achieved by iterating the following E and M steps.

Step 1. Maximization step (M step)

• Using individuals in the mth group, fit a nonparametric GAMM model with 

smoothing spline for time, e.g., using ‘gamm4’ package (version 0.2–6) in R 

3.5.0;

g E Y i = XiTβm + fm ti + ZiTbmi .

The smoothing function is fit using s(.) function, and we use default parameters 

controlling the smoothness (bs=“tp” for thin plate regression splines and m=2 for 

second derivative penalty).

• Although the vector Y i for individual i only contributes to parameter estimation 

in the mth group, we obtain k vectors of mean predicted value 

Y i 1 , Y i 2 , …, Y i k  estimated from GAMMs fitted in the 1st, 2nd, …, kth 

groups, respectively. Given estimates from the k fitted GAMMs, the mean 

predicted value Y i m  can be expressed as g−1(Xi
Tβm + fm ti ).

Step 2. Expectation step (E step)
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• For individual i, we obtain the log likelihood contributions li 1 , ℓi 2 , …, ℓi k  of 

individual i′s mean trajectory of responses belonging to the 1st, 2nd, …, ktℎ
groups. For the mth group, the ℓi m  conditional on bmi can be expressed as 

ℓi m Y i |βm, ti = − 1
2 ∅Di(Y i; Y i m ), where Di(Y i; Y i m ) is the deviance. The 

deviance statistic can be approximated by the Pearson chi-square statistic, where

− 1
2 ∅Di(Y i; Y i m ) ≈ − ∑j = 1

p (Y ij − Y ij m )2

a ∅ v(Y ij m )

Y i m  can be estimated directly from the fitted GAMM in the mth group. For 

exponential family distributions, ∅ is the dispersion parameter, a ∅  is a 

function of the dispersion parameter, and v .  is the variance function. 

Specifically, if Y ij has a normal distribution N μ, δ2 , ∅ is δ2, a ∅  is δ2, and v .

is 1. If Y ij has a Bernoulli distribution B 1, p , ∅ is 1, a( ∅ ) is 1, and v .  is 

p 1 − p . If Y ij has a Poisson distribution P μ , ∅ is 1, a( ∅ ) is 1, and the v .  is μ.

• We compare ℓi 1 , ℓi 2 , …, ℓi k . In a departure from the traditional EM algorithm 

for a conventional mixture model where in the E step individual i is reassigned to 

all of the k groups with different probabilities, in our proposal, individual i is 

reassigned to the group with the largest log likelihood (or modal probability),

ℓi = max ℓi 1 , ℓi 2 , …, ℓi k ).

The above two steps of the EM algorithm are iterated until the model converges. Model 

convergence is determined when the group membership for all individuals no longer change, 

and the sum of the largest log likelihood for all individuals ∑i = 1
n ℓi remains the same.

2.4. Number of groups.

The Bayesian information criterion (BIC) is used to compare model fit assuming different 

numbers of groups, k.27–29 Consider that we divide all individuals’ trajectories into k
groups. Upon model convergence, the logL1, logL2, …, logLk are the log likelihoods estimated 

using GAMM in the 1st, 2nd, …, kth groups, and p1, p2, …, pk are the respective degrees of 

freedom. The BIC for our mixture model is defined as 

BIC = − 2 * ∑m = 1
k logLm + log # of observations * (∑m = 1

k pm + k − 1). logLm and pm can be 

readily obtained using the mer and edf components from the ‘gamm4’ output in R 3.5.0, 

which can be applied to data with any exponential family (e.g., normal, Bernoulli, and 

Poisson) distribution.

3. SIMULATION

We conducted a simulation study to assess the performance of the proposed SMM, 

comparing it to LCGA and GMM in terms of LL, BIC, identification of number of groups, 

classification of group membership, and delineation of identified trajectories.
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3.1. Simulation strategy.

We simulated datasets with 2, 3, and 4 groups of trajectories, with 100 individuals in each 

group and 20 repeated measures of the outcome for each individual at time points evenly 

spaced between 0 to 1. We simulated each individual’s trajectory using the function shown 

below, which could produce a variety of trajectory shapes with high degree of flexibility; 

this function was used to generate data with normal, Bernoulli, and Poisson distributions. 

Specifically, for individual i at time j in the mth group, g E Y mij  was generated from:

β1m * tj
r1m * 10 * 1 − tj

r2m + β2m * (10 * tj)r3m * 1 − tj
r4m + β3m + βmi, where r1m, r2m, r3m, 

r4m, β1m, β2m, and β3m were group-specific parameters, and βmi was an individual-specific 

parameter with a standard normal distribution. For generating data from a normal 

distribution, g .  was an identity function, and we included a random error εmij N 0, 1  to 

the E Y mij  when simulating Ymij. For generating data from a Bernoulli distribution, g .

was a logit function. We obtained E Y mij =
exp g E Ymij

1 + exp g E Ymij
, and sampled each binary 

observation Y mij from a Bernoulli distribution with probability of success,E Y mij . For 

generating data from a Poisson distribution, g .  was a log function. We obtained 

E Y mij = exp g E Y mij , and sampled each observation Ymij from a Poisson distribution 

with mean,E Y mij . For normal, Bernoulli, and Poisson distributions, we generated 

trajectories with high, medium, and low separation between groups by assigning different 

values to the variance of βmi. Compared to trajectories with high separation, trajectories with 

low separation had larger individual-specific random-effects. The parameter settings with 

high, medium, and low separation are shown in Table S1 for data with normal, Bernoulli, 

and Poisson distributions. The mean trajectories simulated are shown in Figure 1 for data 

with normal, Bernoulli, and Poisson distributions.

3.2 Model fit.

We have developed R scripts for the proposed smoothing mixture model with normal, 

Bernoulli, and Poisson distributions, and the scripts can be accessed in Github (https://

github.com/mingding-hsph/Smoothing-mixture-model). We initially assigned individuals to 

different groups based on the rank of the average value of Y across time points. To obtain 

model estimates, the EM algorithm was iterated 20 times, which suggested model 

convergence as indicated by BIC from each iteration. The LCGA was fitted using the “proc 

traj” command in SAS version 9.2 for UNIX (SAS Institute Inc).30 We modeled trajectories 

with cubic polynomials for time using LCGA; this was reduced to quadratic or linear 

functions if the model did not converge. The GMM with random subject effects was fitted 

using the ‘lcmm’ package (Version 1.9.2) in R 3.5.0,31 and we modeled the trajectories with 

cubic polynomial functions. We randomly simulated 1000 datasets with normal, Bernoulli, 

and Poisson distributions and fit the three models to each of the simulated datasets.

For each simulated dataset, we fitted LCGA, GMM, and SMM separately assuming different 

number of groups. Specifically, for simulated data with two trajectory groups, we fitted 

models assuming one, two and three groups; for simulated data with three trajectory groups, 
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we fitted models assuming two, three, and four groups; for data with four trajectory groups, 

we fitted models assuming three, four, and five groups. First, by assuming different number 

of groups, we obtained LL, BIC, the correlation coefficient between predicted and observed 

values, and the adjusted Rand index (ARI) between true underlying group membership and 

assigned groups. Of note, ARI assesses similarity between 2 group assignments and counts 

the number of pairwise agreements and disagreements between group assignments.32 The 

closer the value of ARI is to 1, the better the agreement between group assignments. Next, 

we compared BIC assuming different number of groups, chose the model with the lowest 

BIC, and presented the corresponding LL, BIC, number of groups, correlation coefficient, 

and ARI.

3.3. Results.

Compared to LCGA and GMM, SMM showed the best fit to the data as indicated by lowest 

LL and highest BIC for most of the scenarios of high, medium, and low separation (Tables 

1–3). We obtained the highest correlation between predicted and observed values using 

SMM when compared to LCGA and GMM, particularly for data with normal and Poisson 

distributions. Consistently, the trajectories predicted using SMM were most similar to the 

true underlying trajectories (Figure 2–4). The SMM assigned group membership with high 

accuracy and successfully classified most of the individuals as indicated by ARI when there 

was high and median separation between groups, particularly for data with normal and 

Poisson distributions; for binary data, the ARI was discernibly weaker. However, the SMM 

model tended to identify more groups than necessary in scenario where there was low 

separation and also in the binary data setting.

4. APPLICATIONS

The Growing-up Today Study (GUTS) was established in 1996 when women participating 

in the Nurses’ Health Study II (NHSII) were invited to enroll their children aged 9 to 14 

years into this new cohort. A total of 16,882 children responded to the baseline 

questionnaires. Participants have been followed up with yearly self-administered follow-up 

questionnaires between 1997 and 2001 and with biennial questionnaires thereafter through 

2013. GUTS participants reported their height and weight at baseline, and updated these data 

on follow-up questionnaires. Adolescents have been found to be able to provide valid reports 

of height and weight 33–35. Body mass index (BMI) was calculated as the ratio of weight 

(kg) to height (m) squared. In adolescents (<18 y), obesity was defined as a BMI at or above 

the age- and sex-specific cutoffs proposed by the International Obesity Task Force (IOTF) 
36. In adults (≥18 y), obesity was defined as BMI ≥30 kg/m2. In 2010 and 2013, participants 

were asked to report in questionnaires whether they developed diabetes, hypertension, and 

hypercholesterolemia, and the year of diagnosis (<1996, 1996–1999, 2000–2005, and 2006–

2013). We created a composite outcome for cardiometabolic incidence, defined as incidence 

of diabetes, hypertension, or hypercholesterolemia. To minimize reverse causation, we 

excluded participants who were diagnosed before 1999 and censored BMI reported after 

diagnosis of cardiometabolic disease. We further excluded individuals with less than two 

BMI measurements. For participants who were siblings, we randomly chose one participant 

to avoid between-person correlation of BMI. In total, we included 10,743 participants 
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among whom 1043 were cases of cardiometabolic disease. We collected information on total 

energy intake and physical activity in 1996, 1997, 1998, and 2001 using self-reported 

questionnaire.

We identified BMI trajectories of GUTS participants using LCGA, GMM, and SMM. We 

assumed random subject effects for SMM, and iterated the EM algorithm 50 times, which 

seemed sufficient for model convergence as indicated by the values of BIC from each 

iteration. The LCGA was fitted using the “proc traj” command in SAS version 9.2 for UNIX 

(SAS Institute Inc),30 and the GMM with random subject effects was fitted using the ‘lcmm’ 

package (Version 1.9.2) in R 3.5.0.31 We modeled the age trajectories with cubic polynomial 

functions using LCGA and GMM. We compared the SMM to the LCGA and GMM in terms 

of log likelihood (LL), BIC, ARI between identified groups, percentage of individuals that 

were correctly classified (individuals that remained in the same group), and trajectories 

delineated by the fitted models. To validate the groups identified, we examined associations 

of identified trajectories with risk of cardiometabolic disease using logistic regression.

We delineated trajectories of BMI from 9 to 30 years adjusting for time-stable (sex) and 

time-varying covariates (total energy intake and physical activity). SMM yielded the highest 

LL and lowest BIC in comparison to LCGA and GMM (Table 4). We observed moderate 

agreement between classified membership using GMM and SMM as indicated by ARI. 

Consistently, the majority of participants were classified in the same groups using GMM and 

SMM. Although BIC decreased with increase in the number of groups using all three 

models, we chose three groups as a parsimonious model that captures a large amount of the 

variation in trajectories. Of the three trajectory groups identified using SMM, one had 

consistently high BMI throughout the follow-up period (on average, participants in this 

group were obese at 47% of the repeated assessments); one had consistently medium BMI 

(participants in this group were obese 3% of the time); and the other trajectory had 

consistently low BMI (participants in this group were not obese at any assessment) (Figure 

4). In general, the trajectories estimated using LCGA and GMM were similar to those 

estimated using SMM. For all three trajectories, BMI increased with age; and the growth 

rate of BMI was high in adolescence and slowed after adulthood (age ≥18 years). We 

examined associations of trajectories identified using the three methods with risk of 

cardiometabolic diseases, and found that the odds ratio of cardiometabolic disease was 

significantly higher in medium and high BMI groups in a dose-response manner when 

compared to the consistently low BMI group (Table 5).

5. DISCUSSION

In this study, we developed a mixture model allowing for smoothing functions of trajectories 

using a modified algorithm in the maximization or M step. We reassigned participants to 

only one group for which the estimated trajectory was the most similar to the observed one, 

and utilized the recently released ‘gamm4’ package to fit GAMM models with smoothing 

functions of time within each group. When compared to existing mixture models, including 

LCGA and GMM, the key advantages of SMM lie in modeling trajectories with high 

flexibility, especially for non-normally distributed data (e.g., data with Bernoulli, Poisson, 
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and gamma distributions). In addition, the proposed SMM can be readily implemented using 

existing software for fitting GAMM models.

In a simulation study, we simulated highly flexible longitudinal trajectories with low, 

medium, and high group separations to evaluate performance of our model when compared 

to LCGA and GMM. For settings with medium to high separation for a quantitative outcome 

(e.g., normal and Poisson), the proposed SMM model performed well in fitting the data and 

delineating trajectories. In LCGA and GMM, cubic polynomial functions of time were used 

to model trajectories, where the number of knots and the knot positions need to be chosen. A 

larger number of knots allows greater flexibility but may cause problems due to overfitting. 

Smoothing functions in GAMM use non-parametric penalized splines, and thus can produce 

highly flexible trajectories without causing overfitting problem to arise. This is potentially 

the main reason why our proposed model generated trajectories most similar to the true 

underlying curves and yields the highest correlations between the observed and predicted 

values in the simulation study. The highly flexible trajectories produced by the SMM model 

suggests that it may potentially have wide application to settings with highly non-linear 

longitudinal trends.

While recognizing the model has some potential advantages for highly flexible modelling of 

trajectories and convenient application to data from a wide collection of non-normal 

distributions, we acknowledge several limitations of the SMM. First, using BIC as criterion, 

the model tended to identify too many groups in the scenario of low separation among 

groups, although it performed well in the scenario of medium to high separation with 

relatively low heterogeneity in trajectories. In our simulation study, for binary data, the 

SMM model tended to identify more groups than necessary in scenario where there was low 

separation, resulting in that the SMM assigned group membership with the lowest accuracy 

as indicated by ARI comparing to LCGA and GMM. However, this is also a common issue 

for all types of mixture models; for example, it occurred for LCGA and GMM in the GUTS 

application considered in the previous section and also in some of the scenarios in the 

simulation study. A topic for future research is to consider alternatives to BIC for selecting 

the number of groups. For example, it may be useful to use a “scree plot”, of the type 

frequently used in factor analysis, to choose the number of groups. A measure of prediction 

accuracy, e.g., based on the sum of squared error, could be plotted against the number of 

groups and examined for evidence of an “elbow” where it does not yield discernibly better 

performance with increasing groups. We note that a measure based on the sum of squared 

error is particularly straightforward to obtain with our model given that there is only a single 

prediction for the class to which an observation belongs (unlike with conventional mixture 

models where the model provides many different prediction, one for each group to which an 

individual might belong to). Another option would be to examine a scree plot of the log-

likelihood. Regarding the choice of the number of groups, Nagin et al holds the viewpoint 

that the most basic test of adequacy is whether the final model adequately addresses the 

research question,1 and Bauer et al suggests that the number of groups and the shapes of 

trajectories should be guided by a priori expectation.37 Second, our study used a modified 

algorithm in the M step by assigning an individual to only one group with the highest 

membership probability and ignored that there is group membership uncertainty. This 

uncertainty would need to be properly accounted for in the construction of confidence 
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intervals and/or tests of hypotheses concerning group trajectories. Although bootstrap 

methods would be computationally quite costly because of the requirement for running an 

EM algorithm within each of many bootstrap replications, they might provide more accurate 

standard errors; this is a topic that warrants further research. Third, the CML approach can 

result in asymptotic biases, particularly when one of the groups is rare.25 However, results 

from our simulation study suggest that the CML approach performs well in finite samples 

unless there is low separation among groups. Fourth, although we used a CML approach, the 

application of our method can still be computationally demanding. The reason for this is that 

in the M step the ‘gamm4’ package needs to estimate between-person random effects and 

the EM algorithm can require a large number of iterations to converge. Thus, for our 

proposed method, computation time may be a concern for datasets with both large sample 

sizes and many repeated measurements. Fifth, by using an iterative, hill-climbing procedure, 

the EM algorithm may converge to a local maximum, and initial assignments of group 

membership may affect the local maximum identified and the speed of convergence. In our 

study, we used the rank of the mean value of an individual’s vector of outcomes to assign 

initial group membership. Compared to other initialization procedures, such as random 

starting values and a k-means algorithm, this method is simple to apply and reduces 

computation time by avoiding multiple initial assignments.38

In the GUTS application, we identified trajectories of BMI across adolescence and young 

adulthood using the three methods. The identified BMI trajectories increased with age, and 

the growth rate of BMI slowed down after individuals entered adulthood. This is consistent 

with the depictions of growth charts of U.S. adolescence, which show that growth spurts 

begin at 10–12 years, last throughout adolescence, and end at 18–20 years with the cessation 

of rapid growth 39. Results from our study suggest that individuals with high, medium, and 

low BMI at baseline share similar growth patterns, and individuals with high BMI in 

adolescence are highly likely to remain obese in young adulthood. Moreover, we found that 

individuals with high BMI in adolescence are associated with higher risk of cardiometabolic 

diseases in early adulthood. A potential mechanism may be that childhood obesity is 

associated with chronic inflammation and elevation of inflammation biomarkers 40. This can 

lead to insulin resistance, dyslipidemia, and high blood pressure, which enhance the 

development and progression of cardiometabolic diseases. Overall, the application to the 

GUTS study showed the importance of adopting a healthy BMI in adolescence and 

maintaining a low-BMI growth trajectory for the prevention of obesity and cardiometabolic 

diseases in young adulthood. By applying the SMM model to applications in life-course 

epidemiology, it may potentially have significant public health implication in enhancing our 

understanding of how early exposure over time affects health outcomes. Given the high 

flexibility for trajectory modeling, in addition to convenient application to outcome data 

from many different types of distributions, we expect the model may have broad application 

in the health and social sciences.

In the application of our model to trajectories of BMI across adolescence and young 

adulthood, we would like to clarify two potential concerns. First, in the M step of the EM 

algorithm, instead of estimating parameters using an overall likelihood fitted to the entire 

dataset, we split the dataset into several groups and fitted a GAMM within each group. Thus, 

for covariates included in the SMM, the underlying assumption is that associations of the 
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covariates with BMI may differ across trajectory groups. Second, we censored BMI after the 

development of cardiometabolic disease. This might lead to different patterns of exposure 

distribution associated with the outcome, as individuals who did not develop disease would 

have exposures repeatedly measured at more time points. Thus, how to extend the SMM 

model to handle time-to-event outcomes would be an interesting direction for future 

research.

In summary, we have developed a mixture model that allows for smoothing functions of 

trajectories in a computationally cost-effective manner. The model can be applied to normal, 

Bernoulli, and Poisson distributed data, and has favorable performance in generating highly 

flexible trajectories when compared to existing methods such as LCGA and GMM. The 

model may be particularly useful in studies of life course epidemiology in the health and 

social sciences.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
True underlying mean curves used to generate longitudinal data with normal, Bernoulli, and 

Poisson distributions (we present all four groups for medium separation setting).
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Figure 2. 
Predicted trajectories in a single randomly simulated dataset with normal distribution using 

latent class growth analysis (LCGA), growth mixture model (GMM), and smoothing mixture 

model (SMM) (we used simulated data for all four groups for medium separation setting).
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Figure 3. 
Predicted trajectories in a single randomly simulated dataset with Bernoulli distribution 

using latent class growth analysis (LCGA), growth mixture model (GMM), and smoothing 

mixture model (SMM) (we used simulated data for all four groups for medium separation 

setting).
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Figure 4. 
Predicted trajectories in a single randomly simulated dataset with Poisson distribution using 

latent class growth analysis (LCGA), growth mixture model (GMM), and smoothing mixture 

model (SMM) (we used simulated data for all four groups for medium separation setting).
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Figure 5. 
Trajectories of body mass index (BMI) delineated using latent class growth analysis 

(LCGA), growth mixture model (GMM), and smoothing mixture model (SMM) in the 

Growing-up Today Study (GUTS). Models adjusted for sex and time-varying variables 

including total energy intake and physical activity.
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Table 4.

Comparison of model fit and classification for trajectories of body mass index (BMI) using latent class growth 

analysis (LCGA), growth mixture model (GMM), and smoothing mixture model (SMM) in the Growing-up 

Today Study (GUTS).

Number of groups classified Model LL BIC Adjusted Rand Index (ARI)
#

Percentage (%) of individuals classified 
in same groups*

2 LCGA −153622 307364 0 66

2 GMM −135185 270529 0.36 84

2 SMM −129152 258565 1.00 100

3 LCGA −145499 291183 0 42

3 GMM −133606 267445 0.11 56

3 SMM −124450 249284 1.00 100

4 LCGA −141649 283548 0 32

4 GMM −132712 265730 0.17 46

4 SMM −121378 243262 1.00 100

5 LCGA −139645 279605 0 26

5 GMM −132171 264722 0.13 40

5 SMM −119257 239145 1.00 100

LL: log likelihood; BIC: Bayesian information criterion.

#
Adjusted Rand index assesses similarity between 2 group assignments by counting the number of pairwise agreements and disagreements between 

group assignments. The closer the value is to 1, the better the agreement between group assignments.

*
Percentage (%) of individuals classified in same groups was obtained by permutating groups classified using two models, and the permutation 

with the largest percentage was used. For example, for 2 groups identified using SMM and GMM, we obtained percentage of individuals who were 
in groups 1 and 2 using SMM and GMM and percentage of individuals who were in group 2 using SMM and group 1 using GMM and who were in 
group 1 using SMM and 2 using GMM, and take the percentage with larger value.

Trajectories adjusted for sex and time-varying variables including total energy intake and physical activity.
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Table 5.

Associations of trajectories of body mass index with risk of cardiometabolic disease using latent class growth 

analysis (LCGA), growth mixture model (GMM), and smoothing mixture model (SMM) in the Growing-up 

Today Study (GUTS).

Low BMI Medium BMI High BMI

LCGA

Number of cases/participants 463/5803 404/3787 176/1153

Odds ratio (95% CI) of cardiometabolic disease 1.00 1.38 (1.20, 1.58) 2.08 (1.72, 2.50)

GMM

Number of cases/participants 602/7117 306/2862 135/764

Odds ratio (95% CI) of cardiometabolic disease 1.00 1.30 (1.12, 1.50) 2.32 (1.89, 2.85)

SMM

Number of cases/participants 416/5390 434/4095 193/1258

Odds ratio (95% CI) of cardiometabolic disease 1.00 1.42 (1.23, 1.63) 2.17 (1.80, 2.60)

CI: confidence interval.
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