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INTRODUCTION
Intracerebral hemorrhage (ICH) is the most devastating 
subtype of stroke with high morbidity and mortality.1 
Baseline hematoma volume is an independent predictor of 
hematoma expansion (HE) and poor outcome in patients 
with ICH.2,3 Although patients with smaller hematomas are 
more likely to have a benign clinical course,4,5 some studies 
reported that small hemorrhage in deep locations caused 
functional dependence or mortality, and the volume cut- off 
to predict poor outcome was less than the widely used of 30 
ml.6–8 In a prior study, small ICH was defined as benign or 
malignant, and patients with the latter experienced HE and 
had worse outcomes.5

Several clinical trials have also enrolled many patients 
with small- volume ICH,9–11 but these trials failed to 
demonstrate a clinical benefit of the intervention. One 
possibility might be that small ICH is malignant in only 
a proportion of patients and those with benign small 
ICH have little opportunity to benefit from treatment. 

Therefore, it is important to improve patient selection 
and identify those with malignant small hematomas at 
high risk of expansion. Currently, there is no standard 
definition of small hematoma.4,5,12,13 As the average 
ICH volume in clinical trials is approximately10 ml, we 
defined small hematomas as those with a baseline hema-
toma volume less than 10 ml.

Radiomics is an emerging approach that extracts high- 
throughput quantitative features from medical images 
and enables us to utilize the full potential of images.14,15 
It has been widely used for the prediction of cancer and 
differentiation of benign and malignant tumors.16,17 
Recently, radiomic analyses have been applied to ICH 
for the prediction of HE.18–20 However, clinical risk 
factors known to be associated with HE were not taken 
into account in these studies. Moreover, to the best 
of our knowledge, no study has applied radiomics to 
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Objectives: We hypothesized that not all small hemat-
omas are benign and that radiomics could predict 
hematoma expansion (HE) and short- term outcomes in 
small hematomas.
Methods: We analyzed 313 patients with small (<10 
ml) intracerebral hemorrhage (ICH) who underwent 
baseline non- contrast CT within 6 h of symptom onset 
between September 2013 and February 2019. Poor 
outcome was defined as a Glasgow Outcome Scale 
score ≤3. A radiomic model and a clinical model were 
built using least absolute shrinkageand selection oper-
ator algorithm or multivariate analysis. A combined 
model that incorporated the developed radiomic 
score and clinical factors was then constructed. The 
area under the receiver operating characteristic curve 
(AUC) was used to evaluate the performance of these  
models.

Results: The addition of radiomics to clinical factors 
significantly improved the prediction performance of 
HE compared with the clinical model alone in both the 
training {AUC, 0.762 [95% CI (0.665–0.859)] versus AUC, 
0.651 [95% CI (0.556–0.745)], p = 0.007} and test {AUC, 
0.776 [95% CI (0.655–0.897) versus AUC, 0.631 [95% CI 
(0.451–0.810)], p = 0.001} cohorts. Moreover, the radiomic- 
based model achieved good discrimination ability of poor 
outcomes in the 3–10 ml group (AUCs 0.720 and 0.701).
Conclusion: Compared with clinical information alone, 
combined model had greater potential for discrimi-
nating between benign and malignant course in patients 
with small ICH, particularly 3–10 ml hematomas.
Advances in knowledge: Radiomics can be used as a 
supplement to conventional medical imaging, improving 
clinical decision- making and facilitating personalized 
treatment in small ICH.
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predict HE or the short- term outcomes in patients with small 
hematomas.

Therefore, in this study, we hypothesized that not all small hema-
tomas (<10 ml) are benign and that radiomics could predict HE 
and the short- term outcomes in patients with small hematomas. 
The first aim of this study was to train a radiomic score (R- score) 
to predict HE in patients with small ICH. The second aim was 
to assess the applicability of the same R- score to the prediction 
of HE and the short- term outcomes in the 3–10 ml and <3 ml 
subgroup. The last aim was to train a new radiomic score (Rad- 
score) to predict the short- term outcomes in patients with 
volumes of 3–10 ml.

METHODS AND MATERIALS
Study design and patient population
We retrospectively analyzed the records of patients aged >18 
years who presented with primary ICH at our Neurological 
Emergency Room between September 2013 and February 2019.
The inclusion criteria were as follows: (1) a baseline noncon-
trast computed tomography (NCCT) scan performed within 6 
h after symptom onset; (2) a follow- up NCCT scan performed 
within 72 h after the initial CT scan; and (3) Glasgow Outcome 
Scale (GOS) score evaluated at discharge. The exclusion criteria 
were as follows: (1) secondary ICH (tumor, trauma, cere-
bral aneurysm, arteriovenous malformation, or hemorrhagic 
transformation from brain infarction); (2) primary intraven-
tricular hemorrhage (IVH) or multiple cerebral hemorrhage; 
(3) surgical evacuation before the follow- up NCCT scan; (4) 
anticoagulant- associated ICH; and (5) CT images with severe 
motion artifacts.

Patients were randomly assigned to the training or test cohorts. 
HE was defined as a relative increase of 33% or an absolute 
increase of 6 ml of a hematoma from the baseline volume.21 Poor 
outcome was defined as a GOS score ≤3 at discharge.22–24

The requirement for written informed consent was waived owing 
to the retrospective design of the study.

Image acquisition and segmentation
All patients were examined using a 64- slice spiral CT scanner 
(LightspeedVCT64; GE Medical Systems, Milwaukee, WI). The 
baseline and follow- up CT scans were performed using a stan-
dard clinical protocol with an axial technique, with slice thick-
ness of 5 mm, tube voltage of 120 kV(p), and tube current of 80 
mA.

Figure 1 illustrated the flow chart of the study. All images were 
analyzed by a radiologist (2- year experience) blinded to the 
patients’ identity and clinical data. The contours of all intracere-
bral hematomas were drawn manually layer- by- layer. 50 images 
were randomly chosen and were assessed by another radiologist 
(5- year experience). The ventricular extension was not included. 
Three- dimensional segmentation of the region of interest (ROI) 
was performed using the ITK- SNAP software (v. 3.8, www. 
itksnap. org) (Figure 2).

Clinical analysis
The essential clinical data, including age, sex, history of hyper-
tension, diabetes mellitus, ischemic stroke, ICH, and Glasgow 
coma scale (GCS) scores, were recorded after admission. We also 
recorded the time from symptom onset to CT, location of the 
hematoma [deep (basal ganglia, thalamus), other (lobar, cere-
bellum, brainstem)], presence of IVH, and hematoma volume 
after the initial NCCT scan. Two radiologists (2 year and 5 year 
experience) blinded to the patients’ identity and clinical data 
interpreted the baseline NCCT images to assess the following 
features: (1) satellite sign ;(2) black hole sign ;(3) blend sign; and 
(4) Island sign. In case of discrepancy, the final decisions were 
reached by consensus.

Radiomic analysis
In our study, the set of radiomic features contained 396 
descriptors from 5 groups: (1) first- order statistics of intensity 
(n = 42) (2) shape (n = 20) (3) gray- level co- occurrence matrix 
(n = 144) (4) gray- level run length matrix (n = 172), and (5) 
Haralick features (n = 18). Feature extraction was performed 
using the Artificial Intelligence Kit v. 3.0.0..R in the training 
cohort.

Least absolute shrinkage and selection operator (LASSO) logistic 
regression was used for feature selection to reduce redundancy. 
10- fold cross- validation was applied to choose the tuning param-
eter that determined the magnitude of penalization. Features 
with non- zero coefficients were selected to calculate the radiomic 
score using the following formula:

 radiomic score =
∑

βiXi + Intercept(i = 0, 1, 2, 3),  (1)

where Xi represents the ith selected radiomic features, and βi 
is the respective coefficient determined by LASSO regression. 
We further validated the R- score in subgroups with volumes 
3–10 ml and less than 3 ml. Receiver operating characteristic 
(ROC) curve analysis was performed to assess the predictive 
performance with the associated classification measures. The 
Youden index (sensitivity+ specificity-1) was used to select 
the cut- off value to determine the corresponding sensitivity 
and specificity. The reproducibility of the radiomic features 
was assessed using the interclass correlation coefficient (ICC), 
with an ICC greater than 0.75 indicating good interobserver 
agreement.

Development and validation of clinical model and 
combined model
Radiological and clinical characteristics were compared between 
HE and non- HE (NHE) groups.Predictors of HE with statistical 
significance in the univariate analysis were introduced into the 
stepwise multivariate logistic regression analysis to build the 
clinical model. The identical multivariable regression formula 
was used to calculate the predictive probability of HE in the 
test cohort. A combined model that incorporated the developed 
R- score and clinical model was built using multivariate logistic 
regression analysis (Supplementary Table 1) in the training 
cohort and validated in the test cohort.

http://birpublications.org/bjr
www.birpublications.org/doi/suppl/10.1259/bjr.20201047/suppl_file/Supplementary Table 1.docx
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Evaluation of the clinical outcome at discharge
Univariate analysis was used for comparing the differences 
between patients with favorable (GOS score4–5) and those with 
poor outcome (GOS score1–3). Multivariate logistic regression 
analysis with a backward step- wise selection was performed to 
determine the independent predictors.

Statistical analysis
For categorical variables, differences were calculated using the χ2 
test or Fisher’s exact test. Student’s t- test or Mann–Whitney’s U 
test was used for estimating the differences in continuous vari-
ables. Normally distributed continuous data were represented 
as mean ± standard deviation, otherwise as median with inter-
quartile range (IQR). Univariate analysis was used to compare 
the variables to discover the possible significant predictors for 
HE and poor outcome. Variables with p < 0.05 were included in 
the multivariate logistic regression analysis. The relative risk was 
estimated by odds ratios (ORs) with 95% confidence intervals 
(CIs) for each independent variable. The performance of predic-
tion models was evaluated by plotting the ROC curves and calcu-
lating the area under the curve (AUC) values. AUC values were 
compared between models by using Delong’s test. All statistical 
analyses were performed with SPSS (v 22.0, IBM Corp.,Armonk, 

New York, USA) and R statistical software (v. 3.6.1,https://www. 
r- project. org). A two- sided p value < 0.05 was considered statis-
tically significant.

RESULTS
Patients’ characteristics
In total, 313 patients with ICH were included in the final anal-
ysis. There were 218 patients in the training cohort and 95 in the 
test cohort.

The baseline characteristics of the training and test cohorts are 
detailed in Table  1. The characteristics of the subgroups are 
presented in Tables 2 and 3.The incidence of HE was 13.8% (30 
of 218) in the training cohort and 14.7% (14 of 95) in the test 
cohort. No significant difference was found between the two 
cohorts (all p > 0.05). In the subgroup analysis, HE was observed 
in 28 patients (11.2%) of the 3–10 ml subgroup and in 16 patients 
(25.8%) of the <3 ml subgroup.

Development and validation of the radiomic score
After evaluating the differentiating ability of the radiomic 
features in the univariate analysis, 58 features with p values 
<0.05 were selected. These features were reduced to three 

Figure 1. Flow chart of the study. 3D, three- dimensional; ICH, intracerebralhemorrhage; LASSO, least absolute shrinkageand selec-
tion operator; ROI, region of interest.

http://birpublications.org/bjr
https://www.r-project.org
https://www.r-project.org
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potential predictors (kurtosis, HaralickCorrelation_AllDirec-
tion_offset1_SD, ShortRunHighGreyLevelEmphasis_AllDirec-
tion_offset4_SD) that had non- zero coefficients in the LASSO 
logistic regression model in the training cohort (Figure 3). The 
R- score was then calculated using the following formula:

 

R− score = −2.180− 0.299× kurtosis− 0.858×
HaralickCorrelation_AllDirection_offset1_SD− 0.272×
ShortRunHighGreyLevelEmphasis_AllDirection_offset4_SD. 

 (2)

R- score = −2.180–0.299 × kurtosis - 0.858 × HaralickCorrela-
tion_AllDirection_offset1_SD - 0.272 × ShortRunHighGreyLev-
elEmphasis_AllDirection_offset4_SD. (2)

The calculated R- scores are summarized in Table 1. There were 
significant differences between the HE and non- HE (NHE) 
groups in the training and test cohorts, and the 3–10 ml subgroup 
(all p < 0.001; Tables 1 and 2). A new radiomic score (Rad- score) 
for predicting the short- term outcome was established using the 

same flow. The calculated Rad- scores are summarized in Supple-
mentary Table 2.

Association between the radiomics and HE
Multivariate logistic regression analysis indicated the R- score 
as an independent predictor of HE in the training cohort [OR, 
2.557; 95% CI (1.455–4.492); p = 0.001] and the test cohort [OR, 
3.898; 95% CI (1.051–14.453); p = 0.042] (Table 4).

In the 3–10 ml subgroup, patients with HE had higher R- scores 
(Table 2) and the R- score was independently associated with HE 
[OR, 4.293; 95% CI (2.095–8.796); p < 0.001)] after adjusting for 
confounders (Table 5). In the <3 ml subgroup, univariate analysis 
showed that there was no significant difference in the R- score 
between the HE and NHE groups (Table 3).

The performance of three prediction models the radiomic 
model, the clinical model, and the combined model was summa-
rized in Table 6. AUCs of three prediction models were shown in 
Figure 4. In the training cohort, the AUC value of the combined 
model was 0.762 [95% CI (0.665–0.859)], outperformed the 

Figure 2. Manual 3D segmentation of the hematoma. (a) The patient’s baseline CT showed a small hematoma in the left basal 
ganglia (58 years, male, baseline volume = 7.41 ml, radiomic score = −1.145). (b) Delineation of the lesion using the ITK- SNAP soft-
ware. (c) Generation of a 3D region of interest. (d) Detection of hematoma expansion on follow- up CT (volume = 16.92 ml, Glasgow 
outcome scale score = 3). 3D, three- dimensional.

http://birpublications.org/bjr
www.birpublications.org/doi/suppl/10.1259/bjr.20201047/suppl_file/Supplementary Table 2.docx
www.birpublications.org/doi/suppl/10.1259/bjr.20201047/suppl_file/Supplementary Table 2.docx
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clinical model (AUC, 0.651 [95% CI, 0.556–0.745], p = 0.007) 
and was comparable with that of the radiomic model (AUC, 
0.728 [95% CI (0.631–0.826)], p = 0.136). Similarly, the combined 
model showed a better predicting performance than the clinical 
model alone in the test cohorts {AUC, 0.776 [95% CI (0.655–
0.897)] versus AUC, 0.631 [95% CI (0.451–0.810)], p = 0.001}. 
The AUC value was 0.740 [95% CI (0.659–0.820)] in the 3–10 ml 
subgroup. Furthermore, the optimal cutoff value for the R- score 
was −1.430 in the training cohort according to the Youden index. 
The interobserver agreement on the radiomic features reached a 
mean ICC of 0.89.

Association between the radiomics and short-term 
poor outcomes
Of the 313 patients with small ICH, 168 (53.7%) had poor 
outcomes at discharge. In the two subgroups, 143 (57%) of the 
251 patients in the 3–10 ml subgroup and 25 (40.3%) of the 62 
patients in the <3 ml subgroup had poor outcomes. The rate of 

poor outcome was significantly lower in the <3 ml subgroup 
(40.3% vs 57%; p = 0.019).

In the 3–10 ml subgroup, the multivariate logistic regres-
sion analysis indicated that the R- score [OR, 1.297; 95% CI 
(1.004–1.674); p = 0.046] were an independent predictor of 
poor outcomes (Table 5). In the <3 ml subgroup, the univariate 
analysis showed no significant difference in the R- score between 
patients with poor and those with favorable outcome (Table 3). 
Supplementary Table 2 shows detailed baseline characteristics of 
patients with poor and favorable outcome in the 3–10 ml group; 
baseline characteristics did not differ between the derivation 
and validation cohorts. The radiomics- based model indicated 
favorable prediction of poor outcomes with a AUC vaule of 0.720 
(95% CI: 0.643–0.790) in the derivation cohort and 0.701 [95% 
CI (0.580–0.822)] in the validation cohort (Supplementary Table 
3, Figure 5).

Table 1. Patients’ baseline characteristics

Training cohort (n = 218) Test cohort (n = 95)

pa
-value

HE
(n = 30)

NHE
(n = 188)

p
value

HE
(n = 14)

NHE
(n = 81)

p
value

Age, y, mean (SD) 64.0 (9.1). 62.6 (12.0) 0.541 56.6 (8.6) 63.1 ± 11.9 0.022 0.657

Male 22 (73.3) 106 (56.4) 0.080 8 (57.1) 46 (56.8) 0.98 0.757

Medical history

  Arterial hypertension 26 (86.7) 159(85) 1 11 (78.6) 69 (88.5) 0.384 0.695

  Diabetes mellitus 6 (20) 31 (16.6) 0.644 3 (21.4) 15 (19.2) 1 0.597

  ICH 1 (3.3) 8 (4.3) 1 2 (14.3) 3 (3.8) 0.165 0.765

  Ischemic stroke 3 (10) 10 (5.3) 0.397 0 6 (7.7) 0.586 0.859

  IVH 4 (13.3) 71 (37.8) 0.009 3 (21.4) 29 (35.8) 0.37 0.902

  Black hole sign 5 (16.7) 10 (5.3) 0.039 4 (28.6) 2 (2.5) 0.004 0.854

  Blend sign 3 (10) 5 (2.7) 0.082 3 (21.4) 3 (3.7) 0.04 0.372

  Island sign 2 (6.7) 6 (3.2) 0.303 0 3 (3.7) 1 1

  Satellite sign 9 (30) 29 (15.4) 0.051 2 (14.3) 16 (19.8) 1 0.748

Location 0.851 0.084 0.279

  Deep 25 (83.3) 154 (81.9) 8 (57.1) 65 (80.2)

  Other 55 (16.7) 34 (18.1) 6 (42.9) 16 (19.8)

  Hematoma volume, 
ml, mean (SD)

5.3 (3.0) 5.7 (2.6) 0.431 5.8 (3.6) 6.2 (2.5) 0.637 0.204

  Time from onset to 
CT, h, mean (SD)

2.6 (1.4) 3.1 (1.5) 0.073 2.2 (1.3) 3.2 (1.5) 0.02 0.853

  Admission GCS score, 
median (IQR)

14 (10.5–15) 15 (14–15) 0.066 15 (11–15) 15 (12–15) 0.928 0.156

  R- score, median 
(IQR)

−1.257
(−2.055–−0.977)

−2.088
(−2.970–−1.077)

<0.001 −1.461
(−1.810–−1.230)

2.097
(−2.824–1.388)

<0.001 1

  Poor outcome 23 (76.7) 87 (46.3) 0.002 10 (71.4) 48 (59.3) 0.389 0.084

GCS, Glasgow coma scale; HE, Hematoma expansion; ICH, Intracerebral hemorrhage; IQR, Interquartile range; IVH, Intraventricular hemorrhage; 
NHE, Non- hematoma expansion; R- score, Radiomic score; SD, Standard deviation.
All values are presented as count (%) unless otherwise specified.
aIndicates comparison between the training and test cohorts.

http://birpublications.org/bjr
www.birpublications.org/doi/suppl/10.1259/bjr.20201047/suppl_file/Supplementary Table 2.docx
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Table 3. Univariate analysis for hematoma expansion and poor outcome in the <3 ml subgroup

HE (n = 62) Poor outcome (n = 62)

HE (n = 16) NHE (n = 46) p value
Poor outcome 

(n = 25)
Favorable 

outcome (n = 37) p value
Age, y, mean (SD) 62.3 (7.6) 61.4 (10.8) 0.771 63.8 (7.7) 60.1 (11.2) 0.160

Male 12(75) 26 (56.5) 0.191 16 (64.0) 22 (59.5) 0.719

Arterial hypertension 13 (81.3) 37 (80.4) 1 18 (72.0) 32 (86.5) 0.198

Diabetes mellitus 3 (18.8) 9 (19.6) 1 4 (16.0) 8 (21.6) 0.747

ICH 2 (12.5) 3 (6.5) 0.597 4 (16.0) 1 (2.7) 0.148

Ischemic stroke 1 (6.3) 0 0.258 1 (4.0) 0 0.403

IVH 0 10 (21.7) 0.052 1 (4.0) 9 (24.3) 0.040

Blackhole sign 4 (25) 0 0.003 3 (12.0) 1 (2.7) 0.294

Blend sign 2 (12.5) 0 0.063 2 (8.0) 0 0.159

Island sign 0 1 (2.2) 1 0 1 (2.7) 1

Satellite sign 3 (18.8) 7 (15.2) 0.709 7 (28.0) 3 (8.1) 0.074

Location 0.422 0.311

Deep 9 (56.0) 31 (67.4) 18 (72.0) 22 (59.5)

Other 7 (44.0) 15 (32.6) 7 (28.0) 15 (40.5)

Hematoma volume, ml, 
mean (SD)

1.9 (0.7) 1.8 (0.7) 0.848 2.2 (0.5) 1.6 (0.7) 0.001

Time from onset to CT, h, 
mean (SD)

2.3 (1.1) 3.2 (1.3) 0.030 3.0 (1.3) 2.9 (1.3) 0.890

Admission GCS score, 
mean (SD)

14 (3) 14 (2) 0.980 13 (3) 14 (2) 0.039

R- score, mean (SD) −1.603 (0.865) −1.963 (0.834) 0.146 −1.780 (0.844) −1.931 (0.860) 0.498

GCS, Glasgow coma scale; HE, Hematoma expansion; ICH, Intracerebral hemorrhage; IVH, Intraventricular hemorrhage; NHE, Non- hematoma 
expansion; R- score, Radiomic score; SD, Standard deviation.
All values are presented as count (%), unless otherwise specified.

Figure 3. Radiomic feature selection using the LASSO regression model. We used 10- fold cross- validation to tune parameter (λ) 
selection in the LASSO model. (a) AUC was plotted vs log(λ). Three features with non- zero coefficients were selected using the 
minimum criteria. (b) LASSO coefficient profiles of the features. Each colored line represents the coefficient of each feature. AUC, 
area under thecurve; LASSO, least absolute shrinkage and selection operator.
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DISCUSSION
In this retrospective study, we used radiomic anlysis to predict 
HE and short- term poor outcomes in small hematomas (<10 ml). 
Combined the radiomic score and the clinical model are superior 
to the clinical model alone in predicting HE. Our results indicated 
that small hematomas could exhibit a malignant course and that 
the R- score based on NCCT was strongly associated with HE. We 
also found that the radiomic- based model provided good perfor-
mance of predicting poor outcomes in small hematomas with a 
volume of 3–10 ml.

To date, most trial inclusion criteria and clinical grading scales have 
used a cut- off of 30 ml to identify patients likely to have a malignant 
clinical course with a high expansion rate and a poor outcome.3,24,25 
However, hematomas less than 10 ml could account for approx-
imately one- third to one- half of all patients with ICH5,13,26 and 
their destructive effects should not be underestimated. One study 
demonstrated that baseline hematoma size categories of <10 ml 
had the same ability to predict outcome regardless of the HE defi-
nition.21 Ironside et al modified the original ICH score and the 
volume cut- off was less than 10 ml in the deep and brainstem loca-
tion.8 Therefore, it is meaningful to discriminate hematomas with 
a benign clinical course from those with a malignant course so the 
effects of interventions could be improved. Our results showed that 
very small hematomas (<3 ml) had a higher rate of HE compared 
to those with a volume of 3–10 ml, but with a more benign 
outcome. We further confirmed the findings of other studies that 
demonstrated very small hematomas were likely to have benign 

outcomes.12,13 This may indicate that the very small growth in very 
small hematomas is insufficient to translate into functional deteri-
oration and the benefits of anti- expansion therapy in those patients 
may be outweighed by the potential of harm.

Recently, several radiographic features have been used to predict 
HE and poor outcome, including the black hole sign, blend sign, 
satellite sign, and CT angiography (CTA) spot sign.27,28 Li et al5 
reported that patients with benign ICH who had none of these 
signs would not experience HE. Their definition was complicated 
for inexperienced radiologists and clinical physicians to make 
accurate and fast identification. Our R- score could objectively 
identify patients with HE whose NCCT signs were negative. In 
the Antihypertensive Treatment of Acute Cerebral Hemorrhage 
II (ATACH- II) trial, there was no evidence that patients with ICH 
with CTA spot sign or NCCT signs would benefit from intensive 
blood pressure reduction.29,30 It is uncertain whether these signs 
were inadequate to identify the patients most likely to benefit due 
to their subjective judgment and somewhat overlapped definition. 
In addition, the CTA spot sign is unsuited in the emergency room, 
particularly for patients with ICH with kidney insufficiency and 
contrast agent allergies, because it is time- consuming and requires 
a contrast injection. Therefore, quantitative NCCT predictors have 
been sought to identify subtle changes beyond visual assessment.

Radiomics was initially proved to be useful in tumor assessment 
due to its ability to quantify the heterogeneity of the ROI and was 
then applied to ICH.31 Shen et al20 demonstrated that by using the 

Table 4. Multivariate analysis for hematoma expansion in the training and test cohorts

Variables Training cohort Test cohort

  OR (95% CI) p value OR (95% CI) p value
IVH 0.292 (0.096–0.890) 0.030 NA NA

R- score 2.557 (1.455–4.492) 0.001 3.898 (1.051–14.453) 0.042

Black hole sign 2.710 (0.759–9.677) 0.125 10.326 (1.330–80.186) 0.026

Blend sign NA NA 3.985 (0.332–47.897) 0.276

Age NA NA 0.930 (0.869–0.996) 0.037

Time from onset to CT NA NA 0.557 (0.307–1.011) 0.054

CI, Confidence interval; IVH, Intraventricular hemorrhage; NA, Not available;OR, Odds ratio; R- score, Radiomic score.

Table 5. Multivariate analysis for hematoma expansion and poor outcome in the 3–10 ml subgroup

Variables Hematoma expansion Poor outcome

  OR (95% CI) p value OR (95% CI) p value
Blend sign 4.748 (1.114–20.246) 0.035 NA NA

Hematoma volume 1.385 (1.088–1.762) 0.008 NA NA

Admission GCS score 0.869 (0.765–0.987) 0.031 0.737 (0.643–0.844) <0.001

R- score 4.293 (2.095–8.796) <0.001 1.297 (1.004–1.674) 0.046

Location, deep NA NA 5.167 (2.104–12.689) <0.001

Black hole sign 2.311 (0.666–8.021) 0.187 3.460 (0.724–16.546) 0.120

Island sign NA NA 3.641 (0.758–17.487) 0.106

CI, Confidence interval; GCS, Glasgow coma scale; NA, Not available;OR, Odds ratio; R- score, Radiomic score.
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Laplacian of the gaussian bandpass filter, NCCT textures could 
discriminate between HE and NHE. However, only histogram- 
based features were analyzed in 108 patients with ICH, which 
limited the comprehensive assessment of hematoma heterogeneity 
compared with that achievable with radiomic signatures. Subse-
quently, Ma et al19 reported that a five- feature- based R- score could 
independently evaluate the risk for HE with an accuracy of 0.852. 
Another study also showed that the radiomic model had an accu-
racy of 0.726 in predicting HE and the AUC value was 0.729.18 In 
accordance with these studies, the R- score in our study showed 
a good capability of predicting HE (with AUCs of 0.716–0.740), 
except in very small hematomas. This may further prove that 
very small hematomas are homogenous and would have a benign 
course. The haralick correlation measures the degree of similarity 
of the gray level of the image in the row or column direction. The 
short run high gray level emphasis measures the joint distribution 
of short run and high gray level. These two quantitative parame-
ters indicated the diversity between patients with HE and without 
HE on the specific spatial heterogeneity of gray levels within the 
region of hematoma. A higher positive kurtosis value represents a 
sharper peak and wider tails in the histogram. Patients with HE 

had significantly lower kurtosis. Therefore, patients with HE may 
show a slimmer tail in the histogram and fewer similar frequen-
cies of different gray values than patients without HE. Our findings 
were consistent with previous studies that selected one or more of 
these features as optimum feature for radiomic model construc-
tion.32–34 Recently, Xie et al35 compared the NCCT- based radiomic 
model with the conventional radiological model in the prediction 
of HE. Their analysis revealed that the radiomic model was a reli-
able and objective method for HE prediction and outperformed the 
radiological model. Our results also confirmed that the radiomic 
model was comparable with the combined model. After integrating 
with the R- score, the clinical model achieved a significantly better 
performance with a larger AUC value than the clinical model alone 
indicating statistical contribution of the R- score to the combined 
model construction. Moreover, we found that in the 3–10 ml base-
line hematoma volume category, the R- score was not only associ-
ated with HE but could independently predict poor outcomes at 
discharge. It should be more beneficial if the predictor is not only 
associated with HE but also related to poor outcomes. We further 
presented an internally validated radiomic- based model for the 
prediction of poor outcomes in ICH patients with volumes of 3–10 

Table 6. Predictive performance of the prediction models for hematoma expansion in the training cohort and test cohort

AUC Sensitivity Specificity PPV NPV p vaule
Training cohort

  Radiomic model 0.728 0.700 0.729 0.292 0.938 Reference

  Clinical model 0.651 0.933 0.356 0.188 0.971 0.141

  Combined model 0.762 0.667 0.830 0.385 0.940 0.136

Test cohort

  Radiomic model 0.716 0.786 0.642 0.275 0.945 Reference

  Clinical model 0.631 0.286 0.975 0.664 0.888 0.304

  Combined model 0.776 0.786 0.691 0.249 0.949 0.120

NPV, Negative predictive value; PPV, Positive predictive value.
AUC indicates area under the receiver operating characteristic curve.

Figure 4. Comparison of receiver operating characteristic curves between the radiomic model, clinical model and the combined 
model for predicting hematoma expansion in the training (a) and test (b) cohort. AUC, area under the curve; ROC, receiver oper-
ating characteristic..
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ml (with AUCs of 0.701–0.720). Our findings might have clin-
ical implications for future clinical trials or practices, improving 
the ability to stratify the risk for HE or poor outcomes in patients 
with small hematomas. Because of the high density of hematomas 
relative to the surrounding edema or brain parenchyma, semi- 
automatic or automatic segmentation of hematomas may be appli-
cable in the future, making it more convenient to apply radiomics.

There are some limitations in our study. First, it was a single- center 
retrospective study with a relatively small sample size. The small 
data set may influence the performance of the R- score in the training 
cohort and reduce the reliability of the verification in the test 
cohort. Further multicenter studies with larger samples are needed 
to support our findings. Second, the finding cannot be applied to all 
types of ICH due to the exclusion of patients with secondary ICH 
and anticoagulant treatment. Third, there was no lower limit of size 
when we evaluated patients with small ICH. Finally, the GOS score 
at discharge was the only prognostic indicator. Whether long- term 

neurological deterioration or mortality is associated with the 
R- score should be further investigated.

CONCLUSIONS
The addition of radiomic score to clinical factors can signifi-
cantly improve the ability of discriminating between benign and 
malignant clinical course in patients with small ICH, particularly 
hematomas with a volume of 3–10 ml. Radiomics can be used as 
a supplement to conventional medical imaging, improving clinical 
decision- making and facilitating personalized treatment in ICH.
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