Skip to main content
. Author manuscript; available in PMC: 2022 Mar 2.
Published in final edited form as: IEEE Trans Med Imaging. 2021 Mar 2;40(3):781–792. doi: 10.1109/TMI.2020.3036584

TABLE II:

Segmentation results of LGE, BOLD and T2, when training with a varying amount of annotations for ERI, BOLD, and CHAOS datasets respectively.

ERI: Target LGE Dice (Source cine)
Method 50% 25% 12.5%
copy 6706 6706 6706
register 6807 6807 6807
AC 6615 6615 6615
UNet-single 7612 6614 5121
SDNet-single 7604 6909 5418
UNet-multi 7608 6711 5019
SDNet-multi 7604 7307 6419
DualStream 7603 6113 4423
Translation 7507 6714 6214
DADR 7705 6611 5719
DAFNet 7804 7605 7405
BOLD: Target BOLD Dice (Source cine)
Method 50% 25% 12.5%

copy 8001 8001 8001
register 8104 8104 8104
AC 6802 6802 6802
UNet-single 7917 5927 4929
SDNet-single 8403 6817 6414
UNet-multi 8703 7517 7213
SDNet-multi 8607 8503 8003
DualStream 8601 5826 4928
Translation 8402 7906 4726
DADR 8702 7901 7115
DAFNet 8701 8603 8503
CHAOS: Target T2 Dice (Source T1)
Method 50% 25% 12.5%

copy 7110 7110 7110
register 7007 7007 7007
AC 6522 6522 6522
UNet-single 8017 7615 7217
SDNet-single 8214 7716 7514
UNet-multi 8415 7916 7516
SDNet-multi 8411 8013 7809
DualStream 8119 7816 7516
Translation 8107 7511 7010
DADR 8411 7714 7411
DAFNet 8405 8203 7905