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Abstract 

Background:  Diabetes is a medical and economic burden in the United States. In this study, a machine learning pre-
dictive model was developed to predict unplanned medical visits among patients with diabetes, and findings were 
used to design a clinical intervention in the sponsoring healthcare organization. This study presents a case study of 
how predictive analytics can inform clinical actions, and describes practical factors that must be incorporated in order 
to translate research into clinical practice.

Methods:  Data were drawn from electronic medical records (EMRs) from a large healthcare organization in the 
Northern Plains region of the US, from adult (≥ 18 years old) patients with type 1 or type 2 diabetes who received care 
at least once during the 3-year period. A variety of machine-learning classification models were run using standard 
EMR variables as predictors (age, body mass index (BMI), systolic blood pressure (BP), diastolic BP, low-density lipopro-
tein, high-density lipoprotein (HDL), glycohemoglobin (A1C), smoking status, number of diagnoses and number of 
prescriptions). The best-performing model after cross-validation testing was analyzed to identify strongest predictors.

Results:  The best-performing model was a linear-basis support vector machine, which achieved a balanced accu-
racy (average of sensitivity and specificity) of 65.7%. This model outperformed a conventional logistic regression 
by 0.4 percentage points. A sensitivity analysis identified BP and HDL as the strongest predictors, such that disrupt-
ing these variables with random noise decreased the model’s overall balanced accuracy by 1.3 and 1.4 percentage 
points, respectively. These recommendations, along with stakeholder engagement, behavioral economics strategies, 
and implementation science principles helped to inform the design of a clinical intervention targeting behavioral 
changes.

Conclusion:  Our machine-learning predictive model more accurately predicted unplanned medical visits among 
patients with diabetes, relative to conventional models. Post-hoc analysis of the model was used for hypothesis 
generation, namely that HDL and BP are the strongest contributors to unplanned medical visits among patients with 
diabetes. These findings were translated into a clinical intervention now being piloted at the sponsoring health-
care organization. In this way, this predictive model can be used in moving from prediction to implementation and 
improved diabetes care management in clinical settings.
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Background
There are approximately 1.5 million new diabetes diag-
noses among people 18 years and over every year, and in 
2018, approximately 34.2 million persons (10.5%) in the 
US had diabetes [1]. In 2017, 83,564 deaths were attrib-
uted to diabetes in the United States, and that year, dia-
betes was the 7th leading cause of death in the United 
States (25.7 deaths per 100,000 population) [1].

Diabetes imposes significant healthcare utilization and 
costs [2]. Americans with diabetes in 2017 spent approxi-
mately $16,700 annually in health care costs, 2.3 times 
higher than those without diabetes [3]. Total costs of dia-
betes in 2017 were $327 billion annually, of which $237 
billion were in direct medical costs [3]. In addition, there 
is a positive relationship between lack of health insurance 
and prevalence of diagnosed diabetes, exacerbating the 
risks for uninsured Americans [4]. By 2034, the popula-
tion with diabetes is expected to increase by 100% and 
the cost is expected to increase by 53% [5].

Patients with diabetes generally have increased health-
care utilization, including planned visits (e.g. clinic vis-
its, outpatient departments), as well as unplanned visits 
(e.g. emergency department and urgent care visits), com-
pared to those without diabetes [3, 6]. The 2011 National 
Health Interview Survey Diabetes revealed that 30% 
of diabetic patients had at least one emergency depart-
ment visit within the last year, compared to only 20% of 
the general population [6]. The majority of emergency 
department visits among patients with diabetes are likely 
related to acute glycemic complications (hyperglycemia 
and hypoglycemia) [6]; however, most adults with dia-
betes have at least one comorbid chronic condition [7] 
which could contribute to these visits as well. Unplanned 
visits typically present a greater burden to patients and 
insurers due to the higher cost of these visits.

Additionally, social and behavioral factors are associ-
ated with unplanned medical visits among the population 
of patients with diabetes. Lower socioeconomic status, 
longer disease duration, disease severity, and co-morbid 
depression are all significant determinants of unplanned 
medical visits and hospitalizations [8]. More precisely, 
patients with diabetes with very high current depres-
sive symptoms were two times more likely to have an 
unplanned emergency department visit, and patients who 
were diagnosed more than 10 years ago were 1.3 times as 
likely to have an unplanned emergency department visit 
[8]. Additionally, cigarette smoking is associated with a 
greater likelihood of unplanned medical visits [9]. How-
ever, unplanned visits remain a high-impact problem for 

patients and healthcare systems alike, highlighting the 
need for improved prediction models that can be imple-
mented clinically.

Because of the increased risks and associated costs 
for patients with diabetes, there is a significant need 
to improve prediction capabilities aimed at reducing 
unplanned medical visits for this group of patients. A 
majority of medical risk prediction models have been 
developed using stepwise logistic regression, while 
machine learning classification methods have been 
largely unexplored [10]. Machine learning methods offer 
the additional possibility to improve prediction based 
on pattern detection of many variables simultaneously, 
as has been shown in applications on predicting obesity 
[11] and compliance with dietary recommendations [12], 
predicting metabolic syndrome from physical charac-
teristics and lab results [13], identifying binge drinkers 
from parenting variables [14] and drinking motives [15], 
and predicting high blood pressure using body measures 
[16]. The current study utilizes electronic medical record 
(EMR) data from a large healthcare system and develops 
a machine learning based predictive model to predict any 
versus no unplanned medical visits over a 3-year period 
among adult patients with diabetes. We also discuss how 
the findings of this predictive model were translated into 
a clinical intervention currently underway at the spon-
soring healthcare organization.

Methods
Sample
Data were obtained from electronic medical records 
(EMRs) in EPIC from Sanford Health, a not-for-profit 
rural healthcare system that primarily serves South 
Dakota, North Dakota, Northern and Southwest Min-
nesota, Northwest Iowa, and parts of Nebraska. Sanford 
Health includes roughly 44 hospitals, 1382 physicians 
and 9703 nurses delivering care in more than 80 specialty 
areas. All data were de-identified according to the Health 
Insurance Portability and Accountability Act HIPAA de-
identification method Safe Harbor § 164.514(b)(2). The 
dataset included records from all patients who visited a 
Sanford healthcare facility between January 1, 2014 and 
December 30, 2016 (N = 1,143,028). Only adult patients 
(age ≥ 18; N = 875,168) with a diagnosis of diabetes (ICD-
10 codes E10.xx and E11.xx; N = 67,575) were included in 
the current study. Further, only patients who reported a 
residential zip code in Minnesota (MN), North Dakota 
(ND), or South Dakota (SD) were included in the cur-
rent study (N = 63,781), due to low sample sizes in other 
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states. Finally, patients who had missing data on the out-
come variable of unplanned medical visits or any of the 
predictor variables were excluded, for a final sample size 
of N = 43,831.

Measures
The outcome was any versus no unplanned medical vis-
its during the 3-year period over which EMR data were 
collected. This outcome was derived from four separate 
variables: emergency department visits, hospitalizations, 
hospital observations, and urgent care visits. All four 
types of visits were summed and dichotomized as ≥ 1 
versus 0 unplanned medical visits.

Predictor variables included all numeric variables that 
were common and readily available in Sanford’s EMRs. 
Ten variables were selected and are described in detail 
below.

Age was measured in years at time of initial analyses 
(12/1/2016).

Body mass index (BMI) was obtained from EMRs as 
kg/m2. Extreme values (< 15 or > 60) were assumed to 
be errors and were set to missing. Values from the most 
recent visit in the 3-year period were used, as this was the 
only measure in the dataset provided by the sponsoring 
healthcare organization (see Limitations).

Blood pressure (BP) was obtained in mm/Hg. Values 
from the most recent visit in the 3-year period were used, 
as this was the only measure in the dataset provided by 
the sponsoring healthcare organization (see Limitations). 
Systolic BP and diastolic BP were included as two sepa-
rate variables.

Serum cholesterol was obtained as both low-density 
lipoprotein (LDL) and high-density lipoprotein (HDL) 
in mg/dL. Extreme values in HDL (< 10 or > 100) or LDL 
(< 20 or > 200) were assumed to be errors and were set to 
missing. Values from the most recent laboratory result 
were used, as this was the only measure in the dataset 
provided by the sponsoring healthcare organization (see 
Limitations). LDL and HDL were analyzed as two sepa-
rate variables.

Glycohemoglobin (A1C) was measured from the most 
recent laboratory result, as this was the only measure in 
the dataset provided by the sponsoring healthcare organ-
ization (see Limitations). A1C values below 4 or above 15 
were assumed to be errors and were set to missing.

Ranked smoking status was obtained by patient self-
report as a vital sign on their most recent visit, as this was 
the only measure in the dataset provided by the sponsor-
ing healthcare organization (see Limitations). A ranked 
variable was created as follows from the several possible 
response categories, with higher values indicating more 
smoke exposure: never smoker (0), passive smoker (1), 
former smoker (2), current some day smoker (3), current 

everyday smoker, light tobacco smoker, or heavy tobacco 
smoker (4).

Number of diagnoses on “problem list” was derived 
from the most recently available list over the 3-year 
period.

Number of prescriptions were aggregated over the 
3-year period and was used as a numeric variable.

Analyses
Machine learning
All analyses predicted the unplanned medical visit sta-
tus of each patient (i.e., which patients had at least one 
versus no unplanned medical visits in the 3-year period), 
and this classification task was based on the 10 EMR 
variables above (age, BMI, systolic and diastolic BP, HDL 
and LDL cholesterol, A1C, ranked smoking status, num-
ber of diagnoses on the patient’s “problem list,” and the 
number of prescriptions in the 3-year period). Four types 
of machine learning were utilized: discriminant analysis 
(linear and quadratic), support vector machines (SVM; 
linear basis and radial basis), single-layer artificial neural 
nets (NN’s)  triple-layer deep nets (DNN’s), and extreme 
gradient boosting (XG boost). R software [17] was used 
for all analyses, including the packages MASS for discri-
minant analysis [18], e1071 for SVM’s [19], nnet for sin-
gle-layer NN’s [18], deepnet for triple-layer DNN’s [20], 
and xgboost for XG boost [21]. A logistic regression was 
run for purposes of comparing machine learning results 
with conventional prediction approaches. All R code for 
this project is publicly available on github at: https://​
github.​com/​Ariel​leSel​ya/​Diabe​tes-​Predi​ctive-​Model.

Cross‑validation testing
Since classifiers are susceptible to overtraining (i.e. when 
the classifier can predict the training dataset with high 
accuracy, but fits noise and thus has not learned patterns 
that generalize to other datasets), cross-validation test-
ing is important to identify models that have detected 
patterns that are truly important in the prediction task. 
Cross-validation testing is performed by partitioning 
all available data points into a training set and a testing 
set; the classifier is trained on the data from the training 
set, and the generalization of the prediction task learned 
by the classifier is tested using the data from the testing 
set. Nested cross-validation is a procedure which further 
reduces overfitting by performing this cross-validation 
procedure on a subset of the data (“inner fold,” which is 
then split into training and test sets), selecting the opti-
mal parameters, and testing on the remaining data in 
the “outer fold.” This procedure is important in select-
ing optimal hyperparameters for the model, as using the 
same dataset for generalization as well as model selection 
introduces bias [22].

https://github.com/ArielleSelya/Diabetes-Predictive-Model
https://github.com/ArielleSelya/Diabetes-Predictive-Model
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In particular for this study, five-fold cross-validation 
was used. For models with hyperparameters to be opti-
mized (i.e. SVM, NN, DNN, XG boost), nested cross-
validation was used to select optimize hyperparameters. 
Five-fold cross-validation was used on the outer loop. 
Inside each outer loop, the possible hyperparameters 
were looped over, with balanced accuracy for each hyper-
parameter being evaluated by another “inner” loop of 
five-fold cross-validation. The hyperparameters and bal-
anced accuracy for each outer fold were recorded, and 
the most common set of hyperparameters were selected 
as the “final” model.

Both training performance (prediction on the training 
dataset) and generalization performance (prediction on 
the testing set) were assessed using confusion matrices. 
SVM, NN, DNN, and XG boost classifiers were opti-
mized by running several iterations over different param-
eter values. For SVM, possible cost parameters were 0.1, 
0.5, 1, 5, 10, 25, and 50; and for radial SVM, possible 
gamma parameters were 0.0001, 0.001, 0.003, 0.007, 0.1, 
0.5, and 1. For single-layer NN’s, possible hidden layer 
sizes were 1, 2, 5, 10, 15, and 20; the possible maximum 
training iterations were 100, 150, and 200; and the pos-
sible decay parameters were 0, 0.1, 0.3, 0.5, and 0.9. For 
triple-layer NN’s, possible sizes of the first hidden layer 
were 1, 5, 10, 15, and 20; for the second and third hid-
den layers, possible values were 1, 5, 10, and 20; possible 
learning rates were 0, 0.1, 0.5, and 1; possible momentum 
values of the learning rate were 0, 0.1, 0.5, and 1; and pos-
sible numbers of training iterations were 10 and 20. For 
XG boost, possible maximum depth values were 3, 6, 10, 
15, and 20; possible eta values (learning rate) were 0.01, 
0.5, 0.1, 0.3, and 0.6; possible values for number of rounds 
were 50, 100, 150, and 200; possible gamma values were 
0, 0.5, 1, 5, 10, and 25; and possible ratios of columns var-
iables per tree were 0.1, 0.5, and 1.0. For each classifier, 
the model with the highest performance (see next sec-
tion) is reported.

Performance metric
Many performance metrics exist for classifiers, and we 
selected one for the current application for the following 
reasons. First, class imbalance in a dataset (here, 57% of 
the sample with unplanned medical visits vs. 43% with-
out) can impact classifier performance, such that the 
classifier may show bias towards the more common class. 
Since the conventional definition of overall model accu-
racy ( 1−incorrect predictions

total predictions
 ) is sensitive to class imbalance, 

the imbalance would need to be taken into account if 
using this traditional accuracy metric. However, using 
this accuracy metric tends to result in overprediction of 
positives, often at the expense of a high false-alarm rate; 
this is undesirable in clinical settings due to the cost and 

potential harm resulting from false alarms (i.e. providing 
interventions or treatment to patients who do not need 
it). For example, strict criteria for prostate cancer screen-
ing have historically erred on the side of identifying posi-
tives (both true and false), resulting in high rates of 
unnecessary biopsies and other treatments for patients 
who (as is now understood) were unlikely to ever show 
clinical symptoms of prostate cancer. Thus, given the 
clinical applications of the current study, it is essential to 
maximize both the true positive (sensitivity) and true 
negative (specificity) rates. Previous work has shown that 
maximizing the sum of sensitivity and specificity is 
appropriate for clinical applications with trade-offs 
between accurate risk detection and minimizing false 
alarms [23]. Here, we use such a measure: 
sensitivity+specificity

2
 where we divide by 2 in order for more 

intuitive interpretation, i.e. to average across the correct 
predictions within each class. This metric, “balanced 
accuracy,” has the advantage of selecting a model based 
on the maximum true positive and true negative rates 
(i.e. minimizing both false positives and false negatives), 
which is appropriate for clinical applications [23].

Since balanced accuracy contains two possible catego-
ries and averages sensitivity and specificity, chance per-
formance is 50%. Notably, this cutoff holds even in cases 
of imbalance (here, the 57% default sensitivity would be 
balanced by the 43% specificity, resulting in a perfor-
mance of 50%). Classifier performance versus chance was 
measured using a binomial test of the success rate out of 
the 1000 cross-validation iterations.

Sensitivity testing
In order to derive clinical implications from the predic-
tive model, it is valuable to know which variables are 
most strongly predictive of unplanned medical visits. 
Although being important for prediction does not nec-
essarily indicate causality, many of the modifiable pre-
dictors (A1C, BMI, BP, cholesterol, smoking) do have 
plausible causal effects on diabetes and its complications. 
Thus, in order to determine the modifiable variables 
that are most strongly indicative of unplanned medi-
cal visits, a variant of sensitivity testing was performed: 
for one variable at a time, random noise was added to 
that variable. These random values were drawn from a 
normal distribution with the same mean as the variable 
being tested, and a standard deviation of 30% that of that 
variable. For the sensitivity testing, cross-validation was 
done using 25 iterations of hold-20%-out repeated sub-
sampling; this cross-validation procedure was different 
from the approach used in the main analysis due to the 
greater need for precision introduced by adding noise. 
These were compared to the base-case balanced accu-
racy using the original dataset and the classifier with the 
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optimal hyperparameters obtained above (which was re-
run using this cross-validation method, for comparabil-
ity). Larger disruptions to the balanced generalization 
accuracy as a result of disrupting the information content 
of that variable (i.e. by adding noise) indicates a greater 
importance of that variable to the prediction task, and 
potentially as a clinical target for intervention.

Clinical intervention development
The process by which the above findings were incorpo-
rated into a clinical intervention are discussed, along with 
other factors including patient and physician engage-
ment, interfacing with clinical operations, and decision-
making under real-world practical limitations.

Results
Table  1 shows the characteristics of the sample, sum-
marized by patients who did versus did not have 
unplanned medical visits during the 3-year period. 
Patients with at least one unplanned visit tended to be 
slightly older (66 vs. 65  years old), rank higher on the 
smoking scale (2 vs. 1), have more diagnoses on the 
problem list (4 vs. 3), have lower HDL values (42 vs. 
44), and have been prescribed considerably more medi-
cations over the 3-year period (205 vs. 88) (all p < 0.05). 
The two groups had similar mean levels of diastolic 
blood pressure, but those with at least one unplanned 
visit had a wider interquartile range (IQR: 64–80 vs. 
66–80), resulting in a statistically significant difference. 
Similarly, the two groups had similar mean levels of 
A1C, but those with at least one unplanned visit had a 
wider IQR (6.3–7.9 vs. 6.3–7.8), resulting in a signifi-
cantly different difference. Though these differences are 
minor, they are statistically significant in part because 
of the large sample size. The significance should be 

interpreted along with the effect size; the differences 
reported here are unlikely to be clinically meaningful. 
No significant difference was observed for BMI, systolic 
blood pressure or LDL cholesterol (p > 0.05).

Table  2 shows the balanced accuracy of each type of 
classifier after optimization (i.e. using optimal parameter 
settings), averaged across the 1000 cross-validation runs. 
Logistic regression (bottom row) is intended as a com-
parison, as it only models main effects of each predic-
tor and does not contain any interaction terms. Logistic 
regression performed reasonably well, with a sensitivity 
(true positive rate) of 70.2% and a specificity (true nega-
tive rate) of 60.4%. XG boost classifiers found the high-
est sensitivity of all models (83.3%), but specificity was 
low (33.9%); thus, this was considered a low performing 
model, especially relative to logistic regression, due to 
its inability to distinguish between classes. For similar 
reasons, linear discriminant analysis also resulted in a 
low performing model, with high sensitivity (75.2%) and 
low specificity (50.8%). Linear SVM was the only model 
that outperformed the logistic regression, at 65.7% bal-
anced accuracy, with the sensitivity (60.2%) and speci-
ficity (71.1%) both being significantly above chance, and 
significantly higher than logistic regression (p = 0.03 
according to a t-test of the balanced accuracy). Single and 
triple hidden layer neural networks (NN’s and DNN’s, 
respectively)  were found to underperform in compari-
son to logistic regression balanced accuracy, and were 
also highly variable across cross-validation folds, as were 
XG boost classifiers. Table 3 shows the best-performing 
hyper-parameters within each outer fold.

Table  4 shows the corresponding balanced accuracy 
for training sets for the optimized classifiers shown 
in Table  2. Balanced accuracies are extremely similar 
across training and testing accuracies (different by only 

Table 1  Characteristics of patients with diabetes by unplanned visit status

Variables are summarized as median (interquartile range). A1C glycohemoglobin. BMI body mass index. BP blood pressure. HDL high-density lipoprotein. LDL low-
density lipoprotein. p values are based on t-tests of each variable across groups (any vs. no unplanned visits). Bold: p < .05

Predictor variable No unplanned visits
(N = 18,771)

 ≥ 1 Unplanned visits
(N = 25,060)

p value

Age 65 (55–74) 66 (55–76) < .0001
BMI 32.3 (28.3–37.0) 32.2 (28.0–37.3) = .2454

Systolic BP 126.0 (118.0–134.0) 126.0 (116.0–136) = .0089

Diastolic BP 72.0 (66.0–80.0) 72.0 (64.0–80.0) < .0001
LDL cholesterol 85.0 (67.0–106.0) 84.0 (65.0–106.0) = .0053

HDL cholesterol 44.0 (37.0–53.0) 42.0 (35.0–52.0) < .0001
A1C 6.9 (6.3–7.8) 6.9 (6.3–7.9) = .0001
Ranked smoking status 1.0 (0.0–2.0) 2.0 (0.0–2.0) < .0001
Number of diagnoses on problem list 3.0 (2.0–4.0) 4.0 (3.0–6.0) < .0001
Number of prescriptions 88.0 (40.0–179.0) 205.0 (96.0–408.0) < .0001
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a fraction of a percentage point in most cases), which is 
one indicator of a low degree of overfitting [24].

Table  5 shows the sensitivity analysis of the opti-
mized linear SVM classifier presented in Table 2, using 
the optimized model to predict on each subset with 
normally-distributed noise added to each variable, one 
at a time. Both blood pressure and HDL cholesterol 
were found to contribute most significantly to the pre-
diction task: adding noise to the blood pressure vari-
able (thus disrupting its contribution to the prediction 
task) decreased the model’s balanced accuracy by 1.3 
percentage points, and adding noise to the HDL cho-
lesterol variable resulted in a decrease of 1.4 percent-
age points. The smallest change in balanced accuracy 
comes from LDL which when removed from the model, 
did not disrupt balanced accuracy at all. These analy-
ses show that BP and HDL seem to be the most impor-
tant indicators of unplanned medical visits among 

patients with diabetes, among the potentially modifi-
able variables.

The above findings were among many components that 
led to the development of a clinical intervention at the 
sponsoring healthcare organization. Faced with time lim-
itations and the need to provide evidence-based recom-
mendations to inform an intervention, the research team 
and the organization made the choice to forego further 
refinements to the predictive model and proceed with 
the recommendations above (i.e. targeting HDL and BP, 
among other factors decided by other participants in the 
larger process).

Moreover, practical and patient-centered considera-
tions outweigh further gains in predictive accuracy when 
delivering an intervention: for example, patients often 
have difficulty comprehending numerical risk presented 
to them [25, 26]. Thus, a highly accurate model will unfor-
tunately be ineffective if the risk is not communicated to 

Table 2  Generalization performance of classifiers with optimized parameters, presented as confusion matrices and balanced 
accuracy ± standard deviation across five-fold cross-validation

Basic cross-validation was run for classifiers without hypermarameters (linear and quadratic discriminant analysis, logistic regression) and nested cross-validation for 
classifiers with hyperparameters (linear and radial SVM, single- layer NN and triple-layer DNN) to optimize hyperparameters

Cross-validation matrices show the generalization performance with respect to the actual class (rows) against the predicted class (columns), with ± standard deviation 
across cross-validation runs. DNN deep nets. NN neural nets. SVM support vector machines. XG boost extreme gradient boosting

Classifier Most stable parameters across outer 
folds

Predicted: no 
unplanned 
visits

Predicted: ≥ 1 unplanned 
visit

Linear discriminant analysis N/A Actual: No Unplanned Visits 50.8% ± 1.4% 49.2% ± 1.4%

Actual: ≥ 1 Unplanned Visit 24.8% ± 1.0% 75.2% ± 1.0%

Average 63.0% ± 0.7%

Quadratic discriminant analysis N/A Actual: No Unplanned Visits 82.5% ± 0.6% 17.5% ± 0.6%

Actual: ≥ 1 Unplanned Visit 56.3% ± 0.8% 43.7% ± 0.8%

Average 63.3% ± 0.4%

Linear SVM Cost = 25 Actual: No Unplanned Visits 71.1% ± 0.8% 28.9% ± 0.8%

Actual: ≥ 1 Unplanned Visit 39.8% ± 1.0% 60.2% ± 1.0%

Average 65.7% ± 0.3%

Radial SVM Cost = 50;
Gamma = 0.1

Actual: No Unplanned Visits 57.6% ± 1.4% 42.5% ± 1.4%

Actual: ≥ 1 Unplanned Visit 28.4% ± 0.9% 71.6% ± 0.9%

Average 64.6% ± 0.8%

Single hidden layer NN Hidden layer = 20 nodes;
Iterations = 200;
Decay = 0.0

Actual: No Unplanned Visits 50.7% ± 28.7% 49.3% ± 28.7%

Actual: ≥ 1 Unplanned Visit 31.6% ± 20.4% 68.4% ± 20.4%

Average 59.5% ± 7.7%

Triple hidden layer DNN Hidden layers = 20 nodes;
Learning = 1.0;
Momentum = 0.5;
Iterations = 20

Actual: No Unplanned Visits 65.7% ± 14.5% 34.4% ± 14.5%

Actual: ≥ 1 Unplanned Visit 36.7% ± 14.6% 63.3% ± 14.6%

Average 64.5% ± 0.8%

XG boost Max depth = 20; Eta = 0.90; # 
rounds = 200; Gamma = 10; Min. 
child weight = 10; Ratio of column 
per tree = 1.0

Actual: No Unplanned Visits 33.9% ± 30.8% 66.1% ± 30.8%

Actual: ≥ 1 Unplanned Visit 16.7% ± 15.3% 83.3% ± 15.3%

Average 58.6% ± 7.8%

Logistic Regression N/A Actual: No Unplanned Visits 60.4% ± 0.8% 39.6% ± 0.8%

Actual: ≥ 1 Unplanned Visit 29.8% ± 0.8% 70.2% ± 0.8%

Average 65.3% ± 0.7%
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patients in a way that they are able to understand and 
which would motivate behavioral changes. For this rea-
son, the importance of improving the predictive model’s 
balanced accuracy became less pressing than implemen-
tation science considerations. Our research team then 
turned to the behavioral economics literature [27–29] to 
identify best practices for enrolling patients and main-
taining participation in the eventual intervention.

Also important is stakeholder engagement; for an inter-
vention to be successful, it must have the buy-in of mul-
tiple participating sectors [30, 31], including physicians, 
staff, and clinical operations. Physicians and healthcare 
staff were consulted with to understand how our model’s 
recommendations fit with their current standard of care 
and what new steps they would be willing to take in the 
clinic. For example, most physicians faced with patients 
with diabetes or pre-diabetes are already doing every-
thing they can to improve cholesterol levels and lower 
BP. The operations sector was also consulted in order to 
identify how to streamline the intervention most easily 
into the existing workflows, and how to most efficiently 
collect essential process and outcome data while mini-
mizing increases to provider workload. After this stake-
holder engagement process, a behavioral intervention 
was decided on which involves shared decision-mak-
ing between providers and patients to pursue one of 5 

behavioral changes: weight loss; increased physical activ-
ity; nutrition counseling; smoking cessation; and medica-
tion. This intervention is currently being piloted at the 
sponsoring organization.

Discussion
This study utilized machine learning to predict 
unplanned medical visits among patients with diabe-
tes over a 3-year period, using readily available vari-
ables from EMRs as prediction variables. Linear-basis 
SVM was able to achieve slightly but significantly more 
accurate prediction relative to conventional logistic 
regression, with average balanced accuracy (average of 
sensitivity and specificity) of 65.7%, representing a 0.4 
percentage point increase over logistic regression. Fur-
ther, post-hoc analysis of the optimized prediction model 
revealed that HDL and BP are possibly the most impor-
tant modifiable variables that predict unplanned medical 
visits among patients with diabetes. These recommen-
dations from the predictive modeling were one of many 
components that led to the development of a clinical 
intervention now being piloted at the sponsoring health-
care organization.

HDL and BP may be driving unplanned medical vis-
its among patients with diabetes due to their individual 
risks for unplanned medical. HDL is generally known as 

Table 3  Optimal hyper-parameters across each of 5 “outer” folds in nested cross-validation

NN neural nets. DNN deep nets. SVM support vector machines. XG boost extreme gradient boosting

Parameter Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Linear SVM

Cost 0.1 25 25 25 25

Radial SVM

Cost 25 50 50 50 50

Gamma 0.1 0.1 0.1 0.1 0.1

Single-layer NN

Size of hidden layer 15 20 20 20 1

Maximum # iterations 100 200 200 200 100

Decay 0.0 0.0 0.0 0.0 0.1

Triple-layer DNN

Size of 3 hidden layers 20, 20, 20 20, 20, 20 20, 20, 20 20, 20, 20 20, 20, 20

Learning rate 1 1 1 1 1

Momentum 0.5 0.5 0.5 0.5 0.5

Number of epochs 20 20 20 20 20

XG Boost

Max depth 20 20 6 20 6

Eta 0.9 0.9 0.01 0.9 0.01

Nrounds 200 200 50 200 50

Gamma 10 10 0 10 0

Min. child weight 10 10 0 10 0

Ratio of columns per tree 1.0 1.0 0.1 1.0 0.1
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being the “good cholesterol” because of its atherogenesis 
inhibitory properties. In addition, HDL is normally anti-
inflammatory; however, HDL often has a loss of function 
in patients with diabetes, and thus the anti-inflammatory 
properties are inhibited [32, 33]. The disease mechanisms 
in both diabetes and hypertension are similar, and have 
commonalities in etiology including obesity, inflam-
mation, oxidative stress, and insulin resistance [34]. 
Similarly, high BP in diabetes patients is associated with 
increased risk of death and diabetes-related complica-
tions, which explains the finding that high BP is espe-
cially predictive of unplanned medical visits [35].

Presently, literature shows more evidence of hospitals 
employing predictive analytics related to reducing emer-
gency care utilization. Though not exactly comparable to 
the current study’s aim of predicting unplanned medi-
cal visits among patients with diabetes, similar applica-
tions such as the HOSPITAL and LACE screening tools 
predict emergency room readmission risk. The HOSPI-
TAL score uses seven clinical predictors to help iden-
tify patients at high risk of hospital readmissions within 
30  days of discharge. This score has been validated and 
shown to have superior discriminative ability over other 
prediction tools [36]. Similarly, the LACE index uses only 
four variables to predict death or 30-day readmission 

Table 4  Training performance of classifiers with optimized 
parameters, presented as confusion matrices and balanced 
accuracy ± standard deviation across five-fold cross-validation 
runs

Classifier Predicted: no 
unplanned 
visits

Predicted: ≥ 1 unplanned visit

Linear discriminant analysis

Actual: No Unplanned 
Visits

50.7% ± 1.1% 49.3% ± 1.1%

Actual: ≥ 1 Unplanned 
Visit

24.7% ± 0.7% 75.3% ± 0.7%

Average 63.0 ± 0.2%

Quadratic discriminant analysis

Actual: No Unplanned 
Visits

83.0% ± 0.2% 17.1% ± 0.2%

Actual: ≥ 1 Unplanned 
Visit

56.2% ± 0.2% 43.8% ± 0.2%

Average 63.4% ± 0.1%

Linear SVM

Actual: No Unplanned 
Visits

71.3% ± 0.8% 28.7% ± 0.8%

Actual: ≥ 1 Unplanned 
Visit

39.6% ± 0.7% 60.4% ± 0.7%

Average 65.8% ± 0.1%

Radial SVM

Actual: No Unplanned 
Visits

67.0% ± 1.1% 33.0% ± 1.1%

Actual: ≥ 1 Unplanned 
Visit

21.4% ± 0.4% 78.6% ± 0.4%

Average 72.8% ± 0.1%

Single hidden layer NN

Actual: No Unplanned 
Visits

50.8% ± 28.7% 49.2% ± 28.7%

Actual: ≥ 1 Unplanned 
Visit

31.5% ± 20.2% 68.5% ± 20.2%

Average 59.7% ± 7.9%

Triple hidden layer DNN

Actual: No Unplanned 
Visits

65.4% ± 15.0% 34.6% ± 15.0%

Actual: ≥ 1 Unplanned 
Visit

36.5% ± 14.3% 63.5% ± 14.3%

Average 64.4% ± 0.8%

XG boost

Actual: No Unplanned 
Visits

38.8% ± 35.3% 61.2% ± 35.3%

Actual: ≥ 1 Unplanned 
Visit

12.9% ± 11.2% 87.2% ± 11.2%

Average 63.0% ± 11.9%

Logistic regression

Actual: No Unplanned 
Visits

60.4% ± 0.2% 39.6% ± 0.2%

Actual: ≥ 1 Unplanned 
Visit

29.8% ± 0.2% 70.2% ± 0.2%

Average 65.3% ± 0.2%

Table 4  (continued)
Basic cross-validation was run for classifiers without hypermarameters (linear 
and quadratic discriminant analysis, logistic regression) and nested cross-
validation for classifiers with hyperparameters (linear and radial SVM, single-
layer NN and triple-layer DNN) to optimize hyperparameters

Cross-validation matrices show the training performance with respect to the 
actual class (rows) against the predicted class (columns), with ± standard 
deviation across cross-validation runs. DNN deep nets. NN neural nets. SVM 
support vector machines. XG boost extreme gradient boosting

Table 5  Sensitivity analysis showing the disruption of 
balanced accuracy when adding normally-distributed noise 
(0.3 × standard deviation) to each variable

Balanced accuracy is the average of the sensitivity and specificity rates (see 
text), based on test sets across 25 cross-validation tests using repeated-hold-
20%-out subsampling. Change in balanced accuracy is relative to the optimized 
classification results using the original data sample in Table 2 (65.8%)

A1C glycohemoglobin. BMI body mass index. BP blood pressure. HDL high-
density lipoprotein. LDL low-density lipoprotein

Variable range New balanced 
accuracy (%)

Change in balanced accuracy 
(vs. 65.8% on original sample) 
(%)

A1C 65.7 − 0.1

BMI 64.7 − 1.1

BP 64.5 − 1.3

HDL 64.4 − 1.4

LDL 65.8 − 0.0

Tobacco use 65.0 − 0.8
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after hospital discharge of 66.3% and a correct rejection 
rate of 53.3% [37]. While this tool has also been validated, 
LACE has been shown to only have moderate discrimi-
native ability [36]. This demonstrates the utility of such 
predictive models, including the current study’s model 
for predicting unplanned medical visits among patients 
with diabetes.

Therefore, the higher prediction balanced accuracy in 
the current model demonstrates the utility of machine 
learning approaches for prediction of medical risks. 
Though the improvement in balanced accuracy may 
be considered small (~ 0.4 percentage points), this dif-
ference was statistically significant and could have 
substantial implications at a large scale. For example, 
back-of-the envelope calculations show that, under the 
assumption that these visits can be anticipated and pre-
vented with perfect accuracy, an improvement of 0.4% 
for a population of 1 million patients with diabetes, given 
an unplanned visit rate of 57.2% (based on this sample), 
translates into approximately 2300 people and 7500 visits 
that could be avoided.

The higher accuracy is likely attributable to the 
increased predictive information contained in patterns of 
variables, over and above each variable’s statistically inde-
pendent association with the outcome [11, 38]. Though 
this pattern-based information is difficult to extract in 
“black-box” models (e.g. SVM), we present a form of sen-
sitivity analysis that estimates each variable’s total contri-
bution to the model (accumulated across its statistically 
independent main effect and all interactions with other 
predictor variables) and thus can quantify each variable’s 
“diagnostic information.”

Identifying the most salient predictors is an impor-
tant step towards moving this predictive algorithm into 
concrete implementation in clinical settings. That is, 
the trained predictive model can be used for hypoth-
esis generation (i.e. that risky HDL and BP values lead 
to unplanned medical visits). Since the predictive model 
itself cannot test or establish causality, further longitu-
dinal research in clinical settings is needed to test these 
hypotheses; nevertheless, this hypothesis generation is 
an essential step in that it reduces the number of likely 
hypotheses that must be tested in clinical settings, lead-
ing to a more efficient use of resources. Following the 
hypothesis validation stage, an evidence-based interven-
tion then can be designed and implemented which flags 
high-risk patients for an appropriate protocol (e.g. more 
aggressive targeting of BP and HDL through clinical or 
behavioral measures).

The above recommendations were one component of 
many in the development of a clinical intervention for 
at-risk patients, along with physician engagement, inter-
facing with clinical operations, and utilizing behavioral 

economics to maximize patient engagement with the 
intervention. Practical limitations in this project are 
common to many other projects which seek to trans-
late research into clinical practice; most notably in the 
current study, the trade-off between focusing efforts on 
improving model accuracy versus focusing efforts on 
implementation science to ultimately maximize patient 
engagement. Thus, this study demonstrates the value of 
this study’s approach not only in improved prediction 
of costly unplanned medical visits, but also in moving 
towards clinical implementation.

Limitations
This study has several limitations. First, causality can-
not be established using observational data; however, the 
current procedure of performing a sensitivity analysis on 
modifiable predictor variables produces a more refined 
set of causal hypotheses that can be pursued in follow-
up research. A related limitation is that factors that may 
be relevant for prediction may not be pertinent for treat-
ment (e.g. age which is not modifiable). Additionally, 
results may not be generalizable to other populations 
outside the North Dakota, South Dakota, and Minnesota, 
and further validation is needed in other independent 
samples.

Other methodological limitations exist which, if recti-
fied, could improve models’ balanced accuracy and pre-
dictive power. Specifically, the types of classifiers used 
here are not comprehensive, and other methods such as 
random forests could offer improvements in predictive 
accuracy. Within the existing classifiers, it is also possi-
ble that optimizing across much wider parameter ranges 
could lead to higher balanced accuracy. When taking 
these methodological limitations into account, the mar-
ginal gains of model accuracy must be weighed against 
practical considerations if being used in clinical settings.

Limitations of EMR data are numerous, and this 
is unfortunately common when using EMR data for 
research. The data available had limited variables, such 
as imprecise measures of smoking status; and the una-
vailability of other variables including socio-economic 
and behavioral determinants of health, disease duration 
and severity, and depression in the current EMR system, 
are likely to negatively impact the prediction accuracy. 
However, basing our prediction model on standard EMR 
fields increases its utility within this healthcare system, 
as well as its potential generalizability of these methods 
to other healthcare systems. The current data were also 
limited with respect to the granularity of time-varying 
variables (e.g. BMI, BP): namely, in the dataset provided 
by the sponsoring healthcare organization, only the last 
time point was provided. This is problematic because for 
true prediction, the predictors must precede the outcome 
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in time. However, many of these factors are fairly sta-
ble over time, lessening the impact of this limitation. 
Further, this and other data limitations are common in 
health services research, and this study provides a prac-
tical example of how clinical implications can be gen-
erated from a predictive model in spite of realistic data 
limitations. Another limitation is that the outcome vari-
able of unplanned medical visits does not consider the 
cause of the visit; thus, visits may or may not be related to 
diabetes. Though there is some literature on identifying 
preventable emergency visits, this is a difficult process, 
and to our knowledge no method exists for identify-
ing diabetes-attributable visits. Therefore, we analyze all 
unplanned visits together, which represents a realistic 
situation when analyzing EMR data. These data limita-
tions are common for administrative health records; 
thus, the current study is practical in the sense that it is 
representative of working with real-world data limita-
tions. However, more rigorous data with fewer of the 
above limitations can improve predictive modeling. Thus, 
improvements to data collection and querying processes 
and capabilities should be a priority for the use of admin-
istrative health records in research.

Strengths
The use of EMR data from a large healthcare system in 
the US allows for the capture of large proportion of the 
population, and a large sample size. This study also uti-
lizes innovative machine learning methods with cross-
validation, which leads to improved prediction accuracy 
and generalizability of results. Finally, the current study 
demonstrates a relatively novel procedure for moving a 
machine-learning model from pure prediction towards 
making clinical improvements to care management.

Conclusions
This study shows improved prediction of unplanned 
medical visits among patients with diabetes by utilizing 
machine learning methods, relative to conventional pre-
diction models. A post-hoc sensitivity analysis identi-
fied low HDL and high BP as the strongest predictors of 
unplanned medical visits among this patient population, 
warranting future research in clinical settings on whether 
these are causal relationships. Future research is under-
way based on this predictive model on a behavioral health 
intervention aimed at improving diabetes management in 
clinical settings. Improvements are needed to standard 
data collection and querying procedures for administra-
tive health records in order to overcome important data 
limitations that limit current predictive modeling.
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