Skip to main content
. Author manuscript; available in PMC: 2022 Mar 2.
Published in final edited form as: IEEE Trans Med Imaging. 2021 Mar 2;40(3):781–792. doi: 10.1109/TMI.2020.3036584

TABLE I:

Segmentation results on three datasets when full (100%) or zero (0%) target modality annotations are available. For each dataset we show results on the target modality assuming the other is the source (and vice versa). Single input-output models cannot be trained with no annotations and are marked with n/a. We omit results marked with –, since training of these methods did not converge.

100% target annotations
Methods Train Test Masks in test ERI BOLD CHAOS
LGE cine BOLD cine T2 T1
copy multi Yes 6706 6706 8001 8001 7110 7110
register multi Yes 6807 6705 8104 8405 7007 7305
AC multi Yes 6615 6613 6802 7205 6522 6522
UNet single single No 7804 8508 9101 8901 8517 8605
SDNet single single No 8003 8409 8903 8804 8316 8508
UNet multi single No 8103 8308 8903 8802 8515 8803
SDNet multi single No 8005 8605 8902 8703 8511 8801
DualStream multi single No 8006 8609 8909 8802 8516 8509
Translation multi single No 7906 8405 8306 8802 8309 8706
DADR multi single No 7905 8306 8804 8602 8416 7222
DAFNet multi single No 8203 8602 8801 9102 8317 8801
DAFNet multi multi No 8203 8402 9101 9101 8505 8701
0% target annotations
Methods Train Test Masks in test ERI BOLD CHAOS
LGE cine BOLD cine T2 T1

copy multi Yes 6706 6706 8001 8001 7110 7110
register multi Yes 6807 6705 8104 8405 7007 7305
AC n/a multi Yes 6615 6613 6802 7205 6522 6522
UNet single single No n/a n/a n/a n/a n/a n/a
SDNet single single No n/a n/a n/a n/a n/a n/a
UNet multi single No 3823 6812 6823 8505
SDNet multi single No 6118 7307 8003 8503 5109 6313
DualStream multi single No 3823 6812 6823 8505
Translation multi single No 3723 6113 6110 7407 4511
DADR multi single No 4619 6313 6811 8501 4917
DAFNet multi single No 7206 7805 7802 8203 7212 7406
DAFNet multi multi No 7404 7604 8503 8602 7403 7106