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Abstract

Statistical shape modeling (SSM) has recently taken advantage of advances in deep learning to 

alleviate the need for a time-consuming and expert-driven workflow of anatomy segmentation, 

shape registration, and the optimization of population-level shape representations. DeepSSM is an 

end-to-end deep learning approach that extracts statistical shape representation directly from 

unsegmented images with little manual overhead. It performs comparably with state-of-the-art 

shape modeling methods for estimating morphologies that are viable for subsequent downstream 

tasks. Nonetheless, DeepSSM produces an overconfident estimate of shape that cannot be blindly 

assumed to be accurate. Hence, conveying what DeepSSM does not know, via quantifying 

granular estimates of uncertainty, is critical for its direct clinical application as an on-demand 

diagnostic tool to determine how trustworthy the model output is. Here, we propose Uncertain-

DeepSSM as a unified model that quantifies both, data-dependent aleatoric uncertainty by 

adapting the network to predict intrinsic input variance, and model-dependent epistemic 

uncertainty via a Monte Carlo dropout sampling to approximate a variational distribution over the 

network parameters. Experiments show an accuracy improvement over DeepSSM while 

maintaining the same benefits of being end-to-end with little pre-processing.
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1 Introduction

Morphometrics and its new generation, statistical shape modeling (SSM), have evolved into 

an indispensable tool in medical and biological sciences to study anatomical forms. SSM has 

enabled a wide range of biomedical and clinical applications (e.g., [2, 4, 6, 7, 17–19, 22, 31, 

47, 49]). Morphological analysis requires parsing the anatomy into a quantitative 

representation consistent across the population at hand to facilitate the testing of biologically 

relevant hypotheses. A popular choice for such a representation is using landmarks that are 

defined consistently using invariant points, i.e., correspondences, across populations [43]. 

Coordinate transformations (e.g., [26, 27]) hold promise as an alternative representation, but 

the challenge is finding the anatomically-relevant transformation that quantifies differences 

among shapes. Ideally, landmarking is performed by anatomy experts to mark distinct, and 

typically few anatomical features [1, 33], but it is time-intensive and cost-prohibitive, 

HHS Public Access
Author manuscript
Shape Med Imaging (2020). Author manuscript; available in PMC 2021 October 01.

Published in final edited form as:
Shape Med Imaging (2020). 2020 October ; 12474: 57–72. doi:10.1007/978-3-030-61056-2_5.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



especially for 3D images and large cohorts. More recently, dense sets of correspondence 

points that capture population statistics are used, thanks to advances in computationally 

driven approaches for shape modeling (e.g., [8, 9, 11, 13, 45]).

Traditional computational approaches to automatically generate dense correspondence 

models, a.k.a. point distribution models (PDMs), still entail a time-consuming, expert-

driven, and error-prone workflow of segmenting anatomies from volumetric images, 

followed by a processing pipeline of shape registration, correspondence optimization, and 

projecting points onto some low-dimensional shape space for subsequent statistical analysis. 

Many of these steps require significant parameter tuning and/or quality control by the users. 

The excessive time and effort to construct population-specific shape models have motivated 

the use of deep networks and their inherent ability to learn complex functional mappings to 

regress shape information directly from images and incorporate prior knowledge of shapes 

in image segmentation tasks (e.g., [3, 25, 38, 48, 50]). However, deep learning in this context 

has drawbacks. Training deep networks on volumetric images is often confounded by the 

combination of high-dimensional image spaces and limited availability of training images 

labeled with shape information. Additionally, deep networks can make poor predictions with 

no indication of uncertainty when the training data weakly represents the input. 

Computationally efficient automated morphology assessment when integrated with new 

clinical tools as well as surgical procedure, has potential to improve medical care standards 

and clinical decision making. However, uncertainty quantification is a must in such 

scenarios, as it will allow professionals to determine the trustworthiness of such a tool and 

prevent unsafe predictions.

Here, we focus on a particular instance of a deep learning-based framework, namely 

DeepSSM [3], that maps unsegmented 3D images to a low-dimensional shape descriptor. 

Mapping to a low-dimensional manifold, compared with regressing correspondence points, 

has a regularization effect that compensates for misleading image information and provides 

a topology-preserving prior to shape estimation. DeepSSM also entails a population-driven 

data augmentation approach that addresses limited training data, which is typical with small 

and large-scale shape variability. DeepSSM has been proven effective in characterizing 

pathology [3] and performs statistically similar to traditional SSM methods in downstream 

tasks such as disease recurrence predictions [4]. Nonetheless, DeepSSM, like other deep 

learning-based frameworks predicting shape, produces an overconfident estimate of shape 

that can not be blindly assumed to be accurate. Furthermore, the statistic-preserving data 

augmentation is bounded by what the finite set of training samples captures about the 

underlying data distribution. In this paper, we formalize Uncertain-DeepSSM, a unified 

solution to limited training images with dense correspondences and model prediction over-

confidence. Uncertain-DeepSSM quantifies granular estimates of uncertainty with respect to 

a low-dimensional shape descriptor to provide spatiallycoherent, localized uncertainty 

measures (see Fig. 1) that are robust to misconstruing factors that would typically affect 

point-wise regression, such as heterogeneous image intensities and noisy diffuse shape 

boundaries. Uncertain-DeepSSM produces probabilistic shape models directly from 3D 

images, conveying what DeepSSM does not know about the input and providing an accuracy 

improvement over DeepSSM while being end-to-end with little required pre-processing.
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2 Related Work

DeepSSM [3] is based on works that show the efficacy of convolutional neural networks 

(CNNs) to extract shape information from images. Huang et al. [25] regress shape 

orientation and position conditioned on 2D ultrasound images. Milletari et al. [38] segment 

ultrasound images using low-dimensional shape representation in the form of principal 

component analysis (PCA) to regress landmark positions. Oktay et al. [41] incorporate prior 

knowledge about organ shape and location into a deep network to anatomically constrain 

resulting segmentations. However, these works provide a point-estimate solution for the task 

at hand.

In Bayesian modeling, there are two types of uncertainties [28, 30]. Aleatoric (or data) 

uncertainty captures the uncertainty inherent in the input data, such as over-exposure, noise, 

and the lack of the image-based features indicative of shapes. Epistemic (or model) 

uncertainty accounts for uncertainty in the model parameters and can be explained away, 

given enough training data [28].

Aleatoric uncertainty can be captured by placing a distribution over the model output. In 

image segmentation tasks, this has been achieved by sampling segmentations from an 

estimated posterior distribution [10, 34] and using conditional normalizing flows [44] to 

infer a distribution of plausible segmentations conditioned on the input image. These efforts 

succeed in providing shape segmentation with aleatoric uncertainty measures, but do not 

provide a shape representation that can be readily used for population-level statistical 

analyses. Tóthová et al. [46] incorporate prior shape information into a deep network in the 

form of a PCA model to reconstruct surfaces from 2D images with an aleatoric uncertainty 

measure that is quantified via conditional probability estimation. Besides being limited to 

2D images, quantifying point-wise aleatoric uncertainty makes this measure prone to 

inherent noise in images.

Epistemic uncertainty is more difficult to model as it requires placing distributions over 

models rather than their output. Bayesian neural networks [12, 14, 37] achieve this by 

placing a prior over the model parameters, then quantifying their variability. Monte Carlo 

dropout sampling, which places a Bernoulli distribution over model parameters [15], has 

effectively been formalized as a Bayesian approximation for capturing epistemic uncertainty 

[16]. Aleatoric and epistemic uncertainty measures have been combined in one model for 

tasks such as semantic segmentation, depth regression, classification, and image translation 

[28, 32, 42], but never for SSM.

Uncertain-DeepSSM produces probabilistic shape models directly from images that 

quantifies both the data-dependent aleatoric uncertainty and the model-dependent epistemic 

uncertainty. We quantify aleatoric uncertainty by adapting the network to predict intrinsic 

input variance in the form of mean and variance for the PCA scores and updating the loss 

function accordingly [35, 40]. This enables explicit modeling of the heteroscedastic-type of 

aleatoric uncertainty, which is dependent on the input data. We model epistemic uncertainty 

via a Monte Carlo dropout sampling to approximate a variational distribution over the 

network parameters by sampling PCA score predictions with various dropout masks. This 
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approach provides both uncertainty measures for each PCA score that are then mapped back 

to the shape space for interpretable visualization. Uncertainty fields on estimated 3D shapes 

convey insights for how the given input relate to what the model knows. For instance, such 

uncertainties could help pre-screen for pathology if Uncertain-DeepSSM is trained on 

controls. Furthermore, explicit modeling of uncertainties in Uncertain-DeepSSM provides 

more accurate predictions, compared with DeepSSM, with no additional training steps. This 

indicates the ability of Uncertain-DeepSSM to better generalize in limited training data 

setting.

3 Methods

A trained Uncertain-DeepSSM model provides shape descriptors, specifically PCA scores, 

with uncertainty measures directly from 3D images (e.g., CT, MRI) of anatomies. In this 

section, we describe the data augmentation method, the network architecture, training 

strategy, and uncertainty quantification.

3.1 Notations

Consider a paired dataset xn, yn n = 1
N  of N 3D images yn ∈ ℝH × W × D and their 

corresponding shapes xn ∈ ℝ3M, where each shape is represented by M 3D correspondence 

points. We generate a PDM from segmentations. This entails the typical SSM pipeline that 

includes pre-processing steps (registration, resampling, smoothing, …), and correspondence 

(i.e., PDM) optimization. In practice, any PDM generation algorithm can be employed. 

Here, we use the open-source ShapeWorks software [8] to optimize surface correspondences 

using anatomies segmented from the training images. Next, high-dimensional shapes (i.e., 

PDM) in the shape space (of dimension ℝ3M) are mapped to low-dimensional PCA scores 

z ∈ ℝL in the PCA subspace that is parameterized by a mean vector μ ∈ ℝ3M, a diagonal 

matrix of eigen values Δ ∈ ℝL × L, and a matrix of eigen vectors U ∈ ℝ3M × L, where z = 

UT(x − μ) and L ≪ 3M is chosen such that at least 95% of the population variation is 

explained. The PCA scores zn associated with the training image yn serve as a supervised 

target to be inferred by the Uncertain-DeepSSM network and mapped deterministically to 

correspondence points, where xn = Uzn + μ. The network thus defines a functional map 

fΘ:ℝH × W × D ℝL that is parameterized by the network parameters Θ, where z = fΘ(y). 

Uncertainties are quantified in the PCA subspace, such that the PCA scores of the n–th 

training shape zn is associated with vectors of aleatoric variances an ∈ ℝ+
L and epistemic 

variances en ∈ ℝ+
L.

3.2 Data Augmentation

DeepSSM augments training data with shape samples generated from a single multivariate 

Gaussian distribution in the PCA subspace, where an add-reject strategy is employed to 

prevent outliers from being sampled. Instead of assuming a Gaussian distribution, we use a 

kernel density estimate (KDE) to better capture the underlying shape distribution by not 

over-estimating the variance and avoiding sampling implausible shapes from high 
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probability regions in case of multi-modal distributions. Using KDE, augmented samples zs 

are drawn from:

pσ(z) = 1
N ∑

n = 1

N
Kn

σ(z),    s.t.   Kn
σ(z) = 1

2πσ2 L/2  exp  − z − zn
2

2σ2 , (1)

where σ ∈ ℝ+ denotes the kernel bandwidth and is computed as the average nearest neighbor 

distance in the PCA subspace, i.e., σ2 = 1
N ∑nmink ≠ n zn − zk

TΔ−1 zn − zk . As illustrated in 

Fig. 2, a sampled vector of PCA scores zs ∈ ℝL from the kernel of the n–th training sample 

Kn
σ(z) is mapped to correspondence points xs ∈ ℝ3M, where xs = Uzs + μ. Using the xn ↔ xs 

correspondences, we compute thin-plate spline (TPS) warp [5] to obtain a deformation field 

which is then applied to image yn to construct the augmented image ys. With this 

augmentation method, we can construct an augmented training set xs, ys s = 1
S  of S 3D 

images, their corresponding shapes, and the supervised targets zs s = 1
S , which respects the 

population-level shape statistics and the intensity profiles of the original dataset.

3.3 Adaptations for Uncertainty Quantification

We extend the network architecture and loss function of DeepSSM to estimate both types of 

uncertainties and the shape descriptor in the form of PCA scores.

Heteroscedastic aleatoric uncertainty is a measure of data uncertainty, and hence can be 

learned as a function of the input. Given a training set D = yi, zi i = 1
I  that includes both 

real and augmented samples, where I = N + S, DeepSSM is trained to minimize the L2 loss 

between groundtruth zi and predicted fΘ(yi). In Uncertain-DeepSSM, the network 

architecture is modified to estimate both the mean zi and variance ai of the PCA scores, 

where zi, ai = fΘ yi . The variance acts as an uncertainty regularization term that does not 

require a supervised target since it is learned implicitly through supervising the regression 

task. For training purposes, we let the network predict the log of the variance, ail = log ail
2, 

where ail captures the aleatoric uncertainty along the l–th PCA mode of variation. This 

forces the variance to be positive and removes the potential for division by zero. Uncertain-

DeepSSM is thus trained to minimize the Bayesian loss in (2), where zi = fΘ
z yi  and 

ai = fΘ
a yi  are the z– and a– outputs of the network, respectively (see Fig. 3):

ℒ(Θ) = 1
2LI ∑

i = 1

I
zi − zi

T  diag  exp ai
−1 zi − zi + ∑

l = 1

L
 ail . (2)

The second term in (2) learns a loss attenuation, preventing the network from predicting 

infinite variance for all scores.

Epistemic uncertainty is a measure of the model’s ignorance that can be quantified by 

modeling distributions over the model parameters Θ. We place a Bernoulli distribution over 

network weights by making use of the Monte Carlo dropout sampling technique [15, 16]. In 
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particular, a dropout layer with a probability κ is added to every layer (convolutional and 

fully connected) in the Uncertain-DeepSSM network (Fig. 3). Dropout is used in both, 

training and testing, where in testing, it is used to sample from the approximate posterior. 

The various dropout masks provide an ensemble of networks to sample predictions from, the 

distribution of which reflects the model’s epistemic uncertainty. Consider V dropout 

samples, the epistemic uncertainty of the l–th PCA mode of variation is computed as,

eil = 1
V ∑

v = 1

V
zil

(v) 2 − 1
V ∑

v = 1

V
zil

(v)
2

(3)

where zi
(v) = fΘv p(Θ)

z yi  is the z–output of the network for the randomly masked network 

parameters Θv.

3.4 Architecture and Training

The network architecture of Uncertain-DeepSSM (Fig. 3) is similar to DeepSSM with five 

convolution layers followed by two fully connected layers. However in Uncertain-

DeepSSM, dropout is added and batch normalization is removed. Combining batch 

normalization and dropout leads to a variance shift that causes training instability [36]. 

Hence, we normalize the input images to compensate for not using batch normalization. The 

PCA scores are also whitened to prevent the model from favoring the dominant PCA modes. 

A dropout layer with a probability of κ = 0.2 is added after every convolutional and fully 

connected layer. Data augmentation is used to create a set of I = 4000 training and 1000 

validation images for training the network. PyTorch is used in constructing and training 

DeepSSM with Adam optimization [29] and a learning rate of 0.0001. Parametric ReLU 

[23] activation and Xavier weight initialization [21] are used. To train Uncertain-DeepSSM, 

the L2 loss function is used for the first epoch and the Bayesian loss function (2) is used for 

all following epochs. This allows the network to learn based on the task alone before 

learning to quantify uncertainty, resulting in better predictions and more stable training.

3.5 Testing and Uncertainty Analysis

When testing, dropout remains on and predictions are sampled multiple times. The predicted 

PCA scores and aleatoric uncertainty measure are first un-whitened. Using the dropout 

samples, the epistemic uncertainty measure is computed using (3) based on the un-whitened 

predicted scores. To compute the accuracy of the predictions, we first map PCA scores to 

correspondence points and compare the surface reconstructed from these points to the 

surface constructed from the ground truth segmentation. For surface reconstruction, we use 

the point correspondences between the population mean and the correspondence points of 

the predicted PCA scores to define a TPS warp that deform the mean mesh (from 

ShapeWorks [8]) to obtain the surface mesh for the predicted scores. The error is then 

calculated as the average of the surface-to-surface distance from the predicted to ground 

truth mesh and that of ground truth to predicted mesh.

To visualize uncertainty measures on the predicted mesh, the location of each 

correspondence point is modeled as a Gaussian distribution. To fit these distributions, we 
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sample PCA scores from a Gaussian with the predicted mean and desired variance (aleatoric 

or epistemic), then map them to the PDM space. This provides us with a distribution over 

each correspondence point, with mean and entropy indicating the coordinates of the point 

and the associated uncertainty scalar, respectively. Interpolation is then used to interpolate 

uncertainty scalars defined on correspondence points to the full reconstructed mesh.

4 Results

We compare the shape predictions from DeepSSM and Uncertain-DeepSSM on two 3D 

datasets; a toy dataset of parametric shapes (supershapes) as a proof-of-concept and a real 

world dataset of left atrium MRI scans. In both experiments, we create three different test 

sets: control, aleatoric, and epistemic. The control test set is well represented under the 

training population, whereas the epistemic and aleatoric test sets are not. Examples with 

images that differ from the training images are chosen for the aleatoric set, as this suggests 

data uncertainty. The epistemic set is chosen to demonstrate model uncertainty by selecting 

examples with shapes that differ from those in the training set. The test sets are held out 

from the entire data augmentation and training process. It is important that test sets are not 

used to build the PDMs, such that they are not reflected in the population statistics captured 

in the PCA scores. Hence, we use surface-to-surface distances between meshes to quantify 

shape-based prediction errors since testing samples do not have optimized (ground truth) 

correspondences.

4.1 Supershapes Dataset

As a proof-of-concept, we construct a set of 3D supershapes shapes [20], which are a family 

of parameterized shapes. A supershape is parameterized by three variables, one which 

determines the number of lobes in the shape (or the shapes group), and two which determine 

the curvature of the shape. To create the training and validation sets, we generate 5000 3-

lobe shapes with randomly drawn curvature values (using a χ2 distribution). For each shape, 

a corresponding image of size 98 × 98 × 98 is formed, where the intensities of the 

foreground and background are modeled as Gaussian distributions with different means but 

same variance. Additive Gaussian noise is added and the images are blurred with a Gaussian 

filter to mimic diffuse shape boundaries. In this case, Uncertain-DeepSSM predicts a single 

PCA score, where the first dominant PCA mode captures 99% of the shape variability.

We analyze output uncertainty measures on three different test sets, each of size 100. 

Examples of these can be seen in Fig. 4. The control test set is generated in the same manner 

as the training data and provides baseline uncertainty measures. The aleatoric test set 

contains shapes of the same shape group as the training, but the corresponding images are 

blurred with a larger Gaussian filter. This makes the shape boundary less clear, which has 

the effect of adding data uncertainty. For the epistemic test set, the images are blurred to the 

same degree as the training set, but the shapes belong to a different shape group. Here, we 

use 5-lobe shapes instead of 3-lobe to demonstrate model uncertainty.

The results of all three test sets are shown in Table 1. The predictions of Uncertain-

DeepSSM are more accurate than DeepSSM on all of the test sets, with the aleatoric set 

having a notable difference. This is a result of the averaging effect of prediction sampling, 
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which counters the effect of image blurring. The box plots of the uncertainty measure 

associated with the predicted PCA score in Fig. 5 demonstrate that as expected, Uncertain-

DeepSSM predicts higher aleatoric uncertainty on the aleatoric test set and higher epistemic 

uncertainty on the epistemic test set when compared to the control. The epistemic test has 

the highest of both forms of uncertainty because changing the shape group produces a great 

shift in the image domain (aleatoric) and shape domain (epistemic).

4.2 Left Atrium (LA) Dataset

The LA dataset consists of 206 late gadolinium enhancement MRI images of size 235 × 138 

× 175 that vary significantly in intensity and quality and have surrounding anatomical 

structures with similar intensities. The LA shape variation is also significant due to the 

topological variants pertaining to pulmonary veins arrangements [24]. The variation in 

images and shapes suggest a strong need for uncertainty measures. For networks training 

purposes, the images are down-sampled to size 118 × 69 × 88. We predict 19 PCA scores 

such that 95% of the shape-population variability is preserved. We compare DeepSSM and 

Uncertain-DeepSSM on three test sets, each of size 30. To define the aleatoric test set, we 

run PCA (preserving 95% of variability) on all 206 images. We then consider the 

Mahalanobis distance of the PCA scores of each sample to the mean PCA scores (within-

subspace distance) as well as the image reconstruction error (mean square error as off-

subspace distance). These values are normalized and summed to get a measure of image 

similarity to the whole set (similar to [39]). We select the 30 that differ the most to be the 

aleatoric test set. These examples are the least supported by the input data, suggesting they 

should have high data uncertainty. To define the epistemic test set, we use the same 

technique but perform PCA on the signed distance transforms, as an implicit form of shapes, 

rather than the raw images. In this way, we are able to select an epistemic test set of 30 

examples with shapes that are poorly supported by the data. This selection technique 

produces aleatoric and epistemic test sets that overlap by 6 examples, leaving 152 out of 206 

samples. 30 of these are randomly selected to be the control test set and the rest (122) are 

used in data augmentation to create a training set of 4000 and validation set of 1000. 

Examples from the test sets can be seen in Fig. 6.

We train both DeepSSM and Uncertain-DeepSSM on different percentages of training data, 

namely 100%, 75%, and 25%, where an X% is randomly drawn from the remaining 122 

samples and then used to proportionally augment the data. The average results of these tests 

are shown in Table 2. As expected, epistemic uncertainty measures decrease with more 

training data because model uncertainty can be explained away given more data. Uncertain-

DeepSSM made more accurate predictions in most cases, notably when training data is 

limited. Uncertain-DeepSSM also successfully quantified uncertainty as we can see in the 

box plots in Fig. 7, which illustrate increased uncertainty measures on the uncertain test sets 

as compared to the control. The scatter plot in Fig. 7 illustrates the correlation between 

accuracy and uncertainty measures. The trend lines (combined based on all three test sets) 

indicate that the uncertainty quantification from Uncertain-DeepSSM provides insight into 

how trustworthy the model output is.
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In Fig. 1, the uncertainty measures are shown on the meshes constructed from model 

predictions (models trained on 100% of the training data). The top example is from the 

control set, the second is from the aleatoric set, and the bottom is from the epistemic set. 

Here, we can see that both aleatoric and epistemic uncertainty are higher in regions where 

the surface-to-surface distance is higher. This demonstrates the practicality of Uncertain-

DeepSSM in a clinical setting as it indicates what regions of the predicted shape 

professionals can trust and where they should be skeptical.

5 Conclusion

Uncertain-DeepSSM provides a unified framework to predict shape descriptors with 

measures of both forms of uncertainty directly from 3D images. It maintains the end-to-end 

nature of DeepSSM while providing an accuracy improvement and uncertainty 

quantification. By predicting and quantifying uncertainty on PCA scores, Uncertain-

DeepSSM enables population-level statistical analysis with aleatoric and epistemic 

uncertainty measures that can be evaluated in a visually interpretable way. In the future, a 

layer that maps the PCA scores to the set of correspondence points could be added, enabling 

fine-tuning the network and potentially providing an accuracy improvement over 

deterministically mapping PCA scores. Uncertain-DeepSSM bypasses the time-intensive 

and cost-prohibitive steps of traditional SSM while providing the safety measures necessary 

to use deep network predictions in clinical settings. Thus, this advancement has the potential 

to improve medical standards and increase patient accessibility.
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Fig.1: 
Shape prediction and uncertainty quantification on left atrium MRI scans. The images 

(a) are input and the true shapes (surface meshes) (b) are from ground truth segmentations. 

Shapes in (c) and (d) are constructed from DeepSSM and Uncertain-DeepSSM predictions, 

respectively. The heat maps on surface meshes in (c) and (d) show the surface-to-surface 

distance to (b) (the error in mm). The aleatoric (d) and epistemic (e) output from Uncertain-

DeepSSM are shown as heat maps on the predicted mesh. Our model outputs increased 

uncertainty where error is high.
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Fig.2: 

Data augmentation: PCA is used to compute the PCA scores zn n = 1
N  of the training shape 

samples xn n = 1
N . Augmented samples zs are randomly drawn from a collection of 

multivariate Gaussian distributions Kσ
n(z), each with a training example zn as the mean and 

covariance σ2IL. The correspondences xs are used to compute a TPS warp to map xn to xs, 

which is used to warp the respective image yn to a new image ys with known shape 

parameters zs.

Adams et al. Page 14

Shape Med Imaging (2020). Author manuscript; available in PMC 2021 October 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig.3: 
Uncertain-DeepSSM network architecture
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Fig.4: 
Examples of surfaces and corresponding image slices from supershapes test sets.
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Fig.5: 
Boxplots of supershapes uncertainties compared to control test set.
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Fig.6: 
Examples from of surfaces and image slices for LA test sets.
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Fig.7: 
Results on LA test sets from training Uncertain-DeepSSM on the full training set. The box 

plots show output uncertainty measures compared to the control test set. The scatter plot 

shows the average error versus average uncertainty on all three test sets. The two outliers 

marked with an orange box in the epistemic uncertainty plot are examples with images of a 

much higher intensity than the training examples (shown to the right) causing a spike in 

epistemic uncertainty.
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Table 1:

Average error and uncertainty measures on supershapes test sets.

DeepSSM Uncertain-DeepSSM

Surface-to-Surface Distance Surface-to-Surface Distance Aleatoric Uncertainty Epistemic Uncertainty

Control Test Set 0.670 ± 0.104 0.615 ± 0.163 7.413 ± 2.189 15.000 ± 11.762

Aleatoric Test Set 1.293 ± 0.679 0.798 ± 0.447 10.205 ± 2.276 22.178 ± 13.065

Epistemic Test Set 7.045 ± 1.653 7.008 ± 1.668 12.256 ± 5.424 36.226 ± 17.327
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Table 2:

Results on left atrium test sets with various training set sizes. Reported surface-to-surface distances are 

averaged across the test set and uncertainty measures are averaged across PCA modes and the test set.

DeepSSM Uncertain-DeepSSM

Surface-to-Surface 
Distance (mm)

Surface-to-Surface 
Distance (mm)

Aleatoric Uncertainty Epistemic Uncertainty

Control Test Set 25% Train 15.262 ± 3.694 10.670 ± 2.560 519.026 ± 7.357 58.206 ± 38.145

75% Train 10.319 ± 2.834 10.072 ± 2.812 452.025 ± 0.519 46.581 ± 32.678

100% Train 10.205 ± 2.779 10.153 ± 2.904 431.518 ± 0.674 43.561 ± 29.821

Aleatoric Test Set 25% Train 12.967 ± 3.592 12.830 ± 3.543 472.359 ± 10.164 64.312 ± 45.656

75% Train 12.507 ± 3.522 12.169 ± 3.493 465.951 ± 1.089 60.458 ± 45.454

100% Train 12.242 ± 3.602 12.289 ± 3.525 442.129 ± 0.917 56.009 ± 42.371

Epistemic Test Set 25% Train 15.759 ± 4.301 14.975 ± 4.209 465.817 ± 7.567 75.854 ± 51.188

75% Train 14.690 ± 4.166 14.581 ± 4.104 446.641 ± 1.127 64.236 ± 44.642

100% Train 14.558 ± 4.151 14.465 ± 4.092 448.082 ± 1.291 61.517 ± 42.259
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