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Abstract

Iterative neural networks (INN) are rapidly gaining attention for solving inverse problems in 

imaging, image processing, and computer vision. INNs combine regression NNs and an iterative 

model-based image reconstruction (MBIR) algorithm, often leading to both good generalization 

capability and outperforming reconstruction quality over existing MBIR optimization models. This 

paper proposes the first fast and convergent INN architecture, Momentum-Net, by generalizing a 

block-wise MBIR algorithm that uses momentum and majorizers with regression NNs. For fast 

MBIR, Momentum-Net uses momentum terms in extrapolation modules, and noniterative MBIR 

modules at each iteration by using majorizers, where each iteration of Momentum-Net consists 

of three core modules: image refining, extrapolation, and MBIR. Momentum-Net guarantees 

convergence to a fixed-point for general differentiable (non)convex MBIR functions (or data-

fit terms) and convex feasible sets, under two asymptomatic conditions. To consider data-fit 

variations across training and testing samples, we also propose a regularization parameter selection 

scheme based on the “spectral spread” of majorization matrices. Numerical experiments for light-

field photography using a focal stack and sparse-view computational tomography demonstrate 

that, given identical regression NN architectures, Momentum-Net significantly improves MBIR 
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speed and accuracy over several existing INNs; it significantly improves reconstruction quality 

compared to a state-of-the-art MBIR method in each application.

Keywords

Iterative neural network; deep learning; model-based image reconstruction; inverse problems; 
block proximal extrapolated gradient method; block coordinate descent method; light-field 
photography; X-ray computational tomography

1 INTRODUCTION

Deep regression neural network (NN) methods have been actively studied for solving 

diverse inverse problems, due to their effectiveness at mapping noisy signals into clean 

signals. Examples include image denoising [1]–[4], image deconvolution [5], [6], image 

super-resolution [7], [8], magnetic resonance imaging (MRI) [9], [10], X-ray computational 

tomography (CT) [11]–[13], and light-field (LF) photography [14], [15]. However, 

regression NNs with a greater mapping capability have increased overfitting/hallucination 

risks [16]–[19]. An alternative approach to solving inverse problems is an iterative NN 
(INN) that combines regression NNs – called “refiners” or denoisers – with an unrolled 

iterative model-based image reconstruction (MBIR) algorithm [20]–[27]. This alternative 

approach can regulate overfitting of regression NNs, by balancing physical data-fit of MBIR 

and prior information estimated by refining NNs [16], [18]. This “soft-refiner” approach has 

been successfully applied to several extreme imaging systems, e.g., highly undersampled 

MRI [20], [25], [28]–[30], low-dose or sparse-view CT [16], [19], [24], [27], [31], and 

low-count emission tomography [18], [32]–[34].

1.1 Notation

This section provides mathematical notations. We use f(x; y) to denote a function f of x 
given y. We use ∥·∥p to denote the ℓp-norm and write ⟨·,·⟩ for the standard inner product 

on ℂN. The weighted ℓ2-norm with a Hermitian positive definite matrix A is denoted by 

‖ ⋅ ‖A = ‖A
1
2( ⋅ )‖2. The Frobenius norm of a matrix is denoted by ∥ · ∥F. (·)T, (·)H, and (·)∗ 

indicate the transpose, complex conjugate transpose (Hermitian transpose), and complex 

conjugate, respectively. diag(·) denotes the conversion of a vector into a diagonal matrix 

or diagonal elements of a matrix into a vector. For (self-adjoint) matrices A, B ∈ ℂN × N, the 

notation B ⪯ A denotes that A − B is a positive semidefinite matrix.

1.2 From block-wise optimization to INN

To recover signals x ∈ ℂN from measurements y ∈ ℂm, consider the following MBIR 

optimization problem:

argmin
x ∈ X

F(x; y, z), F(x; y, z) ≜ f(x; y) + γ
2‖x − z‖2

2, (P0)

where X is a set of feasible points, f(x; y) is data-fit function, γ is a regularization 

parameter, and z ∈ ℂN is some high-quality approximation to the true unknown signal x. The 
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data-fit f(x; y) measures deviations of model-based predictions of x from data y, considering 

models of imaging physics (or image formation) and noise statistics in y. In (P0), the 

signal recovery accuracy increases as the quality of z improves [17, Prop. 3]; however, 

it is difficult to obtain such z in practice. Alternatively, there has been a growing trend 

in learning sparsifying regularizers (e.g., convolutional regularizers [24], [35]–[38]) from 

training datasets and applying the trained regularizers to the following block-wise MBIR 

problem: argminx ∈ Xf(x; y) + minζr(x, ζ; O). Here, a learned regularizer minζr(x, ζ; O) quantifies 

consistency between x and refined sparse signal ζ via some learned operators O. Recently, 

we have constructed INNs by generalizing the corresponding block-wise MBIR updates 

with regression NNs without convergence analysis [25], [27]. In existing INNs, two major 

challenges exist: convergence and acceleration.

1.3 Challenges in existing INNs: Convergence

Existing convergence analysis has some practical limitations. The original form of plug-and-

play (PnP [23], [39]–[41]) is motivated by the alternating direction method of multipliers 

(ADMM [42]), and its fixed-point convergence has been analyzed with consensus 

equilibrium perspectives [23]. However, similar to ADMM, its practical convergence 

depends on how one selects ADMM penalty parameters. For example, [22] reported 

unstable convergence behaviors of PnP-ADMM with fixed ADMM parameters. To moderate 

this problem, [41] proposed a scheme that adaptively controls the ADMM parameters based 

on relative residuals. Similar to the residual balancing technique [42, §3.4.1], the scheme 

in [41] requires tuning initial parameters. Regularization by Denoising (RED [22]) is an 

alternative that moderates some such limitations. In particular, RED aims to make a clear 

connection between optimization and a denoiser D, by defining its prior term by (scaled) 

xT(x − D(x)). Nonetheless, [43] showed that many practical denoisers do not satisfy the 

Jacobian symmetry in [22], and proposed a less restrictive method, score-matching by 

denoising.

The convergence analysis of the INN inspired by the relaxed projected gradient descent 

(RPGD) method in [31] has the least restrictive conditions on the regression NN among the 

existing INNs. This method replaces the projector of a projected gradient descent method 

with an image refining NN. However, the RPGD-inspired INN directly applies an image 

refining NN to gradient descent updates of data-fit; thus, this INN relies heavily on the 

mapping performance of a refining NN and can have overfitting risks, similar to non-MBIR 

regression NNs, e.g., FBPConvNet [12]. In addition, it exploits the data-fit term only for the 

first few iterations [31, Fig. 5(c)]. We refer the perspective used in RPGD-inspired INN and 

its related works [26], [44] as “hard-refiner”: different from soft-refiners, these methods do 

not use a refining NN as a regularizer. More recently, [26] presented convergence analysis 

for an INN inspired by a proximal gradient descent method. However, their analysis is based 

on noiseless measurements, which is typically impractical.

Broadly speaking, existing convergence analysis largely depends on the (firmly) 

nonexpansive property of image refining NNs [22], [23], [43], [31, PGD], [26]. However, 

except for a single-hidden layer convolutional NN (CNN), it is yet unclear which analytical 

conditions guarantee the non-expansiveness of general refining NNs [27]. To guarantee 
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convergence of INNs even when using possibly expansive image refining NNs, we proposed 

a method that normalizes the output signal of image refining NNs by their Lipschitz 

constants [27]. However, if one uses expansive NNs that are identical across iterations, it 

is difficult to obtain “best” image recovery with that normalization scheme. The spectral 

normalization based training [45], [46] can ensure the non-expansiveness of refining NNs 

by single-step power iteration. However, similar to the normalization method in [27], 

refining NNs trained with the spectral normalization method [46] degraded the image 

reconstruction accuracy for an INN using iteration-wise refining NNs [19]. In addition, 

there does not yet exist theoretical convergence results when refining NNs change across 

iterations, yet iteration-wise refining NNs are widely studied [20], [21], [25], [28]. Finally, 

existing analysis considers only a narrow class of data-fit terms: most analyses consider a 

quadratic function with a linear imaging model [26], [31] or more generally, a convex cost 

function [23], [43], [46] that can be minimized with a practical closed-form solution. No 

theoretical convergence results exist for general (non)convex data-fit terms, iteration-wise 

NN denoisers, and a general set of feasible points.

1.4 Challenges in existing INNs: Acceleration

Compared to non-MBIR regression NNs that do not exploit the data-fit f(x; y) in (P0), 

INNs require more computation because they consider the imaging physics. Computation 

increases as the imaging system or image formation model becomes larger-scale, e.g., LF 

photography from a focal stack, 3D CT, parallel MRI using many receive coils, and image 

super-resolution. Thus, acceleration becomes crucial for INNs.

First, consider the existing methods motivated by ADMM or block coordinate descent 

(BCD) method: examples include PnP-ADMM [23], [41], RED-ADMM [22], [43], MoDL 

[30], BCD-Net [16], [18], [25], etc. These methods can require multiple inner iterations to 

balance data-fit and prior information estimated by trained refining NNs, increasing total 

MBIR time. For example, in solving such problems, each outer iteration involves x(i+1) = 

argminx F(x; y, z(i+1)), where F is given as in (P0) and z(i+1) is the output from the ith 

image refining NN. For LF imaging system using a focal stack data [47], solving the above 

problem requires multiple iterations, and the total computational cost scale with the numbers 

of photosensors and sub-aperture images. In addition, nonconvexity of the data-fit term f(x; 

y) can break convergence guarantees of these methods, because in general, the proximal 

mapping argminxf(x; y) + γ‖x − z(i + 1)‖2
2 is no longer nonexpansive.

Second, consider the existing works motivated by gradient descent methods [21], [26], [28], 

[31]. These methods resolve the inner iteration issue; however, they lack a sophisticated 

step-size control or backtracking scheme that influences convergence guarantee and 

acceleration. Accelerated proximal gradient (APG) methods using momentum terms can 

significantly accelerate convergence rates for solving composite convex problems [48], [49], 

so we expect that INN methods in the second class have yet to be maximally accelerated. 

The work in [44] applied PnP to the APG method [49]; [50] applied PnP to the primal-dual 

splitting (PDS) algorithm [51]. However, similar to RPGD [31], these are hard-refiner 

methods using some state-of-the-art denoisiers (e.g., BM3D [52]) but not trained NNs. 
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Those methods lack convergence analyses and guarantees may be limited to convex data-fit 

function.

1.5 Contributions and organization of the paper

This paper proposes Momentum-Net, the first INN architecture that aims for fast and 

convergent MBIR. The architecture of Momentum-Net is motivated by applying the Block 

Proximal Extrapolated Gradient method using a Majorizer (BPEG-M) [24], [35] to MBIR 

using trainable convolutional autoencoders [24], [25], [37]. Specifically, each iteration of 

Momentum-Net consists of three core modules: image refining, extrapolation, and MBIR. 

At each Momentum-Net iteration, an extrapolation module uses momentum from previous 

updates to amplify the changes in subsequent iterations and accelerate convergence, and 

an MBIR module is noniterative. In addition, Momentum-Net resolves the convergence 

issues mentioned in §1.3: for general differentiable (non)convex data-fit terms and convex 

feasible sets, it guarantees convergence to a point that satisfies fixed-point and critical point 

conditions, under some mild conditions and two asymptotic conditions, i.e., asymptotically 
nonexpansive paired refining NNs and asymptotically block-coordinate minimizer.

The remainder of this paper is organized as follows. §2 constructs the Momentum-Net 

architecture motivated by BPEG-M algorithm that solves MBIR problem using a learnable 

convolutional regularizer, describes its relation to existing works, analyzes its convergence, 

and summarizes the benefits of Momentum-Net over existing INNs. §3 provides details of 

training INNs, including image refining NN architectures, single-hidden layer or “shallow” 

CNN (sCNN) and multi-hidden layer or “deep” CNN (dCNN), and training loss function, 

and proposes a regularization parameter selection scheme to consider data-fit variations 

across training and testing samples. §4 considers two extreme imaging applications: sparse-

view CT and LF photography using a focal stack. §4 reports numerical experiments of 

applications where the proposed Momentum-Net using extrapolation significantly improves 

MBIR speed and accuracy, over the existing INNs, BCD-Net [22], [25], [30], Momentum-

Net using no extrapolation [21], [28], ADMM-Net [20], [23], [41], and PnP-PDS [50] 

using refining NNs. Furthermore, §4 reports numerical experiments where Momentum-Net 

significantly improves reconstruction quality compared to a state-of-the-art MBIR method in 

each application.

2 MOMENTUM-NET: WHERE BPEG-M MEETS NNS FOR INVERSE 

PROBLEMS

2.1 Motivation: BPEG-M algorithm for MBIR using learnable convolutional regularizer

This section motivates the proposed Momentum-Net architecture, based on our previous 

works [24], [37]. Consider the following approach for recovering signal x from 

measurements y (see the setup of block multi-(non)convex problems in §A.1.1):
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argmin
x ∈ X

f(x; y) + γ min
ζk

r x, ζk ; ℎk ,

r x, ζk ; ℎk ≜ ∑
k = 1

K 1
2‖ℎk ∗ x − ζk‖2

2 + βk‖ζk‖1,
(1)

where X is a closed set, f(x; y) + γr(x, {ζk}; {hk}) is a (continuosly) differentiable 

(non)convex function in x, min ζk r x, ζk ; ℎk  is a learnable convolutional regularizer 

[24], [36], {ζk : k=1, …, K} is a set of sparse features that correspond to {hk ∗x}, 

ℎk ∈ ℂR:k = 1, …, K  is a set of trainable filters, and R and K denote the size and number of 

trained filters, respectively.

Problem (1) can be viewed as a two-block optimization problem in terms of the image x 
and the features {ζk}. We solve (1) using the recent BPEG-M optimization framework [24], 

[35] that has attractive convergence guarantee and rapidly solved several block optimization 

problems [24], [35], [53]–[55]. BPEG-M has the following key ideas for each block 

optimization problem (see details in §A.1):

• Mb-Lipschitz continuity for the gradient of the bth block optimization problem, 

∀b:

Definition 1 (M-Lipschitz continuity [24]).

A function g:ℝn ℝn is M-Lipschitz continuous on ℝn if there exists a 
(symmetric) positive definite matrix M such that

‖g(u) − g(v)‖M−1 ≤ ‖u − v‖M, ∀u, v ∈ ℝn .

Definition 1 is a more general concept than the classical Lipschitz continuity.

• A sharper majorization matrix M that gives a tighter bound in Definition 1 leads 

to a tighter quadratic majorization bound in the following lemma:

Lemma 2 (Quadratic majorization via M-Lipschitz continuous gradients [24]). 

Let f(u):ℝn ℝ. If ∇f is M-Lipschitz continuous, then

f(u) ≤ f(v) + ∇uf(v), u − v + 1
2‖u − v‖M

2 , ∀u, v ∈ ℝn .

Having tighter majorization bounds, sharper majorization matrices tend to 

accelerate BPEG-M convergence.

• The majorized block problems are “proximable”, i.e., proximal mapping of 

majorized function is “easily” computable depending on the properties of bth 

block majorizer and regularizer, Mb and rb, where the proximal mapping operator 

is defined by
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Proxrb
Mb(z) ≜ argmin

u
1
2‖u − z‖Mb

2 + rb(u), ∀b . (2)

• Block-wise extrapolation and momentum terms to accelerate convergence.

Suppose that 1) gradient of f(x; y) + γr(x, {ζk}; {hk}) is M-Lipschitz continuous at 

an extrapolated point x́(i + 1), ∀i; 2) filters in (1) satisfy the tight-frame (TF) condition, 

∑k = 1
K ‖ℎk ∗ u‖2

2 = ‖u‖2′
2 , ∀u for some boundary conditions [24]. Applying the BPEG-M 

framework (see Algorithm A.1) to solving (1) leads to the following block updates:

z(i + 1) = ∑
k = 1

K
flip(ℎk

∗) ∗ Tβk ℎk ∗ x(i) , (3)

x́(i + 1) = x(i) + E(i + 1)(x(i) − x(i − 1)), (4)

x(i + 1) = ProxIX
M(i + 1) x́(i + 1) − (M (i + 1))

−1
∇F(x́(i + 1); y, z(i + 1)) , (5)

where E(i+1) is an extrapolation matrix that is given in (8) or (9) below, M(i + 1)
 is a (scaled) 

majorization matrix for ∇F(x; y, z(i+1)) that is given in (7) below, ∀i, the proximal operator 

ProxIX
M(i + 1)

⋅  in (5) is given by (2), and IX(x) is the characteristic function of set X (i.e., IX

equals to 0 if x ∈ X, and ∞ otherwise).

Proximal mapping update (3) has a single-hidden layer convolutional autoencoder 
architecture that consists of encoding convolution, nonlinear thresholding, and decoding 

convolution, where flip(·) flips a filter along each dimension, and the soft-thresholding 

operator Tα(u):ℂN ℂN is defined by

Tα(u) n ≜ {un − α ⋅ sign un , un > α,
0, otherwise, (6)

for n = 1, …, N, in which sign(·) is the sign function. See details of deriving BPEG-

M updates (3)–(5) in §A.1.4. The BPEG-M updates in (3)–(5) guarantee convergence 

to a critical point, when MBIR problem (1) satisfies some mild conditions, e.g., lower-

boundedness and existence of critical points; see Assumption S.1 in §A.1.3.

The following section generalizes the BPEG-M updates in (3)–(5) and constructs the 

Momentum-Net architecture.

2.2 Architecture

This section establishes the INN architecture of Momentum-Net by generalizing BPEG-

M updates (3)–(5) that solve (1). Specifically, we replace the proximal mapping in (3) 

with a general image refining NN ℛθ( ⋅ ), where θ denotes the trainable parameters. 

To effectively remove iteration-wise artifacts and give “best” signal estimates at each 
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iteration, we further generalize a refining NN ℛθ( ⋅ ) to iteration-wise image refining 

NNs ℛθ(i + 1)( ⋅ ): i = 0, …, Niter − 1}, where θ(i+1) denotes the parameters for the ith iteration 

refining NN ℛθ(i + 1), and Niter is the number of Momentum-Net iterations. The iteration-wise 

NNs are particularly useful for reducing overfitting risks in regression, because ℛθ(i + 1) is 

responsible for removing noise features only at the ith iteration, and thus one does not 

need to greatly increase dimensions of its parameter θ(i+1) [16], [18]. In low-dose CT 

reconstruction, for example, the refining NNs at the early and later iterations remove streak 

artifacts and Gaussian-like noise, respectively [16].

Algorithm 1

Momentum-Net

Require: ℛθ(i): i = 1, …, Niter , ρ ∈ (0, 1), γ > 0, x(0) = x(−1), y

 fori = 0, …, Niter−1 do

  Calculate M(i + 1)
 by (7), and E(i+1) by (8) or (9)

  Image refining:

z(i + 1) = (1 − ρ)x(i) + ρℛθ(i + 1) x(i) (Alg.1.1)

  Extrapolation:

x́(i + 1) = x(i) + E(i + 1) x(i) − x(i − 1) (Alg.1.2)

  MBIR:

x(i + 1)

= ProxIX
M(i + 1)

x́(i + 1) − (M(i + 1))−1 ∇F(x́(i + 1); y, z(i + 1)) (Alg.1.3)

 end for

Each iteration of Momentum-Net consists of 1) image refining, 2) extrapolation, and 3) 
MBIR modules, corresponding to the BPEG-M updates (3), (4), and (5), respectively. 

See the architecture of Momentum-Net in Fig. 1(a) and Algorithm 1. At the ith iteration, 

Momentum-Net performs the following three processes:

• Refining: The ith image refining module gives the “refined” image z(i+1), by 

applying the ith refining NN, ℛθ(i + 1), to an input image at the ith iteration, x(i) 

(i.e., image estimate from the (i − 1)th iteration). Different from existing INNs, 

e.g., ADMM-Net [20], PnP-ADMM [23], [41], RED [22], MoDL [30], BCD-Net 

[25] (see Fig. 1(b)), TNRD [21], [28], we apply ρ-relaxation with ρ ∈ (0, 1); 

see (Alg.1.1). The parameter ρ controls the strength of inference from refining 

NNs, but does not affect the convergence guarantee of Momentum-Net. Proper 

selection of ρ can improve MBIR accuracy (see §A.10).

• Extrapolation: The ith extrapolation module gives the extrapolated point x́(i + 1), 

based on momentum terms x(i) −x(i−1); see (Alg.1.2). Intuitively speaking, 

momentum is information from previous updates to amplify the changes in 

subsequent iterations. Its effectiveness has been shown in diverse optimization 

literature, e.g., convex optimization [48], [49] and block optimization [24], [35].
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• MBIR: Given a refined image z(i+1) and a measurement vector y, the ith MBIR 

module (Alg.1.3) applies the proximal operator ProxIX
M(i + 1)

⋅  to the extrapolated 

gradient update using a quadratic majorizer of F(x; y, z(i+1)), where F is defined 

in (P0). Intuitively speaking, this step solves a majorized version of the following 

MBIR problem at the extrapolated point x́(i + 1):

min
x ∈ X

F(x; y, z(i + 1)), (P1)

and gives a reconstructed image x(i+1). In Momentum-Net, we consider (non)convex 

differentiable MBIR cost functions F with M-Lipschitz continuous gradients, and a convex 

and closed set X. For a wide range of large-scale inverse imaging problems, the majorized 

MBIR problem (Alg.1.3) has a practical closed-form solution and thus, does not require an 

iterative solver, depending on the properties of practically invertible majorization matrices 

M(i+1) and constraints. Examples of X combinations that give a noniterative solution for 

(Alg.1.3) include scaled identity and diagonal matrices with a box constraint and the non-

negativity constraint, and matrices decomposable by unitary transforms, e.g., a circulant 

matrix [56], [57], with X = ℂN. The updated image x(i+1) is the input to the next Momentum-

Net iteration.

The followings are details of Momentum-Net in Algorithm 1. A scaled majorization matrix 

is

M(i + 1) = λ ⋅ M(i + 1) ≻ 0, λ ≥ 1, (7)

where M(i + 1) ∈ ℝN × N is a symmetric positive definite majorization matrix of ∇F(x; y, z(i+1)) 

in the sense of M-Lipschitz continuity (see Definition 1). In (7), λ = 1 and λ > 1 for convex 

and nonconvex F(x; y, z(i+1)) (or convex and nonconvex f(x; y)), respectively. We design the 

extrapolation matrices as follows:

for convex F,

E(i + 1) = δ2m(i) ⋅ M(i + 1) − 1
2 M (i)

1
2; (8)

for nonconvex F,

E(i + 1) = δ2m(i) ⋅ λ − 1
2(λ + 1) ⋅ (M(i + 1))− 1

2(M(i))
1
2, (9)

for some δ < 1 and {0 ≤ m(i) ≤ 1 : ∀i}. We update the momentum coefficients {m(i+1) : ∀i} 

by the following formula [24], [35]:

m(i + 1) = θ(i) − 1
θ(i + 1) , θ(i + 1) = 1 + 1 + 4(θ(i))2

2 ; (10)
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if F(x; y, z(i+1)) has a sharp majorizer, i.e., ∇F(x; y, z(i+1)) has M(i+1) such that the 

corresponding bound in Definition 1 is tight, then we set m(i+1) = 0, ∀i. §A.11 lists 

parameters of Momentum-Net, and summarizes selection guidelines or gives default values.

2.3 Relations to previous works

Several existing MBIR methods can be viewed as a special case of Momentum-Net:

Example 3. (MBIR model (1) using convolutional autoencoders that satisfy the TF 

condition [24]). The BPEG-M updates in (3)–(5) are special cases of the modules in 

Momentum-Net (Algorithm 1), with ℛθ(i + 1)( ⋅ ) = ∑k = 1
K flip ℎk

∗ ∗ Tβk ℎk ∗ ( ⋅ ) : ∀i  flip (i.e., 

single hidden-layer convolutional autoencoder [24]) and ρ ≈ 1. These give a clear 

mathematical connection between a denoiser (3) and cost function (1). One can find a 

similar relation between a multi-layer CNN and a multi-layer convolutional regularizer [24, 

Appx.].

Example 4. (INNs inspired by gradient descent method, e.g., TNRD [21], [28]). Removing 

extrapolation modules, i.e., setting {E(i+1) = 0 : ∀i} in (Alg.1.2), and setting ρ ≈ 1, 

Momentum-Net becomes the existing INN in [21], [28].

Example 5. (BCD-Net for image denoising [25]). To obtain a clean image x ∈ ℝN from 

a noisy image y ∈ ℝN corrupted by an additive white Gaussian noise (AWGN), MBIR 

problem (P1) considers the data-fit f(x; y) = 1
2‖y − x‖W

2  with the inverse covariance matrix 

W = 1
σ2 I, where σ2 is a variance of AWGN, and the box constraint X = [0, U]N with an 

upper bound U > 0. For this f(x; y), the MBIR module (Alg.1.3) can use the exact majorizer 

{M(i + 1) = ( 1
σ2 + γ)I} and one does not need to use the extrapolation module (Alg.1.2), i.e., 

{E(i+1) = 0}. Thus, Momentum-Net (with ρ ≈ 1) becomes BCD-Net.

Example 6. (BCD-Net for undersampled single-coil MRI [25]). To obtain an 

object magnetization x ∈ ℝN from a k-space data y ∈ ℂm obtained by undersampling 

(e.g., compressed sensing [58]) MRI, MBIR problem (P1) considers the data-fit 

f(x; y) = 1
2‖y − Ax‖W

2  with an undersampling Fourier operator A (disregarding relaxation 

effects and considering Cartesian k-space), the inverse covariance matrix W = 1
σ2 I, where 

σ2 is a variance of complex AWGN [59], and X = ℂN. For this f(x; y), the MBIR 

module (Alg.1.3) can use the exact majorizer {M(i + 1) = Fdisc
H ( 1

σ2 P + γI)Fdisc} that is practically 

invertible, where Fdisc is the discrete Fourier transform and P is a diagonal matrix with either 

0 or 1 (their positions correspond to sampling pattern in k-space), and the extrapolation 

module (Alg.1.2) uses the zero extrapolation matrices {E(i+1) = 0}. Thus, Momentum-Net 

(with ρ ≈ 1) becomes BCD-Net.

The following section analyzes the convergence of Momentum-Net.
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2.4 Convergence analysis

In practice, INNs, i.e., “unrolled” or PnP methods using refining NNs, are trained and 

used with a specific number of iterations. Nevertheless, similar to optimization algorithms, 

studying convergence properties of INNs with Niter → ∞ [23], [31], [46] is important; in 

particular, it is crucial to know if a given INN tends to converge as Niter increases. For 

INNs using iteration-wise refining NNs, e.g., BCD-Net [25] and proposed Momentum-Net, 

we expect that refiners converge, i.e., their image refining capacity converges, because 

information provided by data-fit function f(x; y) in MBIR (e.g., likelihood) reaches some 

“bound” after a certain number of iterations. Fig. 2 illustrates that dCNN parameters 

of Momentum-Net tend to converge for different applications. (The similar behavior 

was reported for sCNN refiners in BCD-Net [16].) Although refiners do not completely 
converge, in practice, one could use a refining NN at a sufficiently large iteration number, 

e.g., Niter = 100 in Momentum-Net, for the later iterations.

There are two key challenges in analyzing the convergence of Momentum-Net in Algorithm 

1: both challenges relate to its image refining modules (Alg.1.1). First, image refining NNs 

ℛθ(i + 1) change across iterations; even if they are identical across iterations, they are not 

necessarily nonexpansive operators [60], [61] in practice. Second, the iteration-wise refining 

NNs are not necessarily proximal mapping operators, i.e., they are not written explicitly in 

the form of (2). This section proposes two new asymptotic definitions to overcome these 

challenges, and then uses those conditions to analyze convergence properties of Momentum-

Net in Algorithm 1.

2.4.1 Preliminaries—To resolve the challenge of iteration-wise refining NNs and the 

practical difficulty in guaranteeing their non-expansiveness, we introduce the following 

generalized definition of the non-expansiveness [60], [61].

Definition 7 (Asymptotically nonexpansive paired operators). A sequence of paired 
operators (ℛθ(i), ℛθ(i + 1)) is asymptotically nonexpansive if there exist a summable nonnegative 

sequence ϵ(i + 1) ≥ 0: ∑i = 0
∞ ϵ(i + 1) < ∞  such that1

‖ℛθ(i + 1)(u) − ℛθ(i)(v)‖2
2 ≤ ‖u − v‖2

2 + ϵ(i + 1), ∀u, v, i . (11)

When ℛθ(i + 1) = ℛθ and ϵ(i + 1) = 0, ∀i, Definition 7 becomes the standard non-expansiveness 

of a mapping operator ℛθ. If we replace the inequality (≤) with the strict inequality (<) in 

(11), then we say that the sequence of paired operators (ℛθ(i + 1), ℛθ(i + 1)) is asymptotically 

contractive. (This stronger assumption is used to prove convergence of BCD-Net in 

Proposition A.5.) Definition 7 also implies that mapping operators ℛθ(i + 1) converge to some 

nonexpansive operator, if the corresponding parameters θ(i+1) converge.

Definition 7 incorporates a pairing property because Momentum-Net uses iteration-wise 

image refining NNs. Specifically, the pairing property helps prove convergence of 

1.One could replace the bound in (11) with ‖ℛθ(t + 1)(u) − ℛθ(i)(v)‖2
2 ≤ (1 + ϵ(i + 1))‖u − v‖2

2 (and summable {ϵ(i+1) : ∀i}), and the 
proofs for our main arguments go through.
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Momentum-Net, by connecting image refining NNs at adjacent iterations. Furthermore, the 

asymptotic property in Definition 7 allows Momentum-Net to use expansive refining NNs 

(i.e., mapping operators having a Lipschitz constant larger than 1) for some iterations, while 

guaranteeing convergence; see Figs. 3(a3) and 3(b3). Suppose that refining NNs are identical 

across iterations, i.e., ℛθ(i + 1) = ℛθ, ∀i, similar to some existing INNs, e.g., PnP [23], RED 

[22], and other methods in §1.3. In such cases, if ℛθ is expansive, Momentum-Net may 

diverge; this property corresponds to the limitation of existing methods described in §1.3. 

Momentum-Net moderates this issue by using iteration-wise refining NNs that satisfy the 

asymptotic paired non-expansiveness in Definition 7.

Because the sequence {z(i+1) : ∀i} in (Alg.1.1) is not necessarily updated with a proximal 

mapping, we introduce a generalized definition of block-coordinate minimizers [53, (2.3)] 

for z(i+1)-updates:

Definition 8 (Asymptotic block-coordinate minimizer). The update z(i+1) is an 
asymptotic block-coordinate minimizer if there exists a summable nonnegative sequence 
Δ(i + 1) ≥ 0: ∑i = 0

∞ Δ(i + 1) < ∞  such that

z(i + 1) − x(i)
2
2 ≤ z(i) − x(i)

2
2 + Δ(i + 1), ∀i . (12)

Definition 8 implies that as i → ∞, the updates {z(i+1) : i ≥ 0} approach a block-coordinate 

minimizer trajectory that satisfies (12) with {Δ(i+1) = 0 : i ≥ 0}. In particular, Δ(i+1) quantifies 

how much the update z(i+1) in (Alg.1.1) perturbs a block-coordinate minimizer trajectory. 

The bound ‖z(i + 1) − x(i)‖2
2 ≤ ‖z(i) − x(i)‖2

2 always holds, ∀i, when one uses the proximal mapping 

in (3) within the BPEG-M framework. While applying trained Momentum-Net, (12) is easy 

to examine empirically, whereas (11) is harder to check.

2.4.2 Assumptions—This section introduces and interprets the assumptions for 

convergence analysis of Momentum-Net in Algorithm 1:

• Assumption 1) In MBIR problems (P1), (non)convex F(x; y, z(i+1)) is 

(continuously) differentiable, proper, and lower-bounded in dom(F),2 ∀i, and 

X is convex and closed. Algorithm 1 has a fixed-point.

• Assumption 2) ∇F(x; y, z(i+1)) is M(i+1)-Lipschitz continuous with respect to 

x (see Definition 1), where M(i+1) is a iteration-wise majorization matrix that 

satisfies mF, minIN⪯M(i + 1)⪯mF, maxIN with 0 < mF,min ≤ m F,max < ∞, ∀i.

• Assumption 3) The extrapolation matrices E(i+1) ⪰ 0 in (8)–(9) satisfy the 

following conditions:

for convex F,

(E(i + 1))TM(i + 1)E(i + 1)⪯δ2 ⋅ M (i), δ < 1; (13)

2. F :ℝn ( − ∞, + ∞]is proper if domF ≠ ∅. F is lower bounded in dom(F) ≜ u:F(u) < ∞  if infu ∈ dom(F)F(u) > − ∞.
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for nonconvex F,

(E(i + 1))TM(i + 1)E(i + 1)⪯δ2(λ − 1)2

4(λ + 1)2 ⋅ M(i), δ < 1. (14)

• Assumption 4) The sequence of paired operators (ℛθ(i + 1), ℛθ(i)) is asymptotically 

nonexpansive with a summable sequence {ϵ(i+i) ≥ 0}; the update z(i+1) is an 

asymptotic block-coordinate minimizer with a summable sequence {Δ(i+i) ≥ 0}. 

The mapping functions {ℛθ(i + 1): ∀i} are continuous with respect to input points 

and the corresponding parameters {θ(i+1) : ∀i} are bounded.

Assumption 1 is a slight modification of Assumption S.1 of BPEG-M, and Assumptions 2–3 

are identical to Assumptions S.2–S.3 of BPEG-M; see Assumptions S.1–S.3 in §A.1.3. The 

extrapolation matrix designs (8) and (9) satisfy conditions (13) and (14) in Assumption 3, 

respectively.

We provide empirical justifications for the first two conditions in Assumption 4. First, 

Figs. 3(a2) and A.1(a2) illustrate that paired refining NNs (ℛθ(i + 1), ℛθ(i)) of Momentum-Net 

appear to be asymptotically nonexpansive in an application that has mild condition number 

variations across training data-fit majorization matrices. Figs. 3(a3), 3(b3), A.1(a3), and 

A.1(b3) illustrate for different applications that refining NNs {ℛθ(i + 1)} become nonexpansive: 

their Lipschitz constants at the first several iterations are larger than 1, and their 

Lipschitz constants in later iterations become less than 1. Alternatively, the asymptotic 

non-expansiveness of paired operators (ℛθ(i + 1), ℛθ(i)) can be satisfied by a stronger assumption 

that the sequence {ℛθ(i + 1)} converges to some nonexpansive operator. (Fig. 2 illustrates that 

dCNN parameters of Momentum-Net appear to converge.)

Figs. 3(a3), 3(b3), A.1(a3), and A.1(b3) illustrate for different applications that the 

z(i+1)-updates are asymptotic block-coordinate minimizers. Lemma A.4 and §A.3 in 

the appendices provide a probabilistic justification for the asymptotic block-coordinate 

minimizer condition.

2.4.3 Main convergence results—This section analyzes fixed-point and critical point 

convergence of Momentum-Net in Algorithm 1, under the assumptions in the previous 

section. We first show that differences between two consecutive iterates generated by 

Momentum-Net converge to zero:

Proposition 9 (Convergence properties). Under Assumptions 1–4, let {x(i+1), z(i+1) : i ≥ 0} 

be the sequence generated by Algorithm 1. Then, the sequence satisfies

∑
i = 0

∞ x(i + 1)

z(i + 1) − x(i)

z(i)
2

2

< ∞, (15)

and hence 
x(i + 1)

z(i + 1) − x(i)

z(i)

2

0.
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Proof. See §A.4 in the appendices.

Using Proposition 9, our main theorem provides that any limit points of the sequence 

generated by Momentum-Net satisfy critical point and fixed-point conditions:

Theorem 10 (A limit point satisfies both critical point and fixed-point conditions). Under 
Assumptions 1–4 above, let {x(i+1), z(i+1) : i ≥ 0} be the sequence generated by Algorithm 1. 
Consider either a fixed majorization matrix with general structure, i.e., M(i+1) = M for i ≥ 0, 

or a sequence of diagonal majorization matrices, i.e., {M(i+1) : i ≥ 0}. Then, any limit point x
of {x(i+1)} satisfies both the critical point condition:

∇F(x; y, z), x − x ≥ 0, ∀x ∈ X, (16)

where z is a limit point of {z(i+1)}, and the fixed-point condition:

x
x = Aℛθ

M x
x , (17)

where 
x(i + 1)

x(i) = Aℛθ(i + 1)
M(i + 1) x(i)

x(i − 1) , Aℛθ(i + 1)
M(i + 1) ( ⋅ ) denotes performing the ith updates in Algorithm 1, 

and θ and M is a limit point of {θ(i+1)} and {M(i+1)}, respectively.

Proof. See §A.5 in the appendices.

Observe that, if X = ℝN or x is an interior point of X, (16) reduces to the first-order 

optimality condition 0 ∈ ∂F(x; y, z), where ∂F(x) denotes the limiting subdifferential of F at 

x. With additional isolation and boundedness assumptions for the points satisfying (16) and 

(17), we obtain whole sequence guarantees:

Corollary 11 (Whole sequence convergence). Consider the construction in Theorem 10. 
Let S be the set of points satisfying the critical point condition in (16) and the fixed-
point condition in (17). If {x(i+1) : i ≥ 0} is bounded, then dist(x(i + 1), S) 0, where 
dist(u, V) ≜ inf ‖u − v‖:v ∈ V  denotes the distance from u to V, for any point u ∈ ℝN and 

any subset V ⊂ ℝN. If S contains uniformly isolated points, i.e., there exists η > 0 such that 
∥u−v∥ ≥ η for any distinct points u, v ∈ S, then {x(i+1)} converges to a point in S.

Proof. See §A.6 in the appendices.

The boundedness assumption for {x(i+1)} in Corollary 11 is standard in block-wise 

optimization, e.g., [24], [35], [53], [55], [62]. The assumption can be satisfied if the set 

X is bounded (e.g., box constraints), one chooses appropriate regularization parameters in 

Algorithm 1 [24], [35], [55], the function F(x; y, z) is coercive [62], or the level set is 

bounded [53]. However, for general F(x; y, z), it is hard to verify the isolation condition for 

the points in S in practice. Instead, one may use Kurdyka-Łojasiewicz property [53], [62] to 

analyze the whole sequence convergence with some appropriate modifications.

For simplicity, we focused our discussion to noniterative MBIR module (Alg.1.3). However, 

Momentum-Net practically converges with any proximable MRIR function (Alg.1.3) that 
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may need an iterative solver, if sufficient inner iterations are used. To maximize the 

computational benefit of Momentum-Net, one needs to make sure that majorized MBIR 

function (Alg.1.3) is better proximable over its original form (P1).

2.5 Benefits of Momentum-Net

Momentum-Net has several benefits over existing INNs:

• Benefits from refining module: The image refining module (Alg.1.1) can use 

iteration-wise image refining NNs {ℛθ(i + 1): i ≥ 0}: those are particularly useful to 

reduce overfitting risks by reducing dimensions of their parameters θ(i+1) at each 

iteration [16], [18], [19]. Iteration-wise refining NNs require less memory for 

training, compared to methods that use a single refining NN for all iterations, 

e.g., [63]. Different from the existing methods mentioned in §1.3, Momentum-

Net does not require (firmly) nonexpansive mapping operators {ℛθ(i + 1)} to 

guarantee convergence. Instead, {ℛθ(i + 1)} in (Alg.1.1) assumes a generalized 

notion of the (firm) non-expansiveness condition assumed for convergence of the 

existing methods that use identical refining NNs across iterations, including PnP 

[20], [23], [39]–[41], [46], RED [22], [43], etc. The generalized concept is the 

first practical condition to guarantee convergence of INNs using iteration-wise 

refining NNs; see Definition 7.

• Benefits from extrapolation module: The extrapolation module (Alg.1.2) uses 

the momentum terms x(i) − x(i−1) that accelerate the convergence of Momentum-

Net. In particular, compared to the existing gradient-descent-inspired INNs, e.g., 

TNRD [21], [28], Momentum-Net converges faster. (Note that the way the 

authors of [43] used momentum is less conventional. The corresponding method, 

RED-APG [43, Alg. 6], still can require multiple inner iterations to solve its 

quadratic MBIR problem, similar to BCD-Net-type methods.)

• Benefits from MBIR module: The MBIR module (Alg.1.3) does not require 

multiple inner iterations for a wide range of imaging problems and has 

both theoretical and practical benefits. Note first that convergence analysis 

of INNs (including Momentum-Net) assumes that their MBIR operators are 

noniterative. In other words, related convergence theory (e.g., Proposition 

A.5) is inapplicable if iterative methods, particularly with insufficient number 

of iterations, are applied to MBIR modules. Different from the existing 

BCD-Net-type methods [20], [22], [23], [25], [30], [39]–[41], [43] that can 

require iterative solvers for their MBIR modules, MBIR module (Alg.1.3) of 

Momentum-Net can have practical close-form solution (see examples in §2.2), 

and its corresponding convergence analysis (see §2.4) can hold stably for a wide 

range of imaging applications. Second, combined with extrapolation module 

(Alg.1.2), noniterative MBIR modules (Alg.1.3) lead to faster MBIR, compared 

to the existing BCD-Net-type methods that can require multiple inner iterations 

for their MBIR modules for convergence. Third, Momentum-Net guarantees 

convergence even for nonconvex MBIR cost function F(x; y, z) or nonconvex 
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data-fit f(x; y) of which the gradient is M-Lipschitz continuous (see Definition 

1), while existing INNs overlooked nonconvex F(x; y, z) or f(x; y).

Furthermore, §A.7 analyzes the sequence convergence of BCD-Net [25], and describes the 

convergence benefits of Momentum-Net over BCD-Net.

3 TRAINING INNS

This section describes training of all the INNs compared in this paper.

3.1 Architecture of refining NNs and their training

For all INNs in this paper, we train the refining NN at each iteration to remove artifacts 

from the input image x(i) that is fed from the previous iteration. For the ith iteration NN, we 

first consider the following sCNN architecture, residual single-hidden layer convolutional 

autoencoder:

ℛθ(i + 1)(u) = ∑
k = 1

K
dk

(i + 1) ∗ Texp(αk
(i + 1))(ek

(i + 1) ∗ u) + u, (18)

where θ(i + 1) = {dk
(i + 1), αk

(i + 1), ek
(i + 1): ∀k} is the parameter set of the ith image refining NN, 

{dk
(i + 1), ek

(i + 1) ∈ ℂR:k = 1, …, K} is a set of K decoding and encoding filters of size R, 

{exp(αk
(i + 1)):k = 1, …, K} is a set of K thresholding values, and Tα(u) is the soft-thresholding 

operator with parameter α defined in (6), for i = 0, …, Niter −1. We use the exponential 

function exp(·) to prevent the thresholding parameters {αk} from becoming negative during 

training. We observed that the residual convolutional autoencoder in (18) gives better results 

compared to the convolutional autoencoder, i.e., (18) without the second term [18], [25]. 

This corresponds to the empirical result in [64], [65] that having skip connections (e.g., the 

second term in (18)) can improve generalization. The sequence of paired sCNN refiners (18) 

can satisfy the asymptotic non-expansiveness, if its convergent refiner satisfies that

σmax(DHD) ≤ 1/R, σmax(EHE) ≤ 1/R,

where σmax(·) is the largest eigenvalue of a matrix, 

D ≜ d1, …, dK, δR , E ≜ e1, …, eK, δR , {dk, ek: ∀k} are limit point filters, and δR is the Kronecker 

delta filter of size R.

For dCNN refiners, we use the following residual multi-layer CNN architecture, a simplified 

DnCNN [4] using fewer layers, no pooling, and no batch normalization [46] (we drop 

superscript indices (·)(i) for simplicity):

ℛθ(u) = u − ∑
k = 1

K
ek

[L] ∗ uk
[L − 1], (19)
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uk
[1] = ReLU ek

[1] ∗ u , uk
[l] = ReLU ∑

k′ = 1

K
ek, k′

[l] ∗ zk′
[l − 1] ,

for k = 1, …, K and l = 2, …, L−1, where θ = {ek
[l], ek, k′

[l] : ∀k, k′, l} is the parameter 

set of each refining NN, K is the number of feature maps, L is the number of 

layers, {ek
[l] ∈ ℝR:k = 1, …, K, l = 1, L} is a set of filters at the first and last dCNN layer, 

{ek, k′
[l] ∈ ℝR:k, k′ = 1, …, K, l = 2, …, L − 1} is a set of filters for remaining dCNN layer, and the 

rectified linear unit activation function is defined by ReLU(u) ≜ max(0, u).

The training process of Momentum-Net requires S high-quality training images, {xs : 

s=1, …, S}, S training measurements simulated via imaging physics, {ys : s=1, …, S}, 

and S data-fits {fs(x; ys) : s = 1, …, S} and the corresponding majorization matrices 

{Ms
(i), Ms

(i): s = 1, …, S, i = 1, …, Niter}. Different from [16], [25], [66] that train convolutional 

autoencoders from the patch perspective, we train the image refining NNs in (18)–(19) from 

the convolution perspective (that does not store many overlapping patches, e.g., see [24]). 

From S training pairs (xs, xs
(i)), where {xs

(i): s = 1, …, S} is a set of S reconstructed images at 

the (i−1)th Momentum-Net iteration, we train the ith iteration image refining NN in (18) by 

solving the following optimization problem:

θ(i + 1) = argmin
θ

1
2S ∑

s = 1

S
xs − ℛθ(xs

(i)) 2
2, (P2)

where θ(i+1) is given as in (18), for i = 0, …, Niter − 1 (see some related properties in §A.8). 

We solve the training optimization problems (P2) by mini-batch stochastic optimization with 

the subdifferentials computed by the PyTorch Autograd package.

3.2 Regularization parameter selection based on “spectral spread”

When majorization matrices of training data-fits {fs(x; ys) : s=1, …, S} have similar spectral 

properties, e.g., condition numbers, the regularization parameter γ in (P1) is trainable 

by substituting (Alg.1.1) into (Alg.1.3) and modifying the training cost (P2). However, 

the condition numbers of data-fit majorizers can greatly differ due a variety of imaging 

geometries or image formation systems, or noise levels in training measurements, etc. See 

such examples in §4.1–4.2.

To train Momentum-Net with diverse training data-fits, we propose a parameter selection 

scheme based on the “spectral spread” of their majorization matrices {Mfs
(i)}. For simplicity, 

consider majorization matrices of the form Ms
(i) = Ms = λ(Mfs + γsI)∀i, where the factor λ is 

selected by (7) and Mfs is a symmetric positive semidefinite majorization matrix for fs(x; ys), 

∀s. We select the regularization parameter γs for the sth training sample as

γs = σspread(Mfs)
χ , (20)
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where the spectral spread of a symmetric positive definite matrix is defined by 

σspread ( ⋅ ) ≜ σmax( ⋅ ) − σmin( ⋅ ) for σmax(Mfs) > σmin(Mfs) ≥ 0, and σmin(·) is the smallest eigenvalue 

of a matrix. For the sth training sample, a tunable factor χ controls γs in (20) according 

to σspread(Mfs), ∀s. The proposed parameter selection scheme also applies to testing 

Momentum-Net, based on the tuned factor χ⁎ in its training. We observed that the 

proposed parameter selection scheme (20) gives better MBIR accuracy than the condition 

number based selection scheme that is similarly used in selecting ADMM parameters [17] 

(for the two applications in §4). One may further apply this scheme to iteration-wise 

majorization matrices Ms
(i)
 and select iteration-wise regularization parameters γs

(i) accordingly. 

For comparing different INNs, we apply (20) to all INNs.

4 EXPERIMENTAL RESULTS AND DISCUSSION

We investigated two extreme imaging applications: sparse-view CT and LF photography 

using a focal stack. In particular, these two applications lack a practical closed-form solution 

for the MBIR modules of BCD-Net and ADMM-Net [20], e.g., solving (Alg.2.2). For these 

applications, we compared the performances of the following five INNs: BCD-Net [25] (i.e., 

generalization of RED [22] and MoDL [30]), ADMM-Net [20], i.e., PnP-ADMM [23], [41] 

using iteration-wise refining NNs, Momentum-Net without extrapolation (i.e., generalization 

of TNRD [21], [28]), PDS-Net, i.e., PnP-PDS [50] using iteration-wise refining NNs, and 

the proposed Momentum-Net using extrapolation.

4.1 Experimental setup: Imaging

4.1.1 Sparse-view CT—To reconstruct a linear attenuation coefficient image x ∈ ℝN

from post-log sinogram y ∈ ℝm in sparse-view CT, the MBIR problem (P1) considers a data-

fit f(x; y) = 1
2‖y − Ax‖W

2  and the non-negativity constraint X = [0, ∞)N, where A ∈ ℝm × N is an 

undersampled CT system matrix, W ∈ ℝm × m is a diagonal weighting matrix with elements 

{W m′, m′ = pm
′2/(pm

′ + σ2): ∀m′} based on a Poisson-Gaussian model [17], [67] for the pre-log raw 

measurements p ∈ ℝm with electronic readout noise variance σ2.

We simulated 2D sparse-view sinograms of size m = 888×123 – ‘detectors or rays’ × 

‘regularly spaced projection views or angles’, where 984 is the number of full views – 

with GE LightSpeed fan-beam geometry corresponding to a monoenergetic source with 105 

incident photons per ray and no background events, and electronic noise variance σ2 =52. 

We avoided an inverse crime in imaging simulation and reconstructed images of size N 
=420×420 with a coarser grid Δx=Δy =0.9766 mm; see details in [37, §V-A2].

4.1.2 LF photography using a focal stack—To reconstruct a LF 

x = x1
T, …, xC

′ T ∈ ℝSN′
 that consists of C′ sub-aperture images from focal stack measurements 

y = y1
T, …, yC

T T ∈ ℝCN′
 that are collected by C photosensors, the MBIR problem (P1) 

considers a data-fit f(x ; y)=1
2‖y − Ax‖2

2 and a box constraint X = [0, U]C′N′
 with U =1 (or 

255 without rescaling), where A ∈ ℝCN′ × C′N′
 is a system matrix of LF imaging system using 

a focal stack that is constructed blockwise with C · C′ different convolution matrices 
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{τcAc, c′′ ∈ ℝN′ × N′: c = 1, …, C, c′ = 1, …, C′} [47], [68], τc ∈ (0, 1] is a transparency coefficient 

for the cth detector, and N′ is the size of sub-aperture images, xc′, ∀c′.3

Algorithm 2

BCD-Net [25]

Require:{ℛθ(i): i = 1, …, Niter}, γ > 0, x(0) = x(−1), y

 fori = 0, …, Niter−1 do

  Image refining:

z(i + 1) = ℛθ(i + 1)(x(i)) (Alg.2.1)

  MBIR:

x(i + 1) = argmin
x ∈ X

F(x; y, z(i + 1)) (Alg.2.2)

 end for

In general, a LF photography system using a focal stack is extremely under-determined, 

because C ≪ C′.

To avoid an inverse crime, our imaging simulation used higher-resolution synthetic LF 

dataset [70] (we converted the original RGB sub-aperture images to grayscale ones by the 

“rgb2gray.m” function in MATLAB, for simplicity and smaller memory requirements in 

training). We simulated C =5 focal stack images of size N′ =255×255 with 40 dB AWGN 

that models electronic noise at sensors, and setting transparency coefficients τc as 1, for 

c=1, …, C. The sensor positions were chosen such that five sensors focus at equally spaced 

depths; specifically, the closest sensor to scenes and farthest sensor from scenes focus at two 

different depths that correspond to ‘dispmin+ 0.2’ and ‘dispmax− 0.2’, respectively, where 

dispmax and dispmin are the approximate maximum and minimum disparity values specified 

in [70]. We reconstructed 4D LFs that consist of S = 9 × 9 sub-aperture images of size N′ 
=255×255, with a coarser grid Δx=Δy =0.13572 mm.

4.2 Experimental setup: INNs

4.2.1 Parameters of INNs—The parameters for the INNs compared in sparse-view CT 

experiments were defined as follows. We considered two BCD-Nets (see Algorithm 2): for 

one BCD-Net, we applied the APG method [49] with 10 inner iterations to (Alg.2.2), and 

set Niter = 30; for the other BCD-Net, we applied the APG method with 3 inner iterations to 

(Alg.2.2), and set Niter = 45. For ADMM-Net, we used the identical configurations as BCD-

Net and set the ADMM penalty parameter to γ in (P1), similar to [16]. For Momentum-Net 

without extrapolation, we chose Niter = 100 and ρ = 1 − ε. For the proposed Momentum-Net, 

we chose Niter = 100 and ρ = 0.5. For PDS-Net, we set the first step size to γ1 = γ−1 and the 

second step size to γ2 = γ1
−1σmax

−1 (M), per [50]. For performance comparisons between different 

3.Traditionally, one obtains focal stacks by physically moving imaging sensors and taking separate exposures across time. Transparent 
photodetector arrays [47], [69] allow one to collect focal stack data in a single exposure, making a practical LF camera using a focal 
stack. If some photodetectors are not perfectly transparent, one can use τc < 1, for some c.
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INNs, all the INNs used sCNN refiners (18) with {R,K = 72} to avoid the overfitting/

hallucination risks. For Momentum-Net using dCNN refiners, we chose L=4 layer dCNN 

(19) using R = 32 filters and K = 64 feature maps, following [46]. (The chosen parameters 

gave lower RMSE values than {L=6, R=33, K=64}, for identical regularization parameters.) 

For comparing different MBIR methods, Momentum used extrapolation, i.e., (Alg.1.2) with 

(8) and (10), and {R = 72, K = 92} for (18). We designed the majorization matrices as 

{M(i + 1) = diag(ATW A1) + γI: i ≥ 0}, using Lemma A.7 (A and W have nonnegative entries) 

and setting λ=1 by (7). We set an initial point of INNs, x(0), to filtered-back projection 

(FBP) using a Hanning window. The regularization parameters of all INNs were selected by 

the scheme in §3.2 with χ⁎ = 167.64. (This factor was estimated from the carefully chosen 

regularization parameter for sparse-view CT MBIR experiments using learned convolutional 

regularizers in [24].)

The parameters for the INNs compared in experiments of LF photography using a focal 

stack were defined as follows. We considered two BCD-Nets and two ADMM-Nets with 

the identical parameters listed above. For Momentum-Net without extrapolation and the 

proposed Momentum-Net, we set Niter = 100 and ρ = 1 − ε. For PDS-Net, we used the 

identical parameter setup described above. For performance comparisons between different 

INNs, all the INNs used sCNN refiners (18) with {R = 52, K = 32} (to avoid the overfitting 

risks) in the epipolar domain. For Momentum-Net using dCNN refiners, we chose L=6 

layer dCNN (19) using R = 32 filters and K = 16 feature maps. (The chosen parameters 

gave most accurate performances over the following setups, {L = 4, R = 32, K = 16, 32, 

64}, given the identical regularization parameters.) To generate ℛθ(i + 1)(x(i)) in (Alg.1.1), we 

applied a sCNN (18) with {R=52, K =32} or a dCNN (19) with {L=6, R=32, K = 16} 

to two sets of horizontal and vertical epipolar plane images, and took the average of two 

LFs that were permuted back from refined horizontal and vertical epipolar plane image 

sets, ∀i.4 We designed the majorization matrices as {M(i + 1) = diag(ATA1) + γI: i ≥ 0}, using 

Lemma A.7 and setting λ = 1 by (7). We set an initial point of INNs, x(0), to ATy rescaled 

in the interval [0,1] (i.e., dividing by its max value). The regularization parameters (i.e., γ in 

BCD-Net/Momentum-Net, the ADMM penalty parameter in ADMM-Net, and the first step 

size in PDS-Net) were selected by the proposed scheme in §3.2 with χ⁎ =1.5. (We tuned the 

factor to achieve the best performances).

For different combinations of INNs and sCNN refiner (18)/dCNN refiner (19), we use the 

following naming convention: ‘the INN name’-’sCNN’ or ‘dCNN’.

4.2.2 Training INNs—For sparse-view CT experiments, we trained all the INNs 

from the chest CT dataset with {xs, ys, fs(x; ys) = 1
2‖ys − Ax‖W s

2 , Ms: s = 1, …, S, S = 142}; we 

constructed the dataset by using XCAT phantom slices [71]. The CT experiment has 

mild data-fit variations across training samples: the standard deviation of the condition 

numbers ( ≜ σmax( ⋅ )/σmin( ⋅ )) of {Mfs = diag(ATW sA1): ∀s} is 1.1. For experiments of LF 

4.Epipolar images are 2D slices of a 4D LF LF(cx, cy, cu, cv), where (cx, cy) and (cu, cv) are spatial and angular coordinates, 
respectively. Specifically, each horizontal epipolar plane image are obtained by fixing cy and cv, and varying cx and cu; and each 
vertical epipolar image are obtained by fixing cx and cu, and varying cy and cv.
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photography using a focal stack, we trained all the INNs from the LF photography dataset 

with {ys, fs(x; ys) = 1
2‖ys − Asx‖2

2, Ms: s = 1, …, S, S = 21} and two sets of ground truth epipolar 

images, {xs,epi-h, xs,epi-v : s = 1, …, S, S = 21·(255·9)}; we constructed the dataset by 

excluding four unrealistic “stratified” scenes from the original LF dataset in [70] that 

consists of 28 LFs with diverse scene parameter and camera settings. The LF experiment 

has large data-fit variations across training samples: the standard deviation of the condition 

numbers of {Mfs = diag(As
TAs1): ∀s} is 2245.5.

In training INNs for both the applications, if not specified, we used identical training setups. 

At each iteration of INNs, we solved (P2) with the mini-batch version of Adam [72] and 

trained iteration-wise sCNNs (18) or dCNNs (19). We selected the batch size and the 

number of epochs as follows: for sparse-view CT reconstruction, we chose them as 20 & 

300, and 20 & 200 for sCNN and dCNN refiners, respectively; for LF photography using a 

focal stack, we chose them as 200 & 200, and 200 & 100, for sCNN and dCNN refiners, 

respectively. We chose the learning rates for (encoding/decoding) filters and thresholding 

values {αk
(i + 1): ∀k} in sCNNs (18), as 10−3 and 10−1, respectively; we reduced the learning 

rates by 10% every 10 epochs. At the first iteration, we initialized filter coefficients with 

Kaiming uniform initialization [73]; in the later iteration, i.e., at the ith INN iteration, for i ≥ 

2, we initialized filter coefficients from those learned from the previous iteration, i.e., (i−1)th 

iteration (this also applies to initializing thresholding values).

4.2.3 Testing trained INNs—In sparse-view CT reconstruction experiments, we tested 

trained INNs to two samples where ground truth images and the corresponding inverse 

covariance matrices (i.e., W in §4.1.1) sufficiently differ from those in training samples 

(i.e., they are a few cm away from training images). We evaluated the reconstruction quality 

by the most conventional error metric in CT application, RMSE (in HU), in a region 

of interest (ROI), where RMSE and HU stand for root-mean-square error and (modified) 

Hounsfield unit, respectively, and the ROI was a circular region that includes all the phantom 

tissues. The RMSE is defined by RMSE(x⋆, xtrue ) ≜ (∑j = 1
NROI (xj

⋆ − xj
true )2/NROI)

1/2
, where x⁎ is a 

reconstructed image, xtrue is a ground truth image, and NROI is the number of pixels in 

a ROI. In addition, we compared the trained Momentum-Net (using extrapolation) to a 

standard MBIR method using a hand-crafted EP regularizer, and an MBIR model using 

a learned convolutional regularizer [24], [37] which is the state-of-the-art MBIR method 

within an unsupervised learning setup. We finely tuned their regularization parameters to 

achieve the lowest RMSE. See details of these two MBIR models in §A.9.2.

In experiments of LF photography using a focal stack, we tested trained INNs to three 

samples of which scene parameter and camera settings are different from those in training 

samples (all training and testing samples have different camera and scene parameters). 

We evaluated the reconstruction quality by the most conventional error metric in LF 

photography application, PSNR (in dB), where PSNR stands for peak signal-to-noise. 

In addition, we compared the trained Momentum-Net (using extrapolation) to MBIR 

method using the state-of-the-art non-trained regularizer, 4D EP introduced in [47]. (The 

low-rank plus sparse tensor decomposition model [68], [74] failed when inverse crimes 

and measurement noise are considered.) We finely tuned its regularization parameter to 

Chun et al. Page 21

IEEE Trans Pattern Anal Mach Intell. Author manuscript; available in PMC 2022 January 29.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



achieve the lowest RMSE values. See details of this MBIR model in §A.9.3. We further 

investigated impacts of the LF MBIR quality on a higher-level depth estimation application, 

by applying the robust Spinning Parallelogram Operator (SPO) depth estimation method 

[75] to reconstructed LFs.

For comparing Momentum-Net with PDS-Net, we measured quality of refined images, z(i+1) 

in (Alg.1.1), because PDS-Net is a hard-refiner.

The imaging simulation and reconstruction experiments were based on the Michigan image 

reconstruction toolbox [76], and training INNs, i.e., solving (P2), was based on PyTorch 

(for sparse-view CT, we used ver. 1.2.0; for LF photography using a focal stack, we used 

ver. 0.3.1). For sparse-view CT, single-precision MATLAB and PyTorch implementations 

were tested on 2.6 GHz Intel Core i7 CPU with 16 GB RAM, and 1405 MHz Nvidia Titan 

Xp GPU with 12 GB RAM, respectively. For LF photography using a focal stack, they 

were tested on 3.5 GHz AMD Threadripper 1920X CPU with 32 GB RAM, and 1531 MHz 

Nvidia GTX 1080 Ti GPU with 11 GB RAM, respectively.

4.3 Comparisons between different INNs

First, compare sCNN results in Figs. 4–5 and Figs. 6–7, for sparse-view CT and 

LF photography using a focal stack, respectively. For both applications, the proposed 

Momentum-Net using extrapolation significantly improves MBIR speed and accuracy, 

compared to the existing soft-refining INNs, [21]–[23], [28], [30] that correspond to BCD-

Net [25] or Momentum-Net using no extrapolation, and ADMM-Net [20], [23], [41], and 

the existing hard-refining INN PDS-Net [50]. (Note that BCD-Net and Momentum-Net 

require slightly less computational complexity per INN iteration, compared to ADMM-Net 

and PDS-Net, respectively, due to having fewer modules.) Fig. 5 shows that to reach the 24 

HU RMSE value in sparse-view CT reconstruction, the proposed Momentum-Net decreases 

MBIR time by 53.3% and 62.5%, compared to Momentum-Net without extrapolation and 

BCD-Net using three inner iterations, respectively. Fig. 7 shows that to reach the 32 dB 

PSNR value in LF reconstruction from a focal stack, the proposed Momentum-Net decreases 

MBIR time by 36.5% and 61.5%, compared to Momentum-Net without extrapolation and 

BCD-Net using three inner iterations, respectively. In addition, Figs. 5 and 7 show that using 

extrapolation, i.e., (Alg.1.2) with (8)–(10), improves the performance of Momentum-Net 

versus iterations.

We conjecture that the larger performance gap between soft-refiner Momentum-Net and 

hard-refiner PDS-Net, in Fig. 4(a) compared to Fig. 6(a), is because the LF problem 

needs stronger regularization, i.e., a smaller tuned factor χ⁎ in (20), than the CT 

problem. Similarly, comparing Fig. 4(b) to Fig. 6(b) shows that the LF problem has small 

performance gaps between BCD-Net and ADMM-Net.

For both the applications, using dCNN refiners (19) instead of sCNN refiners (18) has a 

negligible effect on total run time of Momentum-Net, because reconstruction time of MBIR 

modules (Alg.1.3) (in CPUs) dominates inference time of image refining modules (Alg.1.1) 

(in GPUs). Compare results between Momentum-Net-sCNN and -dCNN in Figs. 5 & 7 and 

Tables A.1 & A.2.
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4.4 Comparisons between different MBIR methods

In sparse-view CT using 12.5% of the full projection views, Fig. 8(b)–(e) and Table A.1(b)–

(f) show that the proposed Momentum-Net achieves significantly better reconstruction 

quality compared to the conventional EP MBIR method and the state-of-the-art MBIR 

method within an unsupervised learning setup, MBIR model using a learned convolutional 

regularizer [24], [37]. In particular, Momentum-Net recovers both low- and high-contrast 

regions (e.g., soft tissues and bones, respectively) more accurately than MBIR using 

a learned convolutional regularizer; see Fig. 8(c)–(e). In addition, when their shallow 

convolutional autoencoders need identical computational complexities, Momentum-Net 

achieves much faster MBIR compared to MBIR using a learned convolutional regularizer; 

see Table A.1(c)–(d).

In LF photography using five focal sensors, regardless of scene parameters and camera 

settings, Momentum-Net consistently achieves significantly more accurate image recovery, 

compared to MBIR model using the state-of-the-art non-trained regularizer, 4D EP [47]. 

The effectiveness of Momentum-Net is more evident for a scene with less fine details. 

See Fig. 9(b)–(d) and Table A.2(b)–(d). Regardless of the scene distances from LF 

imaging systems, the reconstructed LFs by Momentum-Net significantly improve the depth 

estimation accuracy over those reconstructed by the state-of-the-art non-trained regularizer, 

4D EP [47]. See Fig. 10(c)–(e) and Table A.3(c)–(e).

In general, Momentum-Net needs more computations per iteration than EP MBIR, because 

its refining NNs use more and larger filters than the small finite-difference filters in 

EP MBIR, and EP MBIR algorithms can be often further accelerated by gradient 

approximations, e.g., ordered-subsets methods [77], [78].

5 CONCLUSIONS

Developing rapidly converging INNs is important, because 1) it leads to fast MBIR by 

reducing the computational complexity in calculating data-fit gradients or applying refining 

NNs, and 2) training INNs with many iterations requires long training time or it is 

challenging when refining NNs are fixed across INN iterations. The proposed Momentum-

Net framework is applicable for a wide range of inverse problems, while achieving 

fast and convergent MBIR. To achieve fast MBIR, Momentum-Net uses momentum in 

extrapolation modules, and noniterative MBIR modules at each iteration via majorizers. 

For sparse-view CT and LF photography using a focal stack, Momentum-Net achieves 

faster and more accurate MBIR compared to the existing soft-refining INNs, [21]–[23], 

[28], [30] that correspond to BCD-Net [25] or Momentum-Net using no extrapolation, 

and ADMM-Net [20], [23], [41], and the existing hard-refining INN PDS-Net [50]. When 

an application needs strong regularization strength, e.g., LF photography using limited 

detectors, using dCNN refiners with moderate depth significantly improves the MBIR 

accuracy of Momentum-Net compared to sCNNs, only marginally increasing total MBIR 

time. In addition, Momentum-Net guarantees convergence to a fixed-point for general 

differentiable (non)convex MBIR functions (or data-fit terms) and convex feasible sets, 

under some mild conditions and two asymptotic conditions. The proposed regularization 
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parameter selection scheme uses the “spectral spread” of majorization matrices, and is useful 

to consider data-fit variations across training/testing samples.

There are a number of avenues for future work. First, we expect to further improve 

performances of Momentum-Net (e.g., MBIR time and accuracy) by using sharper majorizer 

designs. Second, we expect to further reduce MBIR time of Momentum-Net with the 

stochastic gradient perspective (e.g., ordered subset [77], [78]). On the regularization 

parameter selection side, our future work is learning the factor χ in (20) from datasets 

while training refining NNs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Architectures of different INNs for MBIR. (a–b) The architectures of Momentum-Net and 

BCD-Net [25] are constructed by generalizing BPEG-M and BCD algorithms that solve 

MBIR problem using a convolutional regularizer trained via convolutional analysis operator 
learning (CAOL) [24], [36], respectively. (a) Removing extrapolation modules (i.e., setting 

the extrapolation matrices {E(i+1) : ∀i} as a zero matrix), Momentum-Net specializes to the 

existing gradient-descent-inspired INNs [21], [28]. When the MBIR cost function F(x; y, 

z(i+1)) in (P1) has a sharp majorizer M(i + 1)
, ∀i, Momentum-Net (using ρ≈1) specializes to 

BCD-Net; see Examples 5–6. (b) BCD-Net is a general version of the existing INNs in [20], 

[22], [23], [30], [39]–[41] by using iteration-wise image refining NNs, i.e., {ℛθ(i + 1): ∀i}, or 

considering general convex data-fit f(x; y).
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Fig. 2. 
Convergence behavior of Momentum-Net’s dCNNs refiners {ℛθ(i)} in different applications 

(θ(i) denotes the parameter vector of the ith iteration refiner ℛθ(i), for i=1, …, Niter; see 

details of {ℛθ(i)} in (19) and §4.2.1; Niter = 100). Sparse-view CT (fan-beam geometry with 

12.5% projections views): ℛθ(i) quickly converges, where majorization matrices of training 

data-fits have similar condition numbers. LF photography using a focal stack (five detectors 

and reconstructed LFs consists of 9×9 sub-aperture images): ℛθ(i) has slower convergence, 

where majorization matrices of training data-fits have largely different condition numbers.
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Fig. 3. 
Empirical measures related to Assumption 4 for guaranteeing convergence of Momentum-

Net using dCNNs refiners (for details, see (19) and §4.2.1), in different applications. See 

estimation procedures in §A.2. (a) The sparse-view CT reconstruction experiment used fan-

beam geometry with 12.5% projections views. (b) The LF photography experiment used five 

detectors and reconstructed LFs consisting of 9×9 sub-aperture images. (a1, b1) For both 

the applications, we observed that Δ(i) → 0. This implies that the z(i+1)-updates in (Alg.1.1) 

satisfy the asymptotic block-coordinate minimizer condition in Assumption 4. (Magenta 

dots denote the mean values and black vertical error bars denote standard deviations.) (a2) 

Momentum-Net trained from training data-fits, where their majorization matrices have mild 
condition number variations, shows that ϵ(i) → 0. This implies that paired NNs (ℛθ(i + 1), ℛθ(i))
in (Alg.1.1) are asymptotically nonexpansive. (b2) Momentum-Net trained from training 

training data-fits, where their majorization matrices have mild condition number variations, 

shows that ϵ(i) becomes close to zero, but does not converge to zero in one hundred 

iterations. (a3, b3) The NNs, ℛθ(i + 1) in (Alg.1.1), become nonexpansive, i.e., its Lipschitz 

constant κ(i) becomes less than 1, as i increases.
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Fig. 4. 
RMSE minimization comparisons between different INNs for sparse-view CT (fan-beam 

geometry with 12:5% projections views and 105 incident photons; (a) averaged RMSE 

values across two test refined images; (b) averaged RMSE values across two test 

reconstructed images).
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Fig. 5. 
RMSE minimization comparisons between different INNs for sparse-view CT (fan-beam 

geometry with 12.5% projections views and 105 incident photons; averaged RMSE values 

across two test reconstructed images).
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Fig. 6. 
PSNR maximization comparisons between different INNs in LF photography using a focal 

stack (LF photography systems with C = 5 detectors obtain a focal stack of LFs consisting of 

S =81 sub-aperture images; (a) averaged RMSE values across two test refined images); (b) 

averaged RMSE values across two test reconstructed images.
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Fig. 7. 
PSNR maximization comparisons between different INNs in LF photography using a focal 

stack (LF photography systems with C = 5 detectors obtain a focal stack of LFs consisting of 

S =81 sub-aperture images; averaged PSNR values across three test reconstructed images).
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Fig. 8. 
Comparison of reconstructed images from different MBIR methods in sparse-view CT 

(fan-beam geometry with 12.5% projections views and 105 incident photons; images outside 

zoom-in boxes are magnified to better show differences; display window [800,1200] HU). 

See also Fig. A.2.
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Fig. 9. 
Error map comparisons of reconstructed sub-aperture images from different MBIR methods 

in LF photography using a focal stack (LF photography systems with C = 5 detectors 

capture a focal stack of LFs consisting of S = 81 sub-aperture images; sub-aperture images 

at the (5,5)th angular coordinate; the PSNR values in parenthesis were measured from 

reconstructed LFs). See also Fig. A.2.
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Fig. 10. 
Comparisons of estimated depths from LFs reconstructed by different MBIR methods in LF 

photograph using a focal stack (LF photography systems with C = 5 detectors capture a 

focal stack of LFs consisting of S = 81 sub-aperture images; SPO depth estimation [75] was 

applied to reconstructed LFs in Fig. 9; display window in meters). See also Fig. A.2.
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