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Learning the distribution of single-cell chromosome
conformations in bacteria reveals emergent order
across genomic scales
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The order and variability of bacterial chromosome organization, contained within the dis-
tribution of chromosome conformations, are unclear. Here, we develop a fully data-driven
maximum entropy approach to extract single-cell 3D chromosome conformations from Hi-C
experiments on the model organism Caulobacter crescentus. The predictive power of our
model is validated by independent experiments. We find that on large genomic scales,
organizational features are predominantly present along the long cell axis: chromosomal loci
exhibit striking long-ranged two-point axial correlations, indicating emergent order. This
organization is associated with large genomic clusters we term Super Domains (SuDs),
whose existence we support with super-resolution microscopy. On smaller genomic scales,
our model reveals chromosome extensions that correlate with transcriptional and loop
extrusion activity. Finally, we quantify the information contained in chromosome organization
that may guide cellular processes. Our approach can be extended to other species, providing
a general strategy to resolve variability in single-cell chromosomal organization.
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ARTICLE

hromosomes carry all information to generate a living cell.

In both prokaryotes and eukaryotes, chromosomal DNA is

highly compacted to fit inside its cellular confinement.
This implies a major organizational problem: the DNA does not
only have to be highly condensed, but its spatial organization also
has to facilitate processes such as transcription and replication. In
many bacteria, the genetic information is stored on a single
chromosome with a contour length three orders of magnitude
larger than the cell. Various proteins regulate bacterial chromo-
some structure! >, imposing order on its spatial organization and
thereby impacting cellular processes such as transcription®.
However, this order is opposed by thermal” and active chromo-
somal fluctuations8, as well as inherent cell-to-cell variability®.
The resulting degree of organization of the chromosome remains
unclear. Resolving this organization requires a characterization of
the distribution of single-cell chromosome conformations, posing
a key challenge for experiment and theory!?.

The classical picture in which the bacterial chromosome is
arranged as an amorphous polymer has become obsolete thanks
to recent experimental advances!!-13, Indeed, fluorescence
microscopy experiments revealed that chromosomal loci localize
to well-defined cellular addresses in various species’14-16,
including Caulobacter crescentus!”. This organization helps steer
chromosome segregation!® and cell division!®. In addition, the
level of transcription of several genes depends on their distance to
the pole, Further insights were obtained by chromosome con-
formation capture 5C/Hi-C experiments®!?2, measuring average
pair-wise contacts between loci. These experiments revealed
Chromosomal Interaction Domains (CIDs) of up to 10° base
pairs, comprising loci preferentially interacting within their
domain. Various processes?>24, including transcription2°-2,
impact CID organization. On larger genomic scales, locus pairs
on opposite chromosomal arms appear to favor a juxtaposed
arrangement in several species, induced by the loop extrusion
motor SMC (Structural Maintenance of Chromosomes)23:26-31,
However, it remains challenging to faithfully extract the dis-
tribution of 3D chromosome conformations from Hi-C data.
Thus, despite these experimental insights, a complete model for
the spatial organization of the bacterial chromosome across
genomic scales remains elusive.

To exploit advances in Hi-C experiments on various
bacteria23-2426.29.31,32 3 principled data-driven approach is nee-
ded that makes an unbiased inference of the distribution of
chromosome configurations. However, there are several out-
standing challenges that preclude such a fully data-driven
model20:27:33:34 Several approaches rely on an assumed relation
between Hi-C scores and the average spatial distance between
locus pairs to obtain a 3D structure 27-33:35, Other approaches
generate an ensemble of configurations consistent with Hi-C
data, e.g, using iterative maximum likelihood algorithms3®.
However, Hi-C maps could be consistent with many underlying
distributions. For eukaryotes, an equilibrium Maximum Entrop
(MaxEnt) distribution selection method was proposed®”-37, as
used for protein structure prediction0. However, such an
approach may be unsuitable for chromosomes in living cells,
which exhibit non-equilibrium fluctuations®41:42. Thus, a rigor-
ous approach to derive a distribution of chromosome con-
formations compatible with non-equilibrium dynamics is still
lacking.

Here, we develop a fully data-driven MaxEnt approach for the
bacterial chromosome based on Hi-C data. This approach infers
the least-structured distribution of chromosome conformations
that fits Hi-C experiments, capturing population heterogeneity at
the single-cell level. Our MaxEnt model does not rely on equili-
brium assumptions, is inferred directly from normalized Hi-C
scores, does not require an assumed Hi-C score-distance relation,

and we determine the coarse-graining scale of our model using
experiments. The MaxEnt model reveals the organization and
variability of the bacterial chromosome across genomic scales.
Using this model, we quantify the localization information in the
cellular location of chromosomal loci that can be used by cellular
processes. Our theoretical framework may be generalized to other
prokaryotic and eukaryotic species, providing a principled
approach to resolve chromosome organization from Hi-C data.

Results

Maximum entropy model inferred from chromosomal contact
frequencies. Our goal is to determine the ensemble of single-cell
chromosome conformations for a heterogeneous cell population
from experimental Hi-C data. To this end, we build on existing
MaxEnt methods for analyzing biophysical data37-38:40:43-49 ¢
develop a principled approach for inferring the statistics of
chromosome structure in bacteria from experiments.

The microstates {0} of the system are defined as the set of all
configurations of the chromosome contained within the cellular
confinement. We seek the statistical weights P(0), chosen to be
consistent with the experimental Hi-C map. In general, however,
a set of experimental constraints does not uniquely determine
P(0). The MaxEnt approach is based on selecting P(0) from these
possible solutions by choosing the unique distribution with the
largest Shannon entropy,

S=-— ; P(0)InP(0), (1)
constituting the least-structured distribution consistent with
experimental data. Put simply, we require that the only structure
present in P(0) is due to experimental constraints from Hi-C
scores, rather than assumed features of the underlying polymer
model, the interpretation of Hi-C scores, or the ensemble-
generating algorithm. A central assumption of our approach is
that the experimental Hi-C maps contain sufficient information
to constrain the distribution of chromosome conformations.

To apply the MaxEnt method to experimental Hi-C data, we
employ a coarse-grained representation of the chromosome: the
polymer is represented as a discrete circular chain of length N on
a 3D cubic lattice; the chain can self-intersect and is constrained
to the cell-shaped confinement. A subset of the N monomers—
equally spaced along this chain—represents the centers of the
genomic regions, which are defined as the stretch of the DNA
associated with an individual bin of the Hi-C map. Thus, the
dimensions of the coarse-grained representation are set by the
resolution of the available Hi-C data (Supplementary Notes 2,
3.1). This provides an efficient computational framework, while
still capturing key organizational features. Specifically, this
representation is chosen to preserve experimentally measured
distance fluctuations at the coarse-graining scale (see “Methods”
section and Supplementary Notes 1-2). At larger scales, the
statistics of polymer configurations are only constrained by Hi-C
data. Within this representation, a microstate 0= {r;,r,,...} =
{r} is defined by the monomer positions r;. Two genomic regions
have a contact probability y if they occupy the same lattice site,
and 0 otherwise.

To obtain the least-structured distribution of microstates
consistent with experiments, we seek P({r}) that maximizes S
(Eq. (1)) under experimental constraints*>>0, The two constraints
we impose are: 1) the model contact frequencies should match
experimental contact frequencies f ijPt between genomic regions i
and j (the correspondence between f;-’(pt and Hi-C scores is
discussed in the next section), and 2) the distribution should be

normalized. To this end, we introduce the functional S, with one
Lagrange multiplier A; for each experimental constraint and A,
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ensuring normalization:

S=— {z} P({rP)InP({r}) — %A@ ({2} P({r})yd, .

—fZ-’““) — (g P({r}) - 1)

(2)

Here, 6%5 is the Kronecker delta. We maximize S under these
constraints, setting #{Sr}) = 0, yielding
1
P((r) = e |- ,00, . o)

with Z = exp[l + Ay]. The A;/’s parametrizing P({r}) is determined
by solving

2 P}y, = e (4)

for each experimental constraint. For typical Hi-C data on a
bacterial chromosome, this amounts to of order 10° constraints?®.
These equations can not be solved directly, as they are highly
nonlinear and the state space is very large.

The daunting challenge of finding the Lagrange multipliers can
be overcome by noting that the distribution in Eq. (3) can be
mapped to a statistical mechanics model: a confined lattice
polymer, with a (dimensionless) Hamiltonian

1
H = E[Zjeij(srhrj. (5)

The mapping to Eq. (3) is made by setting €;; = pA;; where ¢;; are
the effective interaction energies between overlapping loci in the
Hamiltonian formulation. Importantly, although a mapping can
be made to a statistical mechanics model, our approach does not
rely on the chromosome being in thermal equilibrium. This is in
contrast to approaches used in refs. 3739 where a hybrid MaxEnt
procedure is employed combining a physical polymer model with
Hi-C derived constraints, resulting in an energy landscape
description of equilibrium chromosome configurations.

We numerically obtain the inverse solutions of this model
using iterative Monte Carlo simulations (Supplementary Note 3).
Testing this algorithm on contact frequency maps generated from
a set of chosen input €;, we find that our algorithm precisely and
robustly recovers the correct input values (Supplementary
Note 4).

Inferring the MaxEnt model directly from normalized Hi-C
scores. A major hurdle in applying data-driven inference
approaches is finding a correspondence between experimental
Hi-C scores and the contact frequencies in a coarse-grained
polymer model. Published Hi-C maps are typically normalized.
This normalization compensates known biases in raw Hi-C data,
for instance, due to the proportionality between the number of
restriction sites in a genomic region and its Hi-C score!. Fur-
thermore, absolute Hi-C scores are hard to interpret because it is
difficult to estimate the conversion factor to physical contact
frequencies. Importantly, however, even if absolute contact scores
could be obtained, a mapping to contact frequencies in a coarse-
grained model is challenging.

We address this conversion issue by treating the conversion

factor as an unknown parameter ¢ in our MaxEnt procedure.

~expt
Thus, we write f3" = cfZ-Xp
mental Hi-C scores. We absorb the contact probability factor y
into ¢ (Eq. (2)), setting ¢ = 5, and require that ¢ maximizes the

model entropy (Supplementary Note 3.2), yielding the additional

~expt
, with f;-xP the normalized experi-

constraint

~expt

2egfy =0 (6)

Thus, we infer the least-structured distribution of chromosome
conformations from normalized Hi-C data, without assuming a
conversion between Hi-C scores and contact frequencies or
average distances between loci.

MaxEnt model of the C. crescentus chromosome quantitatively
captures measured cellular localization. We investigate the
degree of organization of the bacterial chromosome by con-
sidering newborn swarmer cells of the model organism C. cres-
centus. Such newborn swarmer cells contain only a single
chromosome, whose replication has not yet initiated®2. To
develop the MaxEnt model for C. crescentus, we first experi-
mentally determine the coarse-graining scale, set by the average
distance between consecutive 10 kb genomic regions (Supple-
mentary Notes 1-2). Subsequently, we infer the parameters of the
MaxEnt model from published experimental Hi-C data (Sup-
plementary Note 5)26. Our inverse algorithm robustly converges
to an accurate description of the Hi-C map: the modeled and
experimental contact maps have an average pair-wise deviation of
6.0% of the total average Hi-C score with a Pearson’s correlation
coefficient of 0.998 (Fig. 1A, B inset).

Our MaxEnt model quantitatively reproduces essential features
of the experimental Hi-C map (Fig. 1A), including the fine
structure of the CIDs, as well as the secondary diagonal, which is
attributed to the alignment of the two chromosomal arms by
SMC30:33-55, The inferred €;;’s (Fig. 1B) should not be interpreted
as physical interaction energies. Rather, they parametrize the
predicted physical distribution of chromosome configurations P
({r;})). We can directly interpret the organizational features
implied by P({r;}) and use it to sample single-cell configurations
(Fig. 1C).

We test the predictive power of the MaxEnt model by
computing the distribution of axial locations of several loci.
Importantly, we do not assume (polar) cell envelope tethering of
specific loci, such as the origin of replication (ori). We orient cells
by setting the ori pole in the cell-half containing ori. Interestingly,
we find a high degree of axial localization of loci: the average axial
position of loci is roughly linearly organized, and the predicted
positions match previous live-cell microscopy experiments!”
(Fig. 2A). By contrast, simulation results of a confined random
polymer—not constrained by Hi-C data—do not exhibit the
linear organization, even when ori is tethered to the cell pole.

The MaxEnt model also predicts distributions of long-axis
positions of chromosomal loci, in remarkable agreement with
prior experiments (Fig. 2B). This comparison with independent
experimental data constitutes a strong validation of our MaxEnt
model. The slight deviation of the position of ori compared to the
experiments (Fig. 2A, B) can be addressed with an extended
MaxEnt model that incorporates the distribution of axial ori
positions as an additional constraint (Supplementary Note 17).
However, other aspects of the predicted chromosomal organiza-
tion are largely unaffected by this modification, and therefore we
will not impose this additional constraint in our analysis.

Large-scale chromosome organization primarily characterized
by long-axis correlations associated with Super Domains.
Large-scale organizational features of the chromosome can be
revealed by measuring various two-point correlation functions.
Earlier models suggested a three-dimensional organization in
which the two chromosomal arms wind around each other with
roughly one helical turn?”33. To test if this organization also
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Fig. 1 Maximum entropy model inferred from Hi-C experiments in C. crescentus. A Comparison between experimental contact frequencies f;xpt (upper
left corner, adapted from ref. 26) and contact frequencies obtained from our inferred MaxEnt model f;"’de' (lower right corner). B Associated inferred

effective interaction energies ¢; (lower right corner, white regions indicate e; — o) together with a scatter plot of f

expt

P ovs, ﬂ,-”"de‘ (inset). € Visualization of a

single-cell chromosome configuration predicted by our MaxEnt model; the centers of four distinct chromosome sections are represented in the schematic

by colored spheres.

emerges in our MaxEnt model, we compute two-point correla-
tions of angular orientations. For each chromosome segment, we
assign an orientation vector in the plane perpendicular to the long
axis. We find that angular correlations decay rapidly for genomic
distances 20.2 Mb (Fig. 3A lower right). Large-scale helical order
is thus negligible, indicating that a pronounced helical organi-
zation is not required to model the experimental Hi-C map.

The two-point correlation function in radial positions decays
even more rapidly with genomic distance up to ~0.1 Mb (Fig. 3A
upper left), indicating the absence of large-scale order in this
direction. By contrast, two-point correlations in the long-axis
position exhibit a striking structure: we observe positive long-
ranged correlations for pairs of genomic regions on the same
chromosomal arm, whereas correlations in axial positions
between arms are predominantly negative (Fig. 3B upper left).
These long-ranged correlations signify emergent order. Impor-
tantly, such organization is absent for a model with a tethered
origin not constrained by Hi-C data (Fig. 3B, lower right), as well
as for a model with juxtaposed chromosomal arms only
constrained by linearly organized average long-axis positions
(Supplementary Note 16). Moreover, the structure of the long-
axis correlations is inconsistent with global rotational fluctuations
(Supplementary Note 12).

We find that these intra-arm anticorrelations are associated
with large high-density clusters of subsequent genomic regions,
which we term Super Domains (SuDs). SuDs emerge from a
clustering analysis of genomic regions in single-cell conforma-
tions (Supplementary Note 9). The formation of domain-like
structures is revealed by plotting the distance between pairs of loci
for a specific chromosome configuration, with single domains
spanning up to a quarter of the chromosome length (Fig. 4A, B).
On average, 73% of genomic regions are part of a SuD, each

chromosomal arm contains ~4 SuDs, and each SuD contains 48
genomic regions (Supplementary Fig. 21). Compared to CIDs,
they are typically larger with more variable size and genomic
location across chromosome conformations. The variable and
delocalized nature of SuDs is apparent from the average distance
map between genomic regions, indicating no discrete structure
(Fig. 4C). Importantly, SuDs forming on opposing chromosomal
arms tend to spatially exclude each other (Fig. 4B, E): the fraction
of overlap in axial positions is reduced by 26% compared to
randomly paired left and right arm configurations. As a result of
this tendency to spatially exclude, chromosomal regions belong-
ing to SuDs on opposing sections of the two arms, are expected to
fluctuate in an anti-correlated fashion. (Supplementary Note 9).
Thus, this exclusion behavior of opposing SuDs is expected to
generate negative intra-arm correlations for pairs of genomic
regions with similar average axial positions (Supplementary
Note 9).

To experimentally verify signatures of SuDs, we turned towards
SIM (structured illumination microscopy) super-resolution
microscopy and investigated the intracellular distribution of
chromosomal DNA in C. crescentus at the single-cell level. These
experiments reveal that the chromosome exhibits a highly
heterogeneous spatial distribution in the cell, including several
dense cluster-like regions (Fig. 4D). We observe that the number,
size, and location of these high-density regions are found to vary
from cell to cell, consistent with SuD properties derived from our
MaxEnt model. To compare these single-cell experimental results
with theory, we provide computed density plots of chromosomes
based on our MaxEnt model. Specifically, for each chromosome
configuration in our model, we compute a chromosome density
plot at the experimental resolution (see Methods), as shown in
(Fig. 4E). In the computed density plots, we observe high-density
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Fig. 2 Validation of MaxEnt model based on spatial location microscopy
data. A Average scaled long-axis position predicted from MaxEnt models
(solid lines) inferred from various Hi-C data sets (from26), including wild-
type cells (black), rifampicin-treated cells (blue), and Asmc cells (orange),
together with results from microscopy experiments (adapted from!”). Also
shown are simulated data for a random polymer with ori-pole tether (dash-
dotted gray line), and a simulated confined random polymer (dashed gray
line), oriented such that ori is always on the left cell half. B The distribution
of single-cell positions (scaled long-axis position) of chromosomal loci (blue:
ori, red: pilA, green: pleC, orange: pod)), as predicted by the MaxEnt model
(solid lines), together with previous experimental data from microscopy
experiments (bars, adapted from!”). To indicate experimental variability, the
solid/transparent bars indicate the minimum/maximum measured by two
different methods: FROS or FISH. To enable a direct comparison between
model and experiment, the model values are distributed over the same
number of bins as the experiment. The dotted lines indicate the distribution
for a confined oriented random polymer as in A.

regions similar to those obtained in our super-resolution
experiments. Importantly, the high-density regions in the
modeled chromosome density plots correspond to underlying
SuD structures (dashed lines in Fig. 4E). Thus, these results allow
us to establish a connection between the SuDs predicted by our
model and single-cell super-resolution data.

To investigate the influence of cellular processes on long-axis
organization, we perform the two-point correlation and SuD
structure analysis (Supplementary Note 9) on published Hi-C
data of rifampicin-treated cells and a mutant lacking SMC
(Asmc)?6 (Supplementary Note 13). Rifampicin treatment inhibits
transcription, whereas deletion of SMC abolishes the loop-
extrusion activity required to juxtapose the two chromosomal
arms>3°%. For both cases, our models predict an average
localization along the long axis similar to those in wild-type cells

(Fig. 2A). However, the predicted long-axis correlations exhibit
marked differences: for rifampicin-treated cells with inhibited
transcription, anticorrelations between chromosomal arms are
less pronounced (Fig. 3C upper left). In contrast, Asmc cells
display a broad regime with strong anticorrelations between loci
on opposite arms (Fig. 3C lower right). These effects are reflected
in the statistics of SuDs: upon inhibition of transcription, the
SuDs contain 7% more genomic regions per domain than in the
wild type. Despite this increased density, the transcription-
inhibited cells show a similar overlap of SuDs (29% lower than for
randomly paired arms). By contrast, Asmc cells exhibit a similar
average SuD density to the wild type (50 genomic regions per
cluster on average), but a strong reduction of inter-arm domain
overlap (48% lower than for randomly paired arms). Correspond-
ingly, the anticorrelations between long-axis positions of
chromosomal arms are much stronger for this mutant (Fig. 3C
lower right). Thus, these results suggest that the action of SMC
enhances interactions between SuDs, whereas transcription alters
their density.

Local chromosome extension coincides with high transcrip-
tional activity, but only for one chromosomal arm. The MaxEnt
model provides access to local structural features that may be
difficult to determine experimentally. Specifically, we consider the
local chromosomal extension §;, defined as the average spatial
distance between two neighboring genomic regions of region i
(Supplementary Note 15). Interestingly, the §;-profile exhibits an
overall trend that is lowest at ori and ter (Fig. 5A), indicating that
these regions are intrinsically more compact (Supplementary
Note 15). In addition, pronounced peaks and valleys in the local
extension are revealed at a smaller genomic scale similar to that of
CIDs. The same structure appears for Asmc cells, although their
chromosome appears to be locally more compact than that of the
wild type. By contrast, in rifampicin-treated cells, peak ampli-
tudes are significantly suppressed, suggesting a link between local
chromosome extension and transcription.

Previous work reported a connection between CID boundaries
and highly transcribed genes?¢. Based on this observation and
polymer simulations, it was suggested that high transcription
creates plectoneme-free regions, physically separating CIDs. To
further investigate the impact of gene expression activity on local
structure, we compare the locations of local chromosome
extension peaks in our MaxEnt model and the 2% most highly
transcribed genes. Indeed, we observe a significantly increased
overlap between the local chromosome extension peaks and the
locations of highly transcribed genes, compared to a random
distribution of peaks, but only for genes on the forward strand of
the right ori-ter arm (0-2.0 Mb) (Supplementary Note 10). If the
colocalization of local extension peaks by highly transcribed genes
would only depend on the relative direction of transcription and
replication, this should also occur for highly transcribed genes on
backward strands on the left arm, which we do not observe. Thus,
while our results indicate a connection between high local
chromosome extension and the direction of replication and
transcription of highly transcribed genes, the underlying
molecular mechanism is still unclear.

The chromosomal structure provides localization information
in the cell. The inferred structural features of the chromosome
not only yield insights into the cellular organization, but they may
also have functional significance: organizational features of the
chromosome contain spatial information that could guide cellular
processes. This spatial information depends on the degree of
localization of genomic regions. Put simply, the localization
information content of a genomic region increases with the
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red. B Long axis distribution of genomic regions in SuDs identified in the configuration depicted in A. C Average spatial distances between genomic regions.
D Super-resolution microscopy images of DAPI-stained DNA inside six synchronized C. crescentus swarmer cells. The color code reflects the DAPI
fluorescence signal at each pixel, rescaled so that the maximum is at 1 for each cell. E Chromosome density plot with the same scaling of several randomly
chosen chromosome configurations from our MaxEnt model (with Gaussian blur applied that matches the experimental resolution). Dashed lines indicate
the half-maximum density contour of each SuD (identified by the clustering analysis in Supplementary Note 9), with the line color indicating if a SuD
predominantly forms on the right (0-2 Mb, blue) or left (2-4 Mb red) chromosomal arm.

precision of its cellular location, i.e., when the spatial distribution
of the genomic region is more sharply peaked around a specific
point in the cell. This localization information (introduced in the
context of developmental patterning®”) could for example be used
to position proteins within the cell: a high relative affinity to a
genomic region with high localization information increases the
localization of this protein. This mechanism may be exploited to
position protein droplets®®, through nucleation on specific
chromosomal regions, e.g., droplet-like clusters of DNA-binding
chromosome partitioning proteins of the ParB family3.

Using our MaxEnt model, we can quantify how much
localization information (Supplementary Note 14) is encoded
by chromosome organization per genomic region (Fig. 5B). This
chromosomal localization information is largest near ori and ter,
providing 3 bits of localization information, equivalent to

reducing the localization uncertainty to one cellular octant. By
contrast, a random polymer provides only 1 bit, enough to reduce
localization uncertainty to one cell half. For comparison, with our
coarse-grained description, maximal localization information of
approximately 9 bits could be achieved. Thus, while this
localization information metric indicates that the bacterial
chromosome is substantially more ordered than a random
polymer, it also highlights that the chromosome is far from
having a rigid organization with a precise folded structure.
Comparing these results with those for modified conditions, we
find that rifampicin treatment increases chromosomal localiza-
tion information, whereas information is reduced in Asmc cells,
suggesting that SMC action and transcription have opposing
effects on localization information. This localization information
is just one example of how structural features in the organization
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Fig. 5 The MaxEnt model reveals local features and localization
information encoded by chromosome organization. A The local
chromosome extension §; as a function of genomic position. §; is defined as
the spatial distance between neighboring genomic regions of site i averaged
over all chromosome conformations. Model predictions are shown for wild-
type cells (black), rifampicin-treated cells (blue), Asmc cells (orange), and a
pole-tethered random polymer (gray dash-dotted line). The locations of the
top 2% highly transcribed genes are indicated by vertical gray dashed lines,
the locations of CIDs determined in ref. 26 are indicated by red markers.
B Localization information per genomic region in bits for wild-type (black),
Asmc (orange), rifampicin-treated cells (blue), a random pole-tethered
polymer (dash-dotted line), and a random polymer (dashed line).

of the chromosome can be used to guide cellular processes. The
MaxEnt approach provides a scheme to estimate the information
available to the cell that is contained in the distribution of
chromosome conformations.

Discussion

We established a fully data-driven principled approach to infer
the spatial organization of the bacterial chromosome at the
single-cell level and applied this approach to normalized Hi-C
data of the model organism C. crescentus. The predictive power of
this MaxEnt model is confirmed by prior microscopy
experiments!” showing the distributions of axial positions of
chromosomal loci within the cell. Contrary to previous modeling
approaches, our MaxEnt model does not rely on an assumed
connection between Hi-C scores and average spatial distances?!.
Instead, we can predict how these quantities are related: we
recover the approximately linear relation between intra-arm
genomic distance and spatial distance used as an input in
refs. 2133 (Supplementary Note 11). However, there are sub-
stantial region-to-region deviations in the resulting relation
between Hi-C scores and average spatial distances, together with

significant correlations in distances between genomic regions.
Previous approaches could not account for such deviations and
correlations. This may explain differences in model predictions
such as the helical chromosomal structure suggested in refs. 27-33,
which we do not observe.

By design, the MaxEnt model yields the least-structured dis-
tribution of chromosome conformations consistent with experi-
mental constraints, allowing us to investigate the degree of order
in the bacterial chromosome. To do this, we considered two-point
correlation functions in the cellular positions of genomic regions.
We observe negligible correlations in the radial and angular
coordinates, indicating an absence of organizational order in
these directions. By contrast, there are pronounced long-ranged
correlations along the long cell axis, indicating emergent order.
This order is related to the observation of variable and delocalized
clusters of genomic regions, which we term Super Domains
(SuDs). These SuDs manifest in single-cell conformations and are
consistent with high-density clusters observed in the C. crescentus
chromosome by our super-resolution microscopy experiment
(Fig. 3E). Similar blob-like structures have previously been
observed with (super-resolution) microscopy for the chromosome
of Bacillus subtilis*> and Escherichia coli'3, suggesting that SuDs
are also present in other bacteria. Our MaxEnt model indicates a
spatial exclusion of opposing SuDs from different chromosomal
arms, which we associate with the long-ranged anticorrelations in
axial positions. The interplay between SMC complexes and
transcription has been explored in prior work?®°%, We find that
transcription and SMC have opposing effects on SuD properties:
inter-arm overlap between domains is reduced by transcription
and increased by SMC, consistent with the idea that SMC links
chromosomal arms?329:30:3,

At the smaller genomic scale of CIDs, we observe a char-
acteristic pattern of local chromosomal extensions, being most
compact at ori and ter. We speculate that the local compaction of
the ori region may be due to the binding of nucleoid-associated
proteins (NAPs)!? such as the ParABS chromosome partitioning
system>*. The compaction of the ter region might be imposed by
the recently discovered NAP ZapT®, which specifically binds to
this region of the chromosome, or by additional as-of-yet
undiscovered NAPs. Interestingly, peaks in local extension tend
to coincide with highly transcribed genes, but only for the for-
ward strand of the right chromosomal arm (Supplementary
Note 10).

From our MaxEnt model, we obtain an estimate of the chro-
mosomal localization information per genomic region. This
information reaches up to 3 bits around ori and ter, equivalent to
a localization uncertainty in the cell of one cellular octant. We
speculate that such localization information encoded by the
organization of the chromosome could be exploited for sub-
cellular positioning of proteins and protein droplets®® or for the
regulation of transcription of genes, as was observed in20,

Our approach resides in the class of static Maximum Entropy
approaches, which make no assumptions or predictions about the
underlying dynamics, as opposed to dynamical maximum
entropy models or maximum caliber models (see for
instance®1:92). Further model limitations are set by the available
input data: organizational features that cannot be faithfully
encoded in population-averaged Hi-C data might be absent in
the MaxEnt model. The resolution of Hi-C data is limited to
10kb for the data sets analyzed here, implying that any organi-
zational features below this genomic length scale cannot be
explored with our model. However, our approach is not limited to
interpreting Hi-C data and can be extended towards an inte-
grated MaxEnt model, simultaneously constrained by both Hi-C
and microscopy data (Supplementary Note 17). Furthermore, our
approach may be generalized to other prokaryotes, including
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systems with replicating chromosomes and multiple replicons, as
well as eukaryotes, paving the road for unraveling all information
on chromosome conformations at multiple length scales, eluci-
dating single-cell variability and population averages.

Methods
Here, we consider Hi-C data (replicate 1 of the BglII Hi-C data) on C. crescentus
newborn swarmer cells published in ref. 26, which have a single, non-replicating
chromosome. However, due to imperfect synchronization, a small fraction of cells
are included in these experiments in which processes such as chromosome repli-
cation and segregation have initiated, which will be reflected in the Hi-C map?/-33,
Before inferring a MaxEnt model, we apply a data-processing scheme to filter out
contributions from cells with replicating chromosomes (See Supplementary
Notes 5-6). However, we also provide a MaxEnt model inferred directly from the
unprocessed Hi-C data (See Supplementary Note 7) and MaxEnt models inferred
from Hi-C data sets for replication-arrested cells?> (See Supplementary Note 8).
While there are small differences between the different models, the central beha-
viors from the MaxEnt model reported in the main text are similar in all cases.
Our algorithm (Supplementary Notes 3,4) requires two length scales: the
dimensions of the cellular confinement and the lattice spacing. As cellular con-
finement, we use a cylinder capped with hemispheres with the dimensions of a
newborn swarmer cell minus the cell envelope: 0.63 um x 2.2 um (Supplementary
Notes 1-2), which is assumed to be the same for all cells. A more detailed
representation of the cellular confinement shape does not appear to affect our main
results (Supplementary Note 17). To set the coarse-graining scale of our MaxEnt
model, we experimentally determined the distribution of spatial distances between
subsequent Hi-C bins. Specifically, the lattice spacing, b, is set by the average
spatial distance between consecutive 10 kb regions (the Hi-C bin size). To deter-
mine this parameter, we probed the physical distance of two loci separated by 10 kb
in five different regions of the chromosome, using an approach comparable to%364,
To this end, we constructed strains whose chromosomes contained two indepen-
dent arrays of transcription factor binding sites (comprising 10 LacI or TetR
binding sites, respectively) inserted at the proper distance (Supplementary Note 1).
The sub-cellular positions of these arrays were then determined by producing the
respective fluorescently labeled transcription factors (LacI-eCFP and TetR-eYFP) at
very low levels, based solely on the basal activity of the inducible promoter driving
their expression. Swarmer (G1-phase) cells were imaged immediately after isola-
tion, and the localization of the two arrays was determined with sub-pixel precision
by fitting a 2D Gaussian to the acquired images. The Euclidean distances between
the two arrays were calculated, taking into account correction factors for a sys-
tematic shift produced by the set-up (see Methods for further details) and are
shown in (Table S5). The average distance between genomic loci 10 kb apart were
found to be 129 + 7 nm, implying a lattice spacing b = 88 nm (Supplementary
Note 2). For the selection of cells in Fig. 4D, cells with approximately the average
newborn cell length (2.3 + 0.2 um (Supplementary Note 2.2)) were chosen. For each
cell, out of the z-stack, the plane that corresponded to the mid-cell being in focus
was selected. For the calculation of single-cell chromosomal density plots (Fig. 4E),
a Gaussian blur was applied, whereby the resolution in the z-direction (300 nm)
and in the x and y directions (120 nm) were set to match the experimental
resolution.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Data supporting the findings of this manuscript are available from the corresponding
author upon reasonable request. A reporting summary for this article is available as a
Supplementary Information file. A sample of chromosome configurations generated by
the MaxEnt model is available on GitHub%.

Code availability
The code generating the data and implementing the analysis presented in the manuscript
is available on GitHub%.
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