Skip to main content
. 2021 Mar 30;12:1964. doi: 10.1038/s41467-021-21226-z

Table 3.

Estimated Number of Outliers Statistics and Non-replicable SNPs in the GSCAN Dataset.

Phenotype MAF range Number of significant SNPs analyzed (P < 1 × 10−5) Total expected # of outlier statisticsa Total expected # of Non-replicable SNPsb Average of average # of outliers per studyc Maximum # outliers at each SNP Median # of outliers at each SNP
SmkInit 0 < MAF < 0.001 306 62.83 64.85 0.026 2.151 0.007
SmkInit 0.001 < MAF < 0.01 87 22.9 22.73 0.027 1.027 0.015
SmkInit 0.01 < MAF < 0.5 301 6.09 4.63 0.027 2.173 0
SmkCes 0 < MAF < 0.001 424 26.09 22.62 0.046 1.349 0.043
SmkCes 0.001 < MAF < 0.01 100 5.01 3.93 0.043 0.276 0.04
SmkCes 0.01 < MAF < 0.5 201 7.09 4.81 0.045 0.252 0.025
DrnkWk 0 < MAF < 0.001 229 12.72 17.42 0.041 0.874 0.013
DrnkWk 0.001 < MAF < 0.01 74 0.81 0.71 0.042 0.051 0.01
DrnkWk 0.01 < MAF < 0.5 151 0.91 0.73 0.042 0.04 0.003
CigDay 0 < MAF < 0.001 203 16.2 19.86 0.042 0.817 0.025
CigDay 0.001 < MAF < 0.01 61 1.12 0.96 0.038 0.104 0.012
CigDay 0.01 < MAF < 0.5 137 1.27 0.99 0.04 0.1 0.002

Using estimated hyperparameters from MAMBA, we estimated the number of non-replicable SNPs and outlier statistics in each study as a way to quantify the extent of outlier statistics in real data.

aThe total expected number of outlier statistics is calculated by j[Pr^Rj=0kPr^Ojk=1].

bThe total expected number of non-replicable SNPs is calculated by jPr^Rj=0.

cThe average number of outliers per study is calculated by the total number of outliers divided by the number of studies that contributed to the meta-analysis.