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Abstract

Endothelial dysfunction is a hallmark of type 2 diabetes that can have severe consequences on 

vascular function, including hypertension and changes in blood flow, as well as exercise 

performance. Because endothelium is also the barrier for insulin movement into tissues, it acts as a 

gatekeeper for transport and glucose uptake. For this reason, endothelial dysfunction is a tempting 

area for pharmacological and/or exercise intervention with insulin-based therapies. In this review, 

we describe the current state of drugs that can be used to treat endothelial dysfunction in type 2 

diabetes and diabetes-related diseases (e.g., obesity) at the molecular levels, and also discuss their 

role in exercise.
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1. INTRODUCTION

The endothelium is an important modulator of microvascular function. In resistance arteries, 

the heterocellular communication between the endothelium and smooth muscle cells 

determines regional blood flow and contributes to systemic blood pressure regulation. 

Endothelial dysfunction refers to a condition in which the endothelial-derived vasodilation is 

impaired, shifting toward a vasoconstrictive, pro-thrombotic and pro-inflammatory state [1]. 

As such, identifying therapeutic interventions to maintain a healthy endothelium or reverse 

endothelial dysfunction is a worthy research objective.
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One of the most important markers of endothelial dysfunction is represented by the 

reduction of Nitric Oxide (NO) bioactivity, due to its actions as a potent vasodilator. [1] 

Bioavailability of NO reflects a balance between production via endothelial Nitric Oxide 

Synthase (eNOS) and the conversion to nitrates (NO−
3) and nitrites (NO−

2). Decreasing NO 

activity can be due to diminished eNOS expression. Reactive oxygen species (ROS) can 

rapidly degrade NO to form peroxynitrite, reducing the amount of bioavailable NO resulting 

in further endothelial cell dysfunction [2].

Endothelium-dependent vasodilation impairments, which are a hallmark of endothelial 

dysfunction, can be assessed by measuring responses to endothelium-dependent vasodilators 

such as acetylcholine (ACh) [3]. Clinically this is relevant since endothelial dysfunction is 

considered an early marker of vascular complications of type 2 diabetes and heart disease 

risks [3]. Functional impairment of endothelial activity precedes the development of 

morphological alterations leading to the progression of type 2 diabetes (T2D) [1]. Therapies 

aimed at the reduction of hyperglycemia, dyslipidemia, and insulin resistance may 

effectively improve endothelial function and delay or prevent the onset of vascular 

complications [1].

2. ENDOTHELIAL DYSFUNCTION AND DIABETES

Vascular dysfunction limits the delivery of oxygen, hormones and substrates to 

metabolically active tissues, thereby affecting nutrient availability throughout the arterial 

tree for energy metabolism [4–6]. Interestingly, work by our group and others demonstrate 

that people with insulin resistance may have normal fasting vascular function, but impaired 

conduit or microvascular insulin action [7–10]. This highlights the role which regulatory 

processes play in disease as well as makes the critical distinction between the fed vs. fasted 

state in regards to vascular function. These data support the hypothesis that endothelial cells 

in people at risk for diabetes become insulin resistant as best demonstrated in a study by 

Baron and colleagues in which leg blood flow was diminished to insulin across sub- to 

supra-physiologic doses in parallel to leg glucose uptake in people with T2D when 

compared to lean or obese individuals [11]. More recently, most but not all studies support a 

role for insulin action on increasing limb blood flow in glucose and insulin delivery to the 

muscle via a NO-mediated mechanism [11–15]. In fact, some have even suggested that 

vascular insulin resistance precedes that of metabolic responses to insulin, thereby placing 

endothelial cell function at the center of glycemic regulation [16]. How diabetes promotes 

attenuated endothelial cell function remains an area of intense investigation, but 

hyperglycemia has been suggested to promote oxidative stress-mediated inflammation in the 

endothelium thereby blunting eNOS-VEGF pathways related to angiogenesis. [17–22]. 

Collectively, endothelial dysfunction has clinical and public health significance for 

promoting varying degrees of CVD risk including heart failure, strokes, and death compared 

with healthy normoglycemic individuals [23].

3. INSULIN

Aside from insulin’s essential effects on whole-body glucose and lipid metabolism, insulin 

also affects vascular biology. Insulin signaling mediates vascular function by stimulating 
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signal transduction and mediating endothelial cell function [24]. Specifically, insulin 

signaling increases amino acid transport, glycogen synthesis, DNA synthesis, and gene 

expression in vascular cells. [25] As seen in Fig. 1, the physiological effects of insulin 

within the vasculature are mediated by insulin binding to its receptor on the surface of 

endothelial cells, which triggers the insulin receptor kinase (IR) phosphorylation of the 

insulin receptor substrate (IRS-1) [26]. Phosphorylation of IRS-1 leads to the subsequent 

recruitment and activation of phosphatidylinositol 3-kinase (PI3K) which then 

phosphorylates AKT and activates it to directly phosphorylate eNOS on Ser1177 [27]. 

Phosphorylation of Ser1177 has been shownto be both necessary and sufficient for eNOS to 

produce NO [27]. The end result of this signaling pathway is insulin’s induction of 

vasorelaxation via NO production and the stimulation of NO-dependent basal blood flow. 

Insulin also stimulates renal reabsorption of sodium, sympathetic nervous system activity, 

and induces the production of vasoactive factors including endothelin 1 and NO [28]. An 

imbalance between the release of endothelin-1 and NO in an insulin-resistance state may be 

involved in the pathophysiology of hypertension and atherosclerosis in conjunction with 

endothelial dysfunction [28]. Vascular smooth muscle cells (VSMCs) also contain insulin 

receptors; however, a study using bovine aortic samples noted that aortic endothelial cells 

contain a 10-fold higher concentration of insulin receptors compared to aortic VSMCs. This 

study also measured insulin binding affinity in retinal capillaries to test microvascular 

insulin receptor number and affinity. The results were congruent with the data seen from 

aortic segments in that the insulin receptor number was increased in endothelial cells when 

compared to smooth muscle cells or vascular supporting cells [29]. These data show the 

importance of insulin signaling specifically in vascular endothelial cells. Furthermore, 

systemic insulin resistance, a condition linked to T2D and cardiovascular disease (CVD), 

has been connected with impaired vascular insulin signaling [25].

The beneficial effects of insulin on blood flow and blood pressure are reduced in patients 

with T2D or insulin resistance [30]. It has been shown that exposure to high glucose levels 

compromised endothelial-dependent vasorelaxation in diabetic rabbit aortas and prolonged 

exposure to elevated serum glucose also increases the production of proteinoids which act as 

vasoconstrictors [30]. This result is likely seen due to constantly elevated levels of glucose 

triggering insulin resistance in the aortic endothelial cells that ultimately lead to decreased 

levels of NO and eNOS from loss of insulin signaling. Diminished endothelium-dependent 

vasodilation is associated with insulin resistance and can be seen in the vasculature as 

dysfunctions in insulin- stimulated endothelial function [31]. Early introduction of insulin 

therapy to patients with diabetes may improve endothelial function leading to improved 

microvascular endothelial-dependent vasodilation [31]. After 2 months of insulin therapy 

(0.05 mU/kg/min for 20 minutes) patients had a better response to ACh stimulation than 

prior to starting insulin treatment [31]. This shows that a reduction in hyperglycemia via 

insulin treatment results in better endothelial cell function (patients saw between a 58 and 

120% increase in blood flow) due to the decreased damaging effect of hyperglycemia and 

the increased NO production from insulin signaling.
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3.1. Insulin and Exercise

Despite the improvements in glycemic control, insulin therapy can predispose patients to 

weight gain, inflammation, dyslipidemia and atherosclerosis [32]. However, exercise may be 

used adjunctively to improve body composition, inflammation and cardiovascular risk 

associated with insulin therapy. Balducci et al. (2012) observed that twelve months of 

exercise (2×/wk; 75 min aerobic and resistance) reduced waist circumference, blood 

pressure, LDL-C and overall coronary heart disease risk score compared to insulin-treatment 

only in insulin-dependent adults [33]. Similarly, 5 months of low-intensity aerobic and 

resistance exercise attenuated the increased need in exogenous insulin requirements in adults 

with T2D [34]. These data highlight that exercise can increase insulin sensitivity and the 

body’s ability to produce insulin, resulting in less exogenous insulin usage. In addition to 

metabolic-mediated improvements of exercise, further benefits are also observed for 

endothelial function, like 4 months of cycling (3d/wk; 60–70% HRmax; 60min) led to 

improvements in flow-mediated vasodilation in adults with type 1 diabetes [35]. It was 

speculated that contracting skeletal muscle may have activated AKT and eNOS in the 

vascular endothelium as well as triggered the release of myokines that increased blood flow 

pathway stimulation. In either case, it seems clear that exercise adds to the beneficial effects 

of insulin therapy specifically in the vasculature [36].

4. THIAZOLIDINESDIONES (TZDs)

Given the crucial role insulin plays on vasculature function, drugs that work to sensitize 

tissues to insulin should show a beneficial effect on disease states, like T2D and CVD, 

which are associated with vascular dysfunction [25]. Sensitizing endothelial cells to insulin 

would allow for the increased production of eNOS as well as NO subsequently causing 

vascular relaxation.

Thiazolidinediones (TZDs) are a group of insulin-sensitizing therapeutic drugs that activate 

peroxisome proliferator-activated receptor γ (PPAR-γ) with effects illustrated in Fig. 1. This 

nuclear receptor, which is highly expressed on vascular smooth muscle cells as well as the 

endothelium, enhances insulin-mediated glucose uptake. PPAR-γ expression increases 

sensitivity to serum insulin levels by altering the transcription of several genes involved in 

glucose and lipid metabolism, lipoprotein lipase, fatty acid transporters, glucokinase, and the 

GLUT4 glucose transporter [37, 38]. TZDs provide sustained glycemic control mediated 

primarily by reductions in insulin resistance [37]. It is proposed that TZDs anti-

inflammatory properties and activation of both AMP Kinase (AMPK) and PI3K signaling 

contribute to the reversal of insulin resistance and increased NO production through 

increasing endothelial cell function. This result was seen in T2D patients with both impaired 

glucose tolerance and endothelial cell dysfunction who were administered 600mg/d of 

various TZDs [37]. Patients with T2D also had an increased VO2max (i.e. maximal oxygen 

consumption or aerobic fitness), insulin sensitivity, and endothelial function when 

administered rosiglitazone (4mg/d) compared with a placebo [39]. Through the promotion of 

an insulin-sensitive state, TZDs can reduce microvascular complications associated with 

endothelial dysfunction by increasing eNOS and NO production.
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The exact mechanism behind improved endothelial cell function is not completely 

understood but a proposed mechanism of action is that PPAR-γ activation results in 

downstream anti-inflammatory effects. TZDs, such as pioglitazone and rosiglitazone, have a 

known anti-inflammatory effect through the suppression of TNF-a, leptin, and lipolysis 

which together decrease plasma free fatty acid (FFA) concentrations and increase 

adiponectin levels [40]. It has been experimentally shown that increasing FFA levels impairs 

endothelium-dependent vasodilation. This was performed by infusing, over 2 hours, the 

femoral artery of healthy lean patients with exogenous lipids to increase serum FFA. 

Vasodilation was quantified by measuring the response to methacholine chloride (Mch) an 

endothelium-dependent vasodilator. Vasodilation was reduced by 20% in the group that was 

infused with lipids [41]. The anti-inflammatory properties of PPAR-γ lead to decreased 

circulating adipokine levels (TNF-α and leptin) causing adiponectin levels to rise, which 

reduces vascular expression of adhesion molecules (VCAM). Decreased VCAM leads to 

reduced white blood cell adhesion to the endothelial cell surface, thereby attenuating the 

monocyte response to inflammation and impairing the inflammatory activity of macrophages 

[42].

Another function of TZDs is to reduce systemic and vascular oxidative stress. It has long 

been known that oxidative stress contributes to vascular dysfunction in diabetes as 

documented in a 1991 study showing the increased accumulation of oxidized sugars in 

diabetic rats [43]. Coronary arterioles from T2D male mice were isolated and analyzed to 

look at changes in blood flow and vasodilation. It was seen that diabetic mice had reductions 

in vasodilation as well as blood flow. The cause of the diminished vascular capacity was due 

to increased superoxide production, which was measured via dihydroethidium staining and 

lucigenin enhanced chemiluminescence [38]. Rosiglitazone causes a reduction of 

nicotinamide adenine dinucleotide (NAD(P)H) oxidase activity, which diminishes oxidative 

stress within the cell. This subsequently enhances NO activity specifically in the vasculature 

because of the reduction in vascular NAD(P)H oxidase derived superoxide production [38].

4.1. TZDs and Exercise

Lifestyle modifications including caloric restriction with exercise may be a supplemental 

way to combat the weight gain seen with TZDs and decrease the variability of beneficial 

responses. In fact, 20 weeks of moderate-intensity exercise (45min; 60–75% heart rate 

reserve; 4d/wk) and caloric restriction (500kcal/d) led to an average weight loss of 11.8kg, 

compared to pioglitazone (30mg/d), which increased weight by approximately 2.7kg in 

sedentary adults [44]. Another study found that 4 weeks of submaximal cycling (30min, 

4d/wk) decreased bodyweight, increased exercise capacity (watts) and improved flow-

mediated dilation (FMD) compared to 8mg/d of rosiglitazone in patients with coronary 

artery disease and prediabetes [45]. Moreover, Kadoglou et al. observed that 8 months of 

rosiglitazone (8mg/d) and aerobic exercise (60min; 50–80% VO2max; 4d/wk) elicited more 

pronounced decreases in fasting insulin, HOMA-IR, resistin, IL-6 and TNF-α than 

rosiglitazone alone in adults with T2D. The combined therapy also saw a 12% greater 

improvement in VO2 max than exercise alone. These studies together highlight that the best 

metabolic benefit regarding health outcomes may be observed when lifestyle and TZD 

therapy are combined [46].
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While aerobic and resistance exercise, as well as TZDs, have been shown to improve 

endothelial function in adults with T2D; to date, there has been no study examining the 

specific effects of TZDs plus exercise on arterial physiology [47–49]. TZDs are thought to 

be a potential therapy for vascular disease via the increase in adiponectin expression through 

activation of PPARγ. Adiponectin activates the AMPK/Akt/eNOS pathway and ultimately 

increases the amount of NO produced [50]. However, a meta-analysis found that TZD 

therapy is most likely to lead to increased endothelial function following at least 12 weeks of 

treatment and if the patient is not older than 65 years of age [50]. On the other hand, exercise 

has been shown to increase adiponectin expression and also has a direct mechanical effect 

on the vasculature via increases in blood flow and shear stress [36]. Furthermore, as little as 

2 weeks of aerobic exercise improves endothelial function and adiponectin levels in adults 

with obesity [7, 51]. As previously discussed, a combination of exercise and rosiglitazone 

was found to increase adiponectin levels more than individual therapies [46]. Based on these 

findings, it could be hypothesized that exercise and TZDs may work synergistically to 

improve endothelial function as they are not directly competing to utilize the same 

mechanistic pathway. Nonetheless, clinical trials are needed to confirm and determine the 

appropriate exercise and TZD dosage for maximum health benefits.

4.2. TZDs and Mitochondrial Dynamics

TZDs have a known function of exerting anti-diabetic effects. In isolated rat soleus muscle, 

it has been shown that TZDs reduce the activity of respiratory Complex I in the 

mitochondria [52]. Since TZDs have been shown to change mitochondrial dynamics in 

skeletal muscle, other groups like Artwohl et al. proposed a similar mechanism for TZDs in 

endothelial cells. It is hypothesized that TZDs have an antiproliferative action on endothelial 

cells which can explain their vascular protective effect as individuals with T2D often have a 

proatherogenic vascular environment that is often characterized by accelerated proliferation 

of both endothelial and smooth muscle cells. This study concluded that the effects seen from 

TZD treatment in vitro are independent of PPARγ activation and correlate with lactate 

release. The correlation with lactate release is then extrapolated to be linked with possible 

inhibition of mitochondrial complex I function [53].

5. METFORMIN

Metformin is a drug used by over 120 million patients with T2D worldwide to improve 

glycemic control and insulin sensitivity. The beneficial effects seen in patients taking 

metformin have been attributed to the stimulation of AMPK activity as shown in Figure 1 

[55]. Increased AMPK action decreases insulin resistance via promoting glucose uptake in 

muscle cells while also inhibiting hepatic glucose release. [54] Insulin resistance has been 

seen to mediate endothelial dysfunction, therefore metformin’s insulin-sensitizing effect 

improves endothelial-dependent vasodilation [55]. To test the beneficial effects of metformin 

on insulin resistance, endothelial cells were cultured in high glucose media and were also 

given insulin. These cells function as a model for insulin resistance as they are unable to take 

up the amount of glucose as endothelial cells cultured in regular media. The NO, eNOS, and 

endothelin levels were measured in metformin-treated (10−3mmol/L) control cells. 

Metformin treatment significantly increased NO levels and reduced endothelin-1 
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concentration in insulin-resistant cells compared with the non-treated controls. Metformin 

also increased eNOS protein expression in the insulin-resistant cells [56].

Metformin has been seen to increase AKT and eNOS phosphorylation in mouse 

microvascular endothelial cells that have been cultured in high glucose media. Exposing the 

aorta from hyperglycemic db/db mice to a 3hr treatment of 50uM metformin significantly 

increased vasodilation in response to stimulation with ACh. These data lead to the 

conclusion that metformin can both treat and reverse hyperglycemia-induced endothelial cell 

dysfunction. Metformin is thought to reverse the negative effects of high glucose on eNOS 

and AKT phosphorylation leading to improved vascular function, and reduction in both 

insulin resistance and hyperglycemia [55].

5.1. Metformin and Exercise

Coupling metformin treatment with exercise to reduce the incidence of T2D and vascular 

dysfunction results in irresolute clinical trial data. The landmark U.S. diabetes prevention 

program reported that 150min/wk of physical activity and weight loss of 7% reduced T2D 

incidence by 58% compared to the 31% decrease with metformin (1700 mg/d) in adults with 

impaired glucose [57]. While these findings suggest lifestyle was better than metformin 

alone, another study observed that both regular physical activity (recommended >30min/d) 

and metformin (500mg/d) reduced the progression of impaired glucose tolerance to T2D in 

native Asian Indians [58]. However, there were no synergistic improvements when the two 

therapies were combined. Interestingly, in a randomized controlled trial, the combined effect 

of metformin and exercise was tested compared to either treatment in adults with 

prediabetes. The results showed that while 12 weeks of metformin (2000mg/d) plus cycling 

(3d/wk; aerobic: 45min at 70% HRpeak) and resistance exercise (2d/wk 2×12 at 70% of 

1RM) increased insulin sensitivity, individuals randomized to exercise-only saw a 25–30% 

higher increase than the combined or metformin-only group [59]. Likewise in another study, 

12 weeks of treadmill exercise (3d/wk; 45 min at 85& HRmax) with metformin (2000mg/d) 

saw no improvements in whole-body insulin sensitivity and VO2max in an aged population 

of overweight to obese insulin-resistant adults. Further, cellular experiments in these older 

individuals indicated that metformin blunted skeletal muscle mitochondria respiration 

adaptations [60]. Interestingly, this blunting effect of metformin on metabolic adaptation 

was also observed with regard to weightlifting alone. Indeed, a recent study showed that 14 

weeks of progressive resistance exercise training only increased total lean mass and thigh 

muscle mass in healthy older adults, whereas the combined treatment of resistance exercise 

with metformin appeared to blunt these changes through competing AMPK/mTOR 

pathways [61]. The effect of metformin on insulin sensitivity, aerobic fitness and muscle 

also seems to be of clinical relevance as some have reported increased glucagon levels that 

coincided with the glucose-lowering effect of exercise in patients with T2D [62]. Moreover, 

metformin seems to interfere with the ability of exercise to lower blood pressure in people 

with prediabetes [63].

Taken together, these data suggest that metabolically, metformin does not enhance the 

benefits of physical activity, and likely blunts some adaptation. While no study has looked 

specifically at outcomes of endothelial cells in exercise and metformin models, competition 
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via the activation of the AMPK pathway would likely result in a downstream reduction of 

NO production and subsequent endothelial function. Whether metformin alters the 

endothelial function and/or arterial reactivity following exercise in humans awaits further 

investigation.

5.2. Metformin and Mitochondrial Dynamics

Mitochondria are exceptionally dynamic organelles that play a critical role in energy 

metabolism, stress responses, cell death, and ROS production. Increased mitochondrial 

fission is associated with increased amounts of ROS released from the organelle which 

subsequently has been shown to impair endothelial nitric oxide synthase production of NO 

[64].

Metformin has also shown promising results in altering mitochondrial fission and fusion 

dynamics that exert cardiovascular protective effects. A study conducted by Wang et al. 
reported a novel mechanism by which metformin reduces mitochondrial fragmentation 

decreasing mitochondrial-derived superoxide release and therefore improving endothelial-

dependent vasodilation. In this study, metformin was also seen to reduce vascular 

inflammation and suppression of atherosclerotic lesions in streptozotocin-induced diabetic 

ApoE null mice. This group suggests that metformin exerts its cardiovascular protective 

effects by inhibiting dynamin-related protein (Drp1), a key protein involved in the 

fragmentation of mitochondria. Also, in ApoE and AMPK-α-2 null mice, the reduction in 

Drp1 expression was lost. Taken together, these data suggest that metformin exerts beneficial 

effects on mitochondrial dynamics through AMPK activation and decreases in ROS. This 

diminishes Drp1 expression and subsequently reduces mitochondrial fragmentation as well 

as promotes proper endothelial cell-dependent vasodilation [65].

6. VILDAGLIPTIN

Hormonal treatments, such as incretins which include glucagon-like peptide 1 (GLP-1) and 

glucose-dependent insulinotropic polypeptide (GIP), have been used as a treatment for T2D 

[66]. Dipeptidyl peptidase-4 (DPP-4) rapidly degrades these incretin hormones making them 

inactive metabolites and diminishing their benefit for patients with diabetes [67]. DPP-4 

inhibitors have been shown to reduce the breakdown of GLP-1 and increase beta-cell 

function, which increases the insulin section [68]. Vildagliptin is an effective DPP-4 

inhibitor that can be used to treat T2D [68]. Figure 1 shows that GLP-1 and GIP have 

protective effects on the vasculature, specifically on endothelial function via the 

upregulation of protein expression and action of eNOS [69, 70]. Individuals with T2D often 

have reduced postprandial secretion of GLP-1 and GIP [71]. Increasing GLP-1 with 

vildagliptin induces vasodilation in an endothelial cell-dependent manner in both humans 

and animal brachial arteries. It has also been shown that 4 weeks of injections of vildagliptin 

into the arms of patients with T2D improved endothelial-dependent vasodilation [66]. 

Greater vasodilation was seen in the patient’s vascular bed when administered with 

vildagliptin and ACh compared to patients treated with an endothelium-independent 

vasodilator sodium nitroprusside [3].
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6.1. Vildagliptin and Exercise

In addition to vildagliptin, aerobic exercise increases postprandial incretin concentrations in 

adults with obesity [72,73]. This effect may be, in part, mediated through lower circulating 

plasma DPP-4 [74]. Despite the beneficial effects of exercise in relation to incretin 

hormones, there are limited studies looking at the combined effects of DPP-4 inhibitors and 

exercise. One of the few human studies looking at this drug in combination with exercise 

found that 12 weeks of sitagliptin (100mg/d) and exercise impacted C-peptide area under the 

curve and beta-cell function equivalently to sitagliptin only. However, the combined therapy 

did result in increased circulating HDL-C and slightly lower glucose concentrations in adults 

with long-standing type 1 diabetes [75]. Benefits of this combination therapy are also 

supported in rodent models. Data in diabetic KK/Ta mice showed that a combination of 

exercise and alogliptin was effective against high-fat diet-induced lipid accumulation in the 

liver [76]. Likewise, MK-0626, another DPP-4 inhibitor, was found to increase 

mitochondrial biogenesis and exercise capacity in mice induced with heart failure [77]. 

However, an important consideration is that no data in rodents or humans appear to 

specifically test whether the combination of DPP-4 inhibitors plus exercise impacts 

cardiometabolic health to a greater extent than exercise or DPP-4 inhibitor alone.

While these drugs are all a part of the same class, it is necessary to recognize that there may 

be a difference in overall efficacy amongst DPP-4 inhibitors. This is important as each type 

of DPP-4 inhibitor may differentially impact outcomes regarding combination therapy with 

exercise. Interestingly, vildagliptin was found to induce lower mean amplitudes of glycemic 

excursions than sitagliptin as well as induce greater decreases in HbA1c than alogliptin in 

patients with T2D [78,79]. However, in another study conducted in patients undergoing 

either an exercise/diet program or a combination therapy of lifestyle with metformin, 

vildagliptin and sitagliptin induced similar alterations in incretin hormones, glucose 

concentration and insulin secretion [80]. These data collectively highlight the importance of 

not only needing more exercise trials with DPP-4 inhibitors, but also how results and 

interpretation of outcomes may differ depending on the type of DPP-4 inhibitor studied. 

Further, no study has addressed the implications of exercise when added to vildagliptin in 

regards to endothelial cells. This has public health relevance for understanding both T2D 

and CVD risk reduction.

6.2. Vildagliptin and Mitochondrial Dynamics

Vildagliptin has also been shown to alter mitochondrial dynamics in endothelial cells in 
vitro. Human umbilical vein endothelial cells were cultured in hyperglycemic media and 

then analyzed for ROS, mtDNA damage, and ATP synthesis changes when treated with 

vildagliptin or vehicle. In vildagliptin treated cells mitochondrial ROS production and 

mtDNA damage were significantly reduced while ATP synthesis was enhanced. Vildagliptin 

treatment also reduced the expression of Drp1 and fission-1 (Fis1). Drp1 translocation to the 

mitochondria was blocked resulting in reduced mitochondrial fragmentation that is usually 

seen in hyperglycemic endothelial cells. Blocking mitochondrial fission will have an 

endothelial protective effect by reducing mitochondrial damage that is induced by 

hyperglycemia. [81]
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CONCLUSION

In conclusion, the implications of current pharmacological regimens for insulin-based 

therapies with and without exercise have been described in relation to molecular and 

functional outcomes of endothelial dysfunction. Exercise aids in weight management, 

increases insulin sensitivity, and improves blood flow in T2D; however, the effects when 

combined with pharmacological agents are less understood and warrant further mechanistic 

study. There are also several deficiencies with these agents, especially when the focus is 

endothelial dysfunction. More recent novel work in the area of endothelial dysfunction has 

revealed targets that may be able to be exploited at the pharmacological level. This includes 

the fat mass obesity (Fto) protein in endothelium and how it regulates prostaglandin D2 to 

protect against insulin resistance and promotes glucose uptake as well as vascular function 

[82]. Another example is the role of peroxynitrite regulating TRPV4 in endothelium to 

restore vasodilation in obese mice [83]. It is tantalizing that, in both examples, endothelial 

dysfunction was reversed in isolated human tissue, which highlights a possible novel 

translational pipeline.
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Fig. (1). Effects of Insulin and pharmacological agents on endothelial insulin signaling.
Shown are the effects of Insulin, TZDs, Metformin, and Vildagliptin on endothelial insulin 

signaling and downstream vasorelaxation, vasoconstriction, and glucose uptake. Question 

marks represent places in which mechanisms are unknown throughout the available 

literature. Illustrated here is the PI3K signaling pathway downstream of insulin receptor 

activation resulting in NO production and vasodilation. Shown in tandem is the metabolic 

and mitogenic pathway of insulin receptor activation which controls the secretion of 

endothelin-1 and leads to vasoconstriction. Also displayed are the molecular targets of 

metformin acting as an activator of AKT downstream of PI3K as well as stimulating AMPK. 

TZDs are shown here also stimulating both PI3K as well as PPARγ which in conjunction 

increase glucose uptake and NO production. Vildagliptin is presented as a DPP-4 inhibitor 

with downstream effects on eNOS, subsequently increasing NO levels which result in 

vasorelaxation.
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