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a b s t r a c t

In 2020, an unexpectedly large outbreak of the coronavirus disease 2019 (COVID-19)
epidemic was reported in mainland China. As we known, the epidemic was caused by
imported cases in other provinces of China except for Hubei in 2020. In this paper, we
developed a differential equation model with tracing isolation strategy with close contacts
of newly confirmed cases and discrete time imported cases, to perform assessment and
risk analysis for COVID-19 outbreaks in Tianjin and Chongqing city. Firstly, the model
behavior without imported cases was given. Then, the real-time regeneration number in
Tianjin and Chongqing city revealed a trend of rapidly rising, and then falling fast. Finally,
sensitivity analysis demonstrates that the earlier with Wuhan lock-down, the fewer cases
in these two cities. One can obtain that the tracing isolation of close contacts of newly
confirmed cases could effectively control the spread of the disease. But it is not sensitive
for the more contact tracing isolation days on confirmed cases, the fewer cases. Our
investigation model could be potentially helpful to provide model building technology for
the transmission of COVID-19.
© 2021 The Authors. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Coronavirus disease 2019 (COVID-19) is an infectious disease caused by a newly discovered coronavirus, which is distinct
from other existing types of coronavirus. According to the report by World Health Organization (WHO), most common
symptoms are fever, dry cough and tiredness. Most people infected with the COVID-19 virus will experiencemild tomoderate
respiratory illness and recover without requiring special treatment. At the beginning of 2020, COVID-19 was reported in
Wuhan city, China (Li et al., 2020a). With the arrival of 2020 Spring Festival, massive travelling occurred fromWuhan to other
parts of China, which contributed to the spread of COVID-19. On January 20, the Chinese government has revised the law
provisions concerning infectious diseases and added the COVID-19 as Category B infectious disease. Public health officials
have announced Category B infectious diseases are managed according to Category A, the same as SARS in 2003. In order to
control the transmission of COVID-19, the Chinese authorities introduced the implementation of the lock-down strategy in
Wuhan to shut down themovement on 23 January 2020. All provincial government initiated a first-level emergency response
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Fig. 1. Time differences for between disease onset of symptoms and the arrival in these two cities with COVID-19 cases. (a) Tianjin City. (b) Chongqing City.
from 25 January 2020 (Chinese lunar new year). And some non-pharmaceutical interventions include strict controls on travel,
the surveillance for newly confirmed cases, and the tracing and management with close contacts of newly confirmed cases,
and the registered individuals with home quarantine for at least 14 days (Chinazzi et al., 2020; Li et al., 2020b). All of these
measures are designed to early detection, early reporting and early quarantine for COVID-19.

Mathematical modeling has been influential in providing deeper understanding on the transmission mechanisms and
burden of the ongoing COVID-19 pandemic, contributing to the development of public health policy and understanding. To
our knowledge, someworks have done research on transmission dynamics COVID-19 inmainland China (Chen et al., 2020; Du
et al., 2020; Li et al., 2020b; Lin et al., 2020; Sun et al., 2020; Tang et al., 2020a, 2020b, 2020c;Wu et al., 2020; Yang et al., 2020).
Li et al. (Li et al., 2020b) developed a SEIQR difference-equation model of COVID-19 in Shanxi province that takes into account
the transmission with discrete time imported cases. Sun et al. (Sun et al., 2020) presented a dynamical model to show the
propagation of COVID-19 in Wuhan and the effects of lock-down and medical resources. Tang et al. (Tang et al., 2020a, 2020b,
2020c) devised SEIR model on the estimation of the transmission risk of COVID-19 and showed the effectiveness of control
strategy by intensive contact tracing followed by quarantine and isolation in mainland China. However, there is little work
focused on the influence on contact tracing quarantine measures with the confirmed cases in some other provinces with
discrete imported cases except Hubei Provinces in mainland China. Therefore, understanding the factors influencing COVID-
19 outbreaks has become a major provincial public health priority in some provinces other than Hubei Province.

Using information published by the Health Commission of Tianjin and Chongqing city, we constructed a data-set of COVID-
19 patients including these two cities. The detailed information includes the cumulative and daily laboratory-confirmed
cases, and life track of these laboratory-confirmed cases. By means of statistical analysis the life track of all laboratory-
confirmed cases, we obtain the data of symptom onset for all laboratory-confirmed cases, and arrival date of the
confirmed COVID-19 cases in these two cities (we found that almost all confirmed cases arrived in these two cities without
any symptoms). The newly onset of symptoms COVID-19 cases and the actual time of arrival in Tianjin and Chongqing City
with confirmed COVID-19 cases were shown in Fig. 1. At the end of February, the cumulative confirmed cases and the im-
ported cases of these two cities (Tianjin and Chongqing) were (136, 34) and (576, 187), respectively.

In this study, to make predictions and perform assessment and risk analysis for COVID-19 outbreaks in Tianjin and
Chongqing city, we developed differential equation model with tracing isolation strategy with close contacts of newly
confirmed cases and discrete time imported cases. The model behavior without imported cases was given. Finally, the real-
time regeneration numbers in these two cities were given, the model parameters were estimated, and numerical simulations
support the data reasonably well. From sensitivity analyses, one conclude that the tracing isolation of close contacts of newly
confirmed cases can effectively control the spread of the disease.
2. Mathematical model

In this study, we developed a SLEIAQRSq differential equation model with tracing isolation strategy for close contacts of
newly confirmed cases to describe the transmission of COVID-19 in Tianjin and Chongqing City. Fig. 2 (A) shows the COVID-19
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Fig. 2. (A) COVID-19 disease progression. (B) Transmission diagram of COVID-19.
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disease progression. An individual infected first goes through a non-infectious latent phase. Then followed by an infectious
period that spans across symptom onset. In the pre-symptomatic phase, the person is infectious without symptoms. When
the individual had the symptom onset, the person enters the symptomatic phase, and continues to be infectious. Hence, the
model classified the human population (N(t)) into susceptible compartment S(t), latent compartment L(t), pre-symptomatic
compartment E(t), symptomatic infectious compartment I(t), symptomatic un-infectious compartment A(t), confirmed
compartment Q(t), recover compartment R(t) and quarantine susceptible compartment Sq(t). The period in incubation
compartment is from time of infection to time of onset of symptoms, which includes the latent period L and the pre-
symptomatic period E. Confirmed class Q(t) means the individual with laboratory-confirmed diagnosis. Once a individual
is diagnosed in mainland China, who will be immediately arranged for hospitalization and isolation treatment, and will not
participate in transmission.

Human population birth and death rates were assumed the same. The human host latent period and pre-symptomatic
period were 1/d and 1/d days, respectively. T(t) and T1(t) were the imported COVID-19 cases at discrete time t, which were
considered entering the latent compartment L(t) and pre-symptomatic compartment E, respectively. The transfer rate from
symptomatic infectious cases to symptomatic un-infectious cases was c, symptomatic un-infectious cases at the rate m
reverted to confirmed cases and the recover rate was g. Susceptible humans acquired COVID-19 through direct contact with

pre-symptomatic cases and symptomatic un-infectious cases at rates bSðtÞEðtÞ
NðtÞ and b1SðtÞIðtÞ

NðtÞ , respectively. In this study, the

tracking isolation strategy for close contacts of newly confirmed cases was considered. Hence, the susceptible cases of tracing

isolation was bmSðtÞAðtÞ
NðtÞ (b is the tracing isolation individuals per newly confirmed case) and the rate of isolated susceptible

converting to susceptible compartment was l. The tracing isolation strategy for close contacts of newly confirmed cases for
transmission dynamics of COVID-19 diagram in Tianjin and Chongqing City are shown in Fig. 2 (B). Hence, the following
differential equations were considered to describe the COVID-19 transmission model:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dSðtÞ
dt

¼ mN � bSðtÞEðtÞ þ b1SðtÞIðtÞ þ bmSðtÞAðtÞ
NðtÞ � mSðtÞ þ lSqðtÞ;

dLðtÞ
dt

¼ TðtÞ þ bSðtÞEðtÞ þ b1SðtÞIðtÞ
NðtÞ � dLðtÞ � mLðtÞ;

dEðtÞ
dt

¼ T1ðtÞ þ dLðtÞ � dEðtÞ � mEðtÞ;

dIðtÞ
dt

¼ dEðtÞ � cIðtÞ � mIðtÞ;

dAðtÞ
dt

¼ cIðtÞ �mAðtÞ � mAðtÞ;

dQðtÞ
dt

¼ mAðtÞ � gQðtÞ � mQðtÞ;

dRðtÞ
dt

¼ gQðtÞ � mRðtÞ;

dSqðtÞ
dt

¼ bmSðtÞAðtÞ
NðtÞ � lSqðtÞ � mSqðtÞ;

NðtÞ ¼ SðtÞ þ EðtÞ þ IðtÞ þ QðtÞ þ RðtÞ þ SqðtÞ:

(2.1)
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3. Dynamical behavior

If there does not exist imported cases T(t) and T1(t), system (2.1) will become the following differential equations:

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dSðtÞ
dt

¼ mN � bSðtÞEðtÞ þ b1SðtÞIðtÞ þ bmSðtÞAðtÞ
NðtÞ � mSðtÞ þ lSqðtÞ;

dLðtÞ
dt

¼ bSðtÞEðtÞ þ b1SðtÞIðtÞ
NðtÞ � dLðtÞ � mLðtÞ;

dEðtÞ
dt

¼ dLðtÞ � dEðtÞ � mEðtÞ;

dIðtÞ
dt

¼ dEðtÞ � cIðtÞ � mIðtÞ;

dAðtÞ
dt

¼ cIðtÞ �mAðtÞ � mAðtÞ;

dQðtÞ
dt

¼ mAðtÞ � gQðtÞ � mQðtÞ;

dRðtÞ
dt

¼ gQðtÞ � mRðtÞ;

dSqðtÞ
dt

¼ bmSðtÞAðtÞ
NðtÞ � lSqðtÞ � mSqðtÞ;

NðtÞ ¼ SðtÞ þ EðtÞ þ IðtÞ þ QðtÞ þ RðtÞ þ SqðtÞ:

(3.1)
Omega limit sets of system (3.1) are contained in the following bounded region in the non-negative cone of R8:

X ¼ fðS; L; E; I;A;Q ;R; SqÞj0� S; E; I;Q ;R; Sq �Ng:
X is positively invariant with respect to system (3.1). It is obvious that any solution of system (3.1) with nonnegative initial
values is nonnegative and system (3.1) has one disease-free equilibrium P ¼ (N , 0, 0, 0, 0, 0, 0, 0).
0 0

3.1. The basic reproduction number

We derive the basic reproduction number of system (3.1) by the next generation matrix formulated in Diekmann et al.
(Diekmann et al., 1990, 2009), we define the new vector x ¼ (L, E, I), which contains the latent variable (L), pre-symptomatic
variable (E) and infected variable (I). Considering the following auxiliary system:

8>>>>>>><
>>>>>>>:

dLðtÞ
dt

¼ bSðtÞEðtÞ þ b1SðtÞIðtÞ
NðtÞ � dLðtÞ � mEðtÞ;

dEðtÞ
dt

¼ dLðtÞ � dEðtÞ � mEðtÞ;

dIðtÞ
dt

¼ dEðtÞ � cIðtÞ � mIðtÞ:

(3.2)
Using the method of van den Driessche and Watmough (van den Driessche & Watmough, 2002), we can obtain

F ¼
0
@0 b b1

0 0 0
0 0 0

1
A;V ¼

0
@dþ m00� d

dþ m 0
0 �d cþ m

1
A

Thus, the next generation matrix of system (3.2) is

FV�1 ¼

0
BBBB@

bd
ðdþ mÞðdþ mÞ þ

b1dd
ðdþ mÞðdþ mÞðcþ mÞ

b

dþ m
þ b1d

ðdþ mÞðcþ mÞ
b1

cþ m

0 0 0

0 0 0

1
CCCCA
So the basic reproduction number is
621
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R0 ¼ rðFV�1Þ ¼ bd
ðdþ mÞðdþ mÞ þ

b1dd
ðdþ mÞðdþ mÞðcþ mÞ:
Theorem 3.1. If R0 >1, system (3.1) has a unique endemic equilibrium

P* ¼ ðS*; L*; E*; I*;A*;Q*;R*; S*qÞ:

*
Proof. Let P* ¼ ðS*; L*; E*; I*;A*;Q*;R*; SqÞ be a positive equilibrium of system (3.1). Now we calculate the positive equi-
librium of system (3.1),

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:

0 ¼ mN � bS*E* þ b1S
*I* þ bmS*A*

N
� mS* þ lS*q;

0 ¼ bS*E* þ b1S
*I*

N
� ðdþ mÞL*;

0 ¼ dL* � ðdþ mÞE*;
0 ¼ dE* � ðcþ mÞI*;
0 ¼ cI* � ðmþ mÞA*;

0 ¼ mA* � ðgþ mÞQ*;

0 ¼ gQ* � mR*;

0 ¼ bmS*A*

N
� ðlþ mÞS*q;

N ¼ S* þ L* þ E* þ I* þ A* þ Q* þ R* þ S*q:

(3.3)
We have

S* ¼ N
R0

; I* ¼ dmðlþ mÞðmþ mÞðR0 � 1Þ
bðmþ mÞðcþ mÞðlþ mÞ þ b1dðlþ mÞðmþ mÞ þ bmcmd

N;

* ðdþ mÞðcþ mÞ * * cþ m * * c * * cm *
L ¼
dd

I ; E ¼
d

I ;A ¼
mþ m

I ;Q ¼ ðmþ mÞðgþ mÞI ;

* g cm * * bcm *
R ¼
m ðmþ mÞðgþ mÞI ; Sq ¼ R0ðlþ mÞðmþ mÞI :
3.2. Stability of the disease-free equilibrium P0

Let

M ¼ F � V ¼
0
@�ðdþ mÞ b b1

d �ðdþ mÞ 0
0 d �ðcþ mÞ

1
A

Define sðMÞ ¼ maxfRel : l is an eigenvalue ofMg, so s(M) is a simple eigenvalue ofMwith a positive eigenvector (Smith&
Waltman, 1995). By Theorem 2 of van den Driessche andWatmough (van den Driessche &Watmough, 2002), there hold two
equivalences:

R0 >1⇔sðMÞ>0;R0 <1⇔sðMÞ<0:
Theorem 3.2. (a) IfR0 <1, then the disease-free equilibrium P0 of system (3.1) is globally asymptotically stable in the region X. (b)
If R0 >1, then the disease-free equilibrium P0 of system (3.1) is unstable.
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Proof. To prove the local stability of disease-free equilibrium P0 of system (3.1), all eigenvalues of the Jacobian matrix with
system (3.1) at disease-free equilibrium P0 have negative real parts. The Jacobian matrix is

JjP0 ¼
�
M 0
J1 J2

�
;

where
J1 ¼

0
BBBB@

0 �b �b1
0 0 0
0 0 c
0 0 0
0 0 0

1
CCCCA; J2 ¼

0
BBBB@

�m l �bm 0 0
0 �l� m bm 0 0
0 0 �m� m 0 0
0 0 m �g� m 0
0 0 0 g �m

1
CCCCA
Calculated the eigenvalues of J2,

sðJ2Þ ¼ maxf�m; �m; �ðmþmÞ; �ðmþ lÞ; �ðmþgÞg<0:
If R0 <1, then s(M) < 0 and sðJjP0 Þ<0, the disease-free equilibrium P0 of system (3.1) is locally asymptotically stable. If
R0 >1, then s(M) > 0 and sðJjP0 Þ>0, the disease-free equilibrium P0 of system (3.1) is unstable.

For system (3.2), it is easy to obtain:

dx
dt

� ðF �VÞx; (3.4)
Let b � 0 be the left eigenvector of the nonnegative matrix Ve1F with respect to the eigenvalue rðV�1FÞ ¼ R0, that is,

bTV�1F ¼ R0b
T . Define the Lyapunov function:

L1 ¼ bTV�1x:
Then the derivative of L along system (3.2) is:

dL1
dt

¼ bTV�1x0 � bTV�1ðF �VÞx ¼ bTV�1Fx � bTx � ðR0 �1ÞbTx:
If R0 <1, then dL1
dt � 0. Let:

J ¼
��

S; L; E; I;A;Q ;R; SqÞ2XjdL1
dt

¼0
�

IfR0 � 1, dL1dt ¼ 0 implies that bTx¼ 0, thus L¼ 0, E¼ 0, I¼ 0. Therefore, the largest invariant set ofJ is the singleton P0. By
LaSalle’s invariance principle (LaSalle, 1976), P0 is globally asymptotically stable in the region X when R0 � 1.

If R0 >1 and x > 0, it follows that:

ðR0 �1ÞbTx>0; (3.5)
There must exist dL1
dt >0 in a small enough neighborhood of P0 in the interior of X. Therefore, solutions in the interior of X

sufficiently close to P0 move away from P0 provided R0 >1, and thus P0 is unstable. The proof is end. ,
3.3. Stability of the endemic equilibrium P*

In this section, we will discuss the stability of the unique endemic equilibrium P*. Since determination of the eigenvalues
of the Jacobian matrix with the endemic equilibrium requires solving a quartic equation, which is difficult to handle even for
Routh-Hurwitz criterion. Alternatively, the bifurcation method based on center manifold theory by Castillo-Chavez and Song
(Castillo-Chavez & Song, 2004) was chosen to study the local stability of endemic equilibrium P* of system (3.1).

Theorem 3.3. If R0 >1, then the endemic equilibrium P* of system (3.1) is locally asymptotically stable in the region X.
Proof. To proceed, we substitute the variables as x1(t) ¼ S(t), x2(t) ¼ L(t), x3(t) ¼ E(t), x4(t) ¼ I(t), x5(t) ¼ A(t), x6(t) ¼ Q(t),

x7(t) ¼ R(t), x8(t) ¼ Sq(t), X(t) ¼ N(t) and system (3.1) will become
623
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8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

dx1ðtÞ
dt

¼ mXðtÞ � bx1ðtÞx3ðtÞ þ b1x1ðtÞx4ðtÞ þ bmx1ðtÞx5ðtÞ
XðtÞ � mx1ðtÞ þ lx8ðtÞ;

dx2ðtÞ
dt

¼ bx1ðtÞx3ðtÞ þ b1x1ðtÞx4ðtÞ
XðtÞ � dx2ðtÞ � mx2ðtÞ;

dx3ðtÞ
dt

¼ dx2ðtÞ � dx3ðtÞ � mx3ðtÞ;

dx4ðtÞ
dt

¼ dx3ðtÞ � cx4ðtÞ � mx4ðtÞ;

dx5ðtÞ
dt

¼ cx4ðtÞ �mx5ðtÞ � mx5ðtÞ;

dx6ðtÞ
dt

¼ mx5ðtÞ � gx6ðtÞ � mx6ðtÞ;

dx7ðtÞ
dt

¼ gx6ðtÞ � mx7ðtÞ;

dx6ðtÞ
dt

¼ bmx1ðtÞx5ðtÞ
XðtÞ � lx8ðtÞ � mx8ðtÞ:

(3.6)
Considering the bifurcation parameter b of system (3.6) as the following system:

dx
dt

¼ f ðx; bÞ; f : R8 � R/R8; f2C2
�
R8 � R

�
(3.7)
Without loss of generality, P0 is also the equilibrium of system (3.7). And for the values of the parameter b, that is f(P0, b) ≡
0.

According to Theorem 4.1 of Castillo-Chavez and Song (Castillo-Chavez & Song, 2004), let fk be the k � th component of
system (3.7), and

a ¼
X8

k;i;j¼1

vkwiwj
v2fk
vxivxj

ðP0;0Þ; b ¼
X8
k;i¼1

vkwi
v2fk
vxivb

ðP0;0Þ:
The associated non-zero second-order partial derivatives around P0 are:

v2f1
vx1vx4

ðP0; 0Þ ¼
v2f1

vx4vx1
ðP0;0Þ ¼

b1
XðtÞ;

v2f1
vx1vx5

ðP0;0Þ ¼
v2f1

vx5vx1
ðP0;0Þ ¼

bm
XðtÞ;

v2f v2f b v2f v2f bm
2

vx1vx4
ðP0; 0Þ ¼ 2

vx4vx1
ðP0;0Þ ¼ 1

XðtÞ;
8

vx1vx5
ðP0;0Þ ¼ 8

vx5vx1
ðP0;0Þ ¼ XðtÞ;

v2f1 v2f2

vx3vb

ðP0;0Þ ¼ �1;
vx3vb

ðP0;0Þ ¼ 1:
And the rest of the second-order partial derivatives are all zero.

Let R0 ¼ rðFV�1Þ ¼ b
dþmþ b1d

ðdþmÞðmþmÞ ¼ 1, and the linearization Jacobian matrix of system (3.6) around the disease-free

equilibrium P0 with x ¼ (x1, x2, x3, x4, x5, x6, x7, x8) is

A ¼ JjP0 ¼

0
BBBBBBBBBB@

�m 0 �b �b1 �bm 0 0 l
0 �ðdþ mÞ b b1 0 0 0 0
0 d �ðdþ mÞ 0 0 0 0 0
0 0 d �c� m 0 0 0 0
0 0 0 c �m� m 0 0 0
0 0 0 0 m �g� m 0 0
0 0 0 0 0 g �m 0
0 0 0 0 bm 0 0 �l� m

1
CCCCCCCCCCA
It is clear that zero is a simple eigenvalue of A and the other eigenvalues have negative real parts. Subsequently, we can
compute the right and left eigenvectors corresponding to zero eigenvalue with the Jacobian matrix of A. Let
624
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w
⃗ ¼ ðw1;w2;w3;w4;w5;w6;w7;w8ÞT and v

⃗ ¼ ðv1; v2; v3; v4; v5; v6; v7; v8Þ be the corresponding right and left eigenvectors of A
with zero eigenvalue such that vw ¼ 1. For the expression of the right and left eigenvectors corresponding to zero eigenvalue
with A,

Aw
⃗ ¼ 0; v

⃗
A ¼ 0:
It is easy to obtain that

w3 ¼ d
dþ m

w2;w4 ¼ d

cþ m
w3;w5 ¼ c

mþ m
w4;w6 ¼ m

gþ m
w5;w7 ¼ g

m
w6;w8 ¼ bm

lþ m
w5;

bw þ b w þ mbmw

w1 ¼ �bw3 þ b1w4 þ bmw5 � lw8

m
¼ � 3 1 4 lþm 5

m
:

and
v1 ¼ v5 ¼ v6 ¼ v7 ¼ v8 ¼ 0; v3 ¼ dþ m

d
v2; v4 ¼ b1

cþ m
v2:

dþm b dd
As to vw ¼ 1, then v2w2 þ dþmv2w2 þ 1

ðdþmÞðcþmÞ2v2w2 ¼ 1, and hence v2w2 ¼ 1
1þdþm

dþmþ
b1dd

ðdþmÞðcþmÞ2
.

Taking w2 ¼ 1, then v2 ¼ 1
1þdþm

dþmþ
b1dd

ðdþmÞðcþmÞ2
and algebraic calculations show that

a ¼
X8

k;i;j¼1

vkwiwj
v2fk
vxivxj

ðP0;0Þ ¼ �2b1
XðtÞ

bw3 þ b1w4 þ mbm
lþm

w5

m
w4v2 <0;

and
b ¼
X8
k;i¼1

vkwi
v2fk
vxivb

ðP0;0Þ ¼
1

1þ dþm
dþm

þ b1dd
ðdþmÞðcþmÞ2

d
dþ m

>0:
Following the fourth conclusion of Theorem4.1 fromCastillo-Chavez and Song (Castillo-Chavez& Song, 2004), the positive
equilibrium of system (3.7) is locally asymptotically stable when a < 0 and b > 0. Hence, one can obtain that endemic
equilibrium P* of system (3.1) is locally asymptotically stable in the region X. ,
4. Numerical results

In this section, the laboratory-confirmed cases data set of Tianjin and Chongqing city were used to make predictions and
perform assessment and risk analysis for COVID-19 outbreaks.

4.1. Real-time regeneration number Rt

The basic regeneration numberR0 is usually used to estimate the transmissibility of infectious diseases in the early stage,
while the real-time regeneration number can reflect the transmissibility of infectious diseases in the population with real-
time series. Rt refers to the number of new cases that can be caused by an average case of disease at time t. A previous
paper found that the serial interval of COVID-19was in Gamma distributionwith a mean and standard deviation of 7.5 and 3.4
(Li et al., 2020a). White and Pagano (White& Pagano, 2008) proposed a likelihood function-based estimationmethod that the
probability vector p of serial interval was Gamma distributed. The estimate of the probability distribution us can be obtained
by using the probability density function of the Gamma distribution. Hence, the real-time regeneration number Rt can be
estimated by the ratio of the number of new infections generated at time t to the total infectivity of the infected individuals at
time t, which is the average of the second-generation cases that will be infected by each infected individual with constant
conditions at time t (Cori et al., 2013), that is

Rt ¼ E½It �
Pt
s¼1

It�sus

E[It] represents the mathematical expectation of the random variable It.
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Based on the infected cases in Chongqing city and Tianjin City, the real-time regeneration number Rt of these two cities
was calculated by using R language software and based on Bayesian framework, and the results were shown in Fig. 3. From
Fig. 3, one can obtain that the real-time regeneration number in these two cities revealed a trend of rapidly rising, and then
falling fast. The real-time regeneration number Rt of Tianjin is less than 1 after February 5, and the real-time regeneration
number Rt of Chongqing is less than 1 after February 1, respectively. The real-time regeneration number Rt in Tianjin
dropping below 1 was obviously later than that in Chongqing, which might be caused by the incident at the shopping mall in
Baodi District of Tianjin. The shopping mall was the cluster of COVID-19 epidemic with themost confirmed cases, and had the
most extensive influence in Tianjin. The initial decrease of Rt in Chongqing might due to the fact that most of the cases were
imported in early January and did not spread widely in the local area. Later, during the Spring Festival travel rush, the
population mobility was relatively large, which led to the rapid growth of Rt .
4.2. Parameter estimation and fitting results in Tianjin and Chongqing

By means of statistical analysis the life track of all laboratory-confirmed cases in Tianjin and Chongqing, we found that the
last arrival time of imported case to Tianjin was January 31, 2020 (Also see Fig. 1 (a)), and there existed a sharp drop for
symptom onset cases on February 05, 2020 in Chongqing. Hence, we divided the transmission of COVID-19 in Tianjin and
Chongqing into two stages. The first stage data of COVID-19 epidemic in these two cities was used to give parameter
estimation.

For the first stage, suppose that the initial value of the susceptible population S in Tianjin and Chongqing equal to
1.08163 � 107 and 3.10179 � 107, which is Year-end population of 2018 (China population & employ, 2019), and while all
others (including L, E, I, A, Q, R, Sq) are 0. Human population birth and death rates were assumed m ¼ 1

365*70z0:00004. By
counting the cumulative tracking quarantine cases of Tianjin and Chongqing on March 10, 2020, it was found that the
quarantined people in these two cities were 2472 and 23677, respectively. Hence, we estimated the contact tracing isolation
individuals per confirmed case b were about 2472/136 z 18 and 23677/576 z 41, respectively. For parameter g, which
depends on the actual situation of infected cases, and it also does not influence the model simulation. Therefore, we assume
g ¼ 1/14.

Li et al. (2020a) obtained that the mean incubation period is 5.2 days (95% CI, 4.1e7.0 days) from a separate study of early
COVID-19 cases. And He et al. (2020) inferred that infectiousness started from 2.3 days (95% CI, 0.8C3.0 days) before symptom
onset. So we could obtain that the latent period and pre-symptomatic infectious period were 2.9 days and 2.3 days,
respectively. Hence, one could obtain the values of d and d were 1/2.9 and 1/2.3, respectively. Wang and Teunis (2020)
collected the detailed data for 112 confirmed cases between 21 January 2020 and 12 February 2020 in Tianjin, and esti-
mated the average serial interval was 4.8 days. It was easy to obtain the symptomatic infectious period was about 2.5 days and
the value of cwas 1/2.5 in Tianjin. Based on 77 transmission pairs obtained from publicly available sources within and outside
mainland China, the serial interval was estimated to have a median of 5.2 days (95% CI, 4.1e6.4 days) based on a fitted gamma
distribution (He et al., 2020). We assumed that the symptomatic infectious period was about 3 days and the value of c in
Fig. 3. Time series of real-time regeneration number Rt, where the blue solid line represents the mean value of real-time regeneration number, and the blue
dotted line represents the 95% confident interval of real-time regeneration number. (a) Tianjin City. (b) Chongqing City.
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Chongqing was 1/3. By means of statistical analysis of all laboratory-confirmed cases in Tianjin and Chongqing, we obtain the
period between symptom onset and laboratory confirmation of the first stage are about 6 days and 9 days. So the period
between symptomatic un-infectious and laboratory confirmation were 3.5 days and 6 days in Tianjin and Chongqing,
respectively. And the value of m in these two cities were 1/3.5 and 1/6, respectively.

In previous paper (Li et al., 2020b), Li et al. assumed that the proportion between b1 and b is 1/14, we also gave the same
assumption. Hence, we only need to estimate the transmission rate b. In order to estimate the values of parameter b, we use
extensive Markov-chain Monte-Carlo (MCMC) simulations based on the adaptive combination Delayed rejection and
AdaptiveMetropolis (DRAM) algorithm (Gamerman& Lopes, 2006; Haario et al., 2006) for system (2.1). Using 100000 sample
realizations, we can acquire the parameter values for b with 1D parameter MCMC chain in Fig. 4. Then we further get the
mean value, the standard deviation, MCMC error and Geweke for these parameters, which are shown in Table 1. From Fig. 4
and the value of Geweke, it is easy to see that the Markov-chain of parameters b of these two cities are convergent.

The time evolution of both infection cases and comparison with the symptom onset of COVID-19 cases in Tianjin and
Chongqing were shown in Fig. 5, which also shows the 95% percent interval for all 100000 passing simulation trajectories and
the median of these 100000 simulation outputs. It is clear that the theoretical prediction is nearly full agreement with real
data, which also well validates the accuracy of proposed model.

For the second stage, the surveillance for new cases, and the tracing and management of contacts have been strictly
performed, and people are suggested to stay at home as much as possible. Hence, we assume that the parameter b1 is 0. By
using the least square method, we can obtain the value of b in Tianjin and Chongqing are 0.0478 and 0.0679, respectively.

With the uncertainty for estimated parameters values, Monte Carlo simulation runs are then conducted to assess the
performance of the model by using the available model parameters in Table 1. Fig. 6 unveils the prospect of the epidemic with
cumulative of symptom onset COVID-19 cases in Tianjin and Chongqing City, shows the 95% percent interval for all 100000
passing simulation trajectories and the median of these 100000 simulation outputs.

4.3. Local sensitivity analysis of R0

In this section, the normalized forward sensitivity indices (S.I.) of different quantities to the parameters of system (3.1)
were computed and analyzed. The sensitivity indices of different quantities to any parameter p is given in (Kong et al., 2014) as

S:I: ¼ vx*

vp
p
x*
;

where x* is the quantity being considered. Sensitivity indices can be positive or negative which indicates the nature of the
relationship, and it is themagnitude that ranks the strength of the relationship as compared to the other parameters. Here, vx
*

vp

could also be estimated by using the central difference approximation:

vx*

vp
¼ x*ðpþ DpÞ � x*ðp� DpÞ

2Dp
þ OðDp2Þ
We choose Dp ¼ 1% of p. Plugging all these in (8) we get

S:I: ¼ x*ð1:01pÞ � x*ð0:99pÞ
0:02x*

:

We can look at the sensitivity of basic reproduction number R0 with respect to the parameters in Tianjin and Chongqing
City (There exists the same level sensitivity ofR0 with parameters in these two cities), whichwere shown in Table 2. The basic
reproduction number R0 is most sensitive to the transmission rate b with a positive relationship and clinical outcome rate
Fig. 4. Simulation results for parameters b of MCMC chain with 100000 sample realizations. (a) Tianjin City. (b) Chongqing City. The Geweke convergence
diagnostic method was employed to assess convergence of chains (Geweke et al., 1992), and the Geweke values of these two parameters are shown in Table 1.
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Table 1
Parameter estimation for b with the method of MCMC of Tianjin and Chongqing.

Notation Mean Value Standard Deviation Geweke

Tianjin b 0.4998 0.0085 0.9992
Chongqing b 0.3153 0.0016 0.9998

Fig. 5. Fitting results of cumulative number of symptom onset COVID-19 cases with its actual reported number with the method of MCMC. (a) Tianjin City. (b)
Chongqing City.

Fig. 6. The simulation result of cumulative number of symptom onset COVID-19 cases. (a) Tianjin City. (b) Chongqing City.
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d with a negative relationship. Therefore, reducing b or increasing d will reduce the spread of disease when the focus of
eradicating the disease is based on the reproduction number only. There is a weak relationship with the transmission rate b1,
birth rate m, latent period rate d and transfer ratem for the basic reproduction numberR0. Hence, these four parameters could
not be chosen to be used as control parameters.
4.4. Simulation results with different lock-down strategy dates

In China, the outbreak of COVID-19 was firstly reported in Wuhan city, then the confirmed cases from Wuhan started to
appear in other Chinese provinces until 13 January 2020. The Chinese authorities introduced the implementation of the city
lock-down strategy inWuhan to shut down themovement on 23 January 2020. And the time of lock-down strategy inWuhan
affects the number of imported cases in other provinces. In this section, we want to explore that the impact of different
Wuhan city lock-down dates for the cumulative confirmed COVID-19 cases in Tianjin and Chongqing. Fig. 7 show the
simulation results with three different Wuhan city lock-down dates in Tianjin and Chongqing. In Tianjin, the dates of Wuhan
city lock-down were not crucial in producing the outbreak pattern, because it’s mostly locally transmitted cases. The main
reason is that there is a huge incident at the shopping mall in Baodi District on January 20. But in Chongqing, the dates of
Wuhan city lock-downwere crucial in producing the outbreak pattern, and it is obtained that the earlier with city lock-down,
the fewer cases, and the later with city lock-down, the more cases. If the city lock-down date ahead two days, the final scale of
cases will decrease about 150. And if the city lock-down date delay for two days, the mean final scale of cases will increase
about 130.
4.5. Simulation results with different contact tracing isolation days

In China, some non-pharmaceutical interventions include strict controls on travel, extensive monitoring of suspected
cases, and the contact tracing individuals with home quarantine for at least 14 days. The surveillance for new cases, and the
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Table 2
The sensitivity indices of R0.

Parameter Chongqing Tianjin Description

b 0.9148 0.9280 Transmission rate from exposed to susceptible
b1 0.0852 0.0720 Transmission rate from infected to susceptible
d 1.16 � 10�4 1.16 � 10�4 Latent period rate
d �0.9148 �0.9280 Clinical outcome rate
m �2.18 � 10�4 �2.15 � 10�4 Human birth/death rate
c �0.0852 �0.0720 Transfer rate from infectious to un-infectious
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tracing and management of contacts have been strictly performed (Li et al., 2020b). In this section, we will explore that the
impact of different contact tracing isolation times for the cumulative confirmed COVID-19 cases in Tianjin and Chongqing.
Fig. 8 show the simulation results with three different contact tracing isolation times in Tianjin and Chongqing. It is obtained
that themore contact tracing isolation days on confirmed cases, the fewer cases, and the less days, themore cases. But it is not
sensitive for the more contact tracing isolation days on confirmed cases, the fewer cases when tracing isolation days reaches a
certain value (See the red and blue lines of Fig. 8). Hence, the quarantine time of contact tracing for 14 days is the most
comfortable time.
5. Discussion and conclusions

The spread of COVID-19 in 2020 has brought substantial economic losses to mainland China. Government has been
seeking various prevention and control measures to drastically reduce within-population contact rates and transmission to
prevent infection and further transmission of COVID-19. All transport was prohibited in and out of Wuhan city from 23
January 2020, and quarantine of both suspected individuals and subjects who have had close contacts with suspected cases.
By the end of February 2020, the COVID-19 epidemic of China has been basically controlled in all provinces and cities except
Hubei province.

In this study, to investigate the underlying dynamics of COVID-19 transmission and the effectiveness of early prevention
and control measures with the tracing isolation of close contacts of newly confirmed cases in some provinces (such as Tianjin
and Chongqing city) except Hubei Provinces, make predictions and perform assessment and risk analysis for COVID-19
outbreaks, we developed a differential equation model with tracing isolation strategy for close contacts of newly
confirmed cases and discrete time imported cases. Firstly, we gave some dynamic analysis of the proposed model including
the basic reproduction number, the stability of disease-free equilibrium, and the existence and uniqueness of positive
equilibrium. Then, the real-time regeneration numberRt of these two cities were shown in Fig. 3. The real-time reproduction
number in these two cities revealed a trend of rapidly rising, and then falling fast.

Finally, some numerical simulations with system (2.1) were given by using the detailed infectious cases of Tianjin and
Chongqing. Markov-chain Monte-Carlo (MCMC) simulations based on the adaptive combination Delayed rejection and
Adaptive Metropolis (DRAM) algorithmwas used to give parameter estimationwith system (2.1) in Tianjin and Chongqing. In
our simulation, the disease disappeared in late February in these two cities and it was the same with the actual situation.
Sensitivity analysis demonstrate that the dates ofWuhan city lock-downwere not crucial in producing the outbreak pattern in
Tianjin, because it’s mostly locally transmitted cases. But in Chongqing, the dates of Wuhan city lock-down were crucial in
producing the outbreak pattern, and it is obtained that the earlier with city lock-down, the fewer cases, and the later with city
lock-down, the more cases. By analyzing the influence with different close contact tracing isolation days for the cumulative
confirmed COVID-19 cases. Our study found that the tracing isolation of close contacts of newly confirmed cases could
effectively control the spread of the disease. One can obtain that the more contact tracing isolation days on confirmed cases,
the fewer cases. But it is not sensitive for the more contact tracing isolation days on confirmed cases, the fewer cases.
Fig. 7. Simulation results for cumulative number of confirmed COVID-19 cases with different lock-down strategy dates in Wuhan city. (a) Tianjin City. (b)
Chongqing City. Where black, red and blue lines indicating the lock-down dates are 25 January, 23 January and 21 January, respectively.
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Fig. 8. Simulation results for cumulative number of confirmed COVID-19 cases with different contact tracing isolation times. (a) Tianjin City. (b) Chongqing City.
Where black, red and blue lines indicating the contact tracing isolation times are 7, 14 and 21 days, respectively.

M.-T. Li, J. Cui, J. Zhang et al. Infectious Disease Modelling 6 (2021) 618e631
In this work, we focused on the transmission of COVID-19 with the tracing isolation of close contacts of newly confirmed
cases in Tianjin and Chongqing city, China. If the data is relevant and sufficient for other provinces, our model can also be
applied to these related provinces spread of COVID-19 in mainland China.
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