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Abstract

We describe an efficient method for the simultaneous solution of all free energies within a relative 

binding free energy (RBFE) network with cycle closure and experimental/reference constraint 

conditions using Bennett Acceptance Ratio (BAR) and Multistate BAR (MBAR) analysis. Rather 

than solving the BAR or MBAR equations for each transformation independently, the 

simultaneous solution of all transformations are obtained by performing a constrained 

minimization of a global objective function. The nonlinear optimization of the objective function 

is subjected to affine linear constraints that couple the free energies between the network edges. 

The constraints are used to enforce the closure of thermodynamic cycles within the RBFE 

network, and to enforce an additional set of linear constraint conditions demonstrated here to be 

subsets of (1 or 2) experimental values. We describe details of the practical implementation of the 

network BAR/MBAR procedure, including use of generalized coordinates in the minimization of 

the free energy objective function, propagation of bootstrap errors from those coordinates, and 

performance and memory optimization. In some cases it is found that use of restraints in the 

optimization is more practical than use of generalized coordinates for enforcing constraint 

conditions. The fast BARnet and MBARnet methods are used to analyze the RBFEs of 6 

prototypical protein-ligand systems, and it is shown that enforcement of cycle closure conditions 

reduces the error in the predictions only modestly, and further reduction in errors can be achieved 

when one or two experimental RBFEs are included in the optimization procedure. These methods 

have been implemented into FE-ToolKit, a new free energy analysis toolkit. The BARnet/

MBARnet framework presented here opens the door to new, more efficient and robust free energy 

analysis with enhanced predictive capability for drug discovery applications.
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1 Introduction

Alchemical free energy methods play a key role in lead optimization by enabling the 

prediction and ranking of the relative binding affinities of ligands to their protein targets in 

order to prioritize them for further synthesis and testing.1,1–11 Often these calculations take 

the form of computing the relative binding free energy (RBFE) between ligands by 

alchemically mutating one ligand into another, both in solution and bound to the protein.
12–17 The ease at which such transformations can be computed robustly to high precision 

depends in part on the similarity of the ligands.18–20 To take advantage of this in practice, a 

topological thermodynamic network can be constructed to connect ligands in such a way 

that their RBFEs can be optimally computed.21–25 This network can be thought of as a 

“directed graph” where each edge corresponds to an alchemical transformation between 

ligands. When solving for the RBFE values between ligands, one can independently analyze 

the corresponding edge using an established free energy method such as Bennett’s 

Acceptance Ratio (BAR) method,26 the multistate-BAR (MBAR) method,27 unbinned 

weighted histogram analysis method (UWHAM),28 or thermodynamic integration (TI) 

method29 However, these original approaches will not guarantee that certain theoretical 

cycle closure constraints are obeyed, nor do they allow integration of experimental values as 

constraints into the analysis.

Herein we present a robust, efficient method for the network-wide BAR and MBAR analysis 

of RBFEs of entire sets of ligands with arbitrary linear constraints, including both theoretical 

cycle closure conditions and experimental (or generally derived) reference value constraints 

or restraints. The former leads to more precise computed values that obey the cycle closure 

conditions in the limit of infinite precision (complete sampling), whereas the latter leads to 

improved prediction for unknown ligands by constraining RBFE values of ligands with 

known binding affinities. These methods have been implemented into the graphmbar 

program distributed within FE-ToolKit, a new free energy analysis toolkit that is available 

from the authors.30
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A few methods have been introduced that enable the enforcement of theoretical cycle 

closure constraints.31,32 Here, we build upon the MBAR/UWHAM equations27,28,33–35 

which can be solved efficiently by non-linear optimization of a convex function.28 Rather 

than solving these equations for each transformation independently, the simultaneous 

solution of all edges of the thermodynamic network are obtained by performing a 

constrained minimization of a global objective function. The nonlinear optimization of the 

global objective function is subjected to affine linear constraints that couple the free energies 

between the network edges. This is a general approach that is not restricted to simple cycle 

closure constraints, but could include select experimental or high-precision reference values, 

or any linear combination thereof. We formulate global objective functions that correspond 

to both BAR and MBAR solutions for the thermodynamic network, referred to as BARnet 

and MBARnet, respectively. Practical considerations in terms of computational efficiency 

and memory requirements for the network data are discussed. The methods are demonstrated 

in the calculation of RBFEs of 6 prototypical protein-ligand systems, and it is shown that 

enforcement of cycle closure conditions can lead to a modest reduction of the error in the 

predictions, and further error reduction can be achieved when one or two experimental 

RBFEs are included in the network analysis.

In order to establish context and motivation for the present methods, we outline a typical use 

case for alchemical free energy calculations in the lead optimization stage of drug discovery.
5,11 At the lead optimization phase, initial lead compounds have been identified through high 

throughput screening and lead generation. The goal of lead optimization is to develop and 

synthesize new compounds with improved potency, selectivity and pharmacokinetics. This 

optimization is achieved by creating trial modifications of initial lead compounds that are 

informed by structure-activity relationships, and in many cases structural data of the target-

lead (protein-ligand) complex. Computational free energy simulations are used at this point 

to make predictions about the relative binding affinities (and in some cases selectivity) in 

order to prioritize the most promising compounds for synthesis and further characterization. 

The goal is often to rank a series of trial compounds that involve chemical modifications of a 

common molecular scaffold in terms of their binding affinity to the target protein. To 

achieve this, a thermodynamic network21–24 is constructed such that the RBFEs of the series 

can be optimally computed, as discussed above. This network will contain the unknown 

compounds for which predictions are desired, but also contains some known reference 

compounds for which crystallographic and binding affinity data has been measured. As the 

free energy is a state function, the number of linearly independent RBFEs is Nlig−1, where 

Nlig is the number of ligands. However, the number of alchemical transformation edges in 

the thermodynamic network, Nedges, is typically considerably larger than the theoretical 

degrees of freedom (Nedges > Nlig − 1). This overdetermined set of computational variables 

(the free energy values for each edge transformation) give rise to a number of theoretical 

“cycle closure” conditions that need to be satisfied (this set of conditions is not unique, but 

has fixed rank). Further, as some of the compounds have been measured, the RBFEs 

between these compounds are also known. Nonetheless, by including these known 

compounds in the calculations along with the unknown compounds, the data can, in 

principle, be leveraged to improve the predictions for the RBFEs of the unknown 

compounds. More generally, if for some reason, it is known that values for certain sets of 
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edges (or linear combinations thereof) are more reliable, then it might be advantageous to 

either constrain or restrain these values in the global optimization. It should be 

acknowledged that in some cases where data may be systematically biased, imposition of 

constraints or restraints could lead to worse predictions. In the present work, we create a tool 

to explore the use of experimental or other reference constraints (or restraints), in addition to 

the theoretical cycle closure constraints, in the global optimization of the network-wide free 

energy function with the goal to improve predictive capability.

2 Methods

Fast Solution for Large Scale MBAR/UWHAM Equations.

We begin by reviewing the MBAR/UWHAM equations,27,28,33–35 first derived in Ref. 28, 

using a notation based on the description found within Ref. 34. In the context of their work, 

they considered an alchemical transformation, e, that mutates state A to state B using Me 

intermediate alchemical states (λ-states). In the present work, we use the subscript “e” to 

identify this transformation as particular edge within the RBFE graph. The goal is to 

calculate Me free energy values, Gie* , where i indexes the value of λ-state within 

transformation e. Simulations are performed for the Me states, each generating Nie frames of 

coordinates riek , where k indexes the frame within the trajectory. Furthermore, the reduced 

potential energy uie (scaled by (kBT)−1, where kB and T are the Boltmann constant and 

absolute temperature, respectively) of each state must be evaluated for each of the 

Ne = ∑i = 1
Me Nie frames. The MBAR/UWHAM objective function is shown in Eq. 1.

f G1e* , ⋯, GMee* = f Ge*

= 1
Ne

∑
j = 1

Me
∑

k = 1

Nje
ln ∑

l = 1

Me
exp − ule rjek + ble + ∑

i = 1

Me Nie
Ne

bie
(1)

The bie values (Eq. 2) are used for notational compactness.

bie = − lnNie
Ne

− Gie* (2)

The expression does not contain β = (kBT)−1 terms within it because it is presumed 

throughout this manuscript that the potential and free energies are in reduced energy units; 

that is, they have been pre-multiplied by β. The gradient of the objective function (Eq. 1), 

which may or may not be necessary depending on the chosen nonlinear optimization 

algorithm, is given in Eq. 3.

∂f
∂Gie*

= 1
Ne

∑
j = 1

Me
∑

k = 1

Nje exp − uie rjek + bie

∑l = 1
Me exp − ule rjek + ble

− Nie
Ne

(3)
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Network Optimization using the Multistate Bennet’s Acceptance Ratio Method.

We extend the MBAR/UWHAM equations, first derived in Ref. 28, by minimizing a global 

objective function that weights and sums Eq. 1 for each edge, and subjects the minimization 

to linear constraints that couple their simultaneous solution.

minF G* = min ∑
e

Nedges 
wef Ge*

subject to ℎc Ge* = 0 for c = 1, ⋯Ncon.

(4)

ℎc Ge* = ∑
e

Nedges 
∑

i

Me
Ccon.,(c, ie)Gie* − ΔGcon., c* (5)

The we values weight each edge in the sum. In the current work, we set all weights to unity. 

Ncon. is the number of constraints and ΔGcon., c*  is the target value of constraint c. The 

constraint is a linear combination of free energy values, where Ccon.,(c,ie) is the contribution 

from λ-state i within edge e to contraint c. The grouping of the subscripts in Ccon.,(c,ie) is 

meant to view this quantity as a matrix with Ncon. rows and M = ∑e
NedgesMe columns.

The constraint coefficients are typically nonzero only for the λ = 0 and λ = 1 states of an 

alchemical transformation because the free energy of the process is the difference between 

those two states, ΔG = G (λ = 1) − G (λ = 0). As an example, if a ΔG value is constrained, 

then the elements of Ccon.,(c,ie) corresponding to the G (λ = 1) and G (λ = 0) states would be 

1 and −1, respectively. As a more complicated example, consider a case where Ntrial 

independent simulations of an alchemical transformation are included in the analysis. Each 

trial will produce a slightly different ΔG value. A constraint on ΔG could be applied to each 

of the Ntrial trials (one constraint for each independent trial); however, we prefer to apply a 

single constraint to the average 〈ΔG〉 value. In this case, the nonzero Ccon.,(c,ie) values are 

−Ntrial
−1  and +Ntrial

−1  for each trial’s λ = 1 and λ = 0 states, respectively. The application of 

constraints to trial averages easily extends to more elaborate constraints. For example, an 

“edge free energy” – the free energy difference between two physical states – could be 

divided into a series of stages, such as “decharge”, “softcore Lennard-Jones”, and “recharge” 

stages. A constraint on the edge free energy average involves all λ = 0 and λ = 1 states from 

each trial of each stage. Furthermore, a constraint on a cycle closure average involves all λ = 

0 and λ = 1 states from each trial of each stage for each edge tracing the closed path.

There are many numerical methods for performing the constrained optimization in Eq. 4. 

The constrained problem has only equality constraints, and the method of Lagrange 

multipliers could be used to convert it into an unconstrained problem involving Ncon. + M 
parameters by constructing a Lagrange function ℒ (Eq. 6) and searching for its saddle 

point(s): max
λ

 min
G*

ℒ.
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ℒ G*, λ = F G* + ∑
c

λcℎc G* (6)

This approach is not ideal only because many of the widely available numerical optimization 

software libraries are designed to find local minima (or maxima) rather than saddle points. 

Fortunately, many unconstrained optimization algorithms can be adapted to constrained 

problems via “the penalty method” or the closely related “augmented Lagrangian method”.
36,37 In the special case that the equality constraints are linear, one can use a “substitution 

method”,38 whereby the explicit presence of constraint conditions are removed by replacing 

the full set of parameters by a smaller set of generalized parameters that only (but fully) span 

the space of feasible solutions.

The penalty method is a well-known approach for finding approximate solutions to 

constrained problems.36,37 The method augments the primary objective function with 

penalty functions that deter the optimization algorithm from exploring the unfeasible 

solutions. The objective function using a quadratic penalty function to enforce equality 

constraints is: O(G*) = F(G*)+Σckchc(G*)2. The procedure is to set kc = 0 and optimize O 
to obtain a guess at the parameters. To enforce the constraints, kc is increased by 10 (or some 

chosen amount) and O is reoptimized starting from the previous solution. The process of 

increasing kc and reoptimizing the objective is repeated until the constraints are satisfied to 

within a desired tolerance. The constraints are strictly enforced as the kc values approach 

infinity; however, if strict enforcement of the constraints are required, use of the augmented 

Lagrangian method should be prefered. If it is satisfactory to enforce the constraints to only 

several digits of accuracy, then the penalty method is quite efficient and widely applicable. 

One might consider the kc values to be additional parameters introduced by the penalty 

method; however, it is better to view the penalty method as introducing a tolerance on the 

acceptable enforcement of the constraints – in much the same way that one places tolerances 

on the numerical algorithm to terminate the search for an optimal set of parameters.

The substition method can enforce linear equality constraints by performing the optimization 

in a reduced set of generalized parameters whose freedom is limited to the feasible regions 

of the constrained optimization.38 The goal is to find a set of Mfree = M − Ncon. generalized 

parameters q that will always satisfy the constraints. A relationship must be found to express 

the full set of parameters as a function of the generalized parameters Gie* (q) to rewrite the 

constrained optimization problem as an unconstrained optimization of the generalized 

parameters.

min
G*

F G*  subject to: ℎc = 0, c ∈ 1, Ncon. min
q

F G*(q) (7)

To begin, consider a solution for the parameters from the linear equality constraints (Eq. 8).

Ccon. ⋅ G* = ΔGcon.* (8)
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If there are fewer linearly independent constraints than parameters, then a strictly-enforced, 

nonunique solution can be found from a generalized inverse; this solution will be denoted by 

Gie
* , °.

G * , ° = Ccon.
+ ⋅ ΔGcon.*

= V ⋅ Σ+ ⋅ UT ⋅ ΔGcon.*
(9)

As we shall see below, Eq. 9 is only one of many possible solutions that satisfy the 

constraints, and we seek to find a formula that generalizes Eq. 9 to include all feasible 

solutions satisfying the constraints. The generalized inverse of Ccon. (denoted Ccon.
+ ) can be 

computed from a singular value decomposition (SVD, see Eq. 10), where U is a Ncon. × 

Ncon. matrix of left-singular vectors, V is a M × M matrix of right-singular vectors, and Σ is 

a Ncon. × M matrix of singular values along its diagonal.

Ccon. = U ⋅ Σ ⋅ VT (10)

Given Ncon. linearly independent constraints, the diagonal of Σ will contain Ncon. nonzero 

elements. The remaining Mfree columns of Σ are the null space of Ccon., and the 

corresponding Mfree rows of VT span the space of feasible solutions satisfying the 

constraints. Let us define a Mfree × M transformation matrix, T, whose Mfree rows are the 

row vectors of VT spanning the null space Ccon.. Perturbing Eq. 9 by qT · T for any vector q 
will continue to satisfy the constraints; therefore, the general expression for the parameters 

that satisfy the constraints is given by Eq. 11.

Gie* = Gie
* , ° + ∑

j = 1

Mfree 
qjT j, (ie) (11)

By rearranging Eq. 11, one can derive the reverse transformation for the generalized 

parameters.

qi = ∑
e = 1

Nedges 
∑
j = 1

Me
T i, (je)Gje* (12)

There are three types of constraints that we will consider: (1) We constrain the free energy of 

each λ = 0 alchemical state to be zero. This constraint does not have a practical effect on the 

results other than improving the readability of the output. (2) If a partial list of reference 

RBFEs are known, then we constrain the calculated RBFEs to match the reference values. 

The motivation behind this is for situations when a few reference RBFEs (either 

experimental RBFE values or highly-converged simulation results) are known and one 

attempts to use that partial knowledge to aid the prediction of RBFEs that remain 

experimentally unknown. (3) We enforce thermodynamic cycle closure conditions. The free 

energy is a thermodynamic state function; therefore, the sum of free energies along a closed 

path should be zero. The reader is free to implement the constraints using whatever method 

is readily available to them. In the present work, we choose to use the substitution method 
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described above for linear equality conditions for enforcing the first two types of constraints 

described above. One advantage of our use of singular value decompositions to come up 

with generalized coordinates that obey the constraint conditions is that the constraint 

coefficient matrix itself can be overdetermined. From a user perspective, this is convenient in 

that one can impose multiple redundant cycle closure and other constraint conditions 

without concern of linear dependencies, and the SVD provides a robust method for 

determining the generalized coordinates that spanned by the free parameters under the 

constraint conditions.

We also use the penalty method for enforcing the cycle closure constraints, because of the 

potential of encountering linear dependencies between the cycle closure conditions. In 

principle, the presence of linear dependencies is not an insurmountable obstacle; however, in 

practice the singular vectors defining the free parameters can become highly oscillatory as a 

linear dependency is approached, thereby limiting the effective precision due to round off 

error. Our experience is that cycle closure constraints are often satisfied to within 0.001 

kcal/mol using restraint force constants of 10(kBT)2, which is much smaller than the 

uncertainty in the free energy values. This degree of constraint enforcement is sufficient for 

our purposes, so the penalty method can be terminated after the first use of nonzero kc 

values. The penalty method, in our application, can thus be viewed as a “restraint” applied to 

the primary objective function. In this view, the cycle closure constraint penalties can be 

explicitly written into the objective function and refered to as restraints, denoted by the 

subscript “res.”.

F G* = ∑
e

Nedges 
wef Ge* + ∑

r

Nres.
kr ∑

e

Nedges
∑

i

Me
Cres.,(r, ie)Gie* − ΔGres., r*

2
(13)

The algorithm for finding and choosing the closed paths, given a list of edges (a list of 

molecule pairs), follows:

• Assign each molecule a unique (but otherwise arbitrary) index.

• For each molecule, generate a list of directly connected neighbors from the set of 

edges.

• For each connected neighbor, use a Depth First Traversal algorithm to find the 

shortest path(s) that connects the molecule to the neighbor, excluding the direct 

connection. The resulting path is a list of molecules starting with the entry 

molecule and ending with the connected neighbor.

• To avoid redundant duplication of the same path with others that may differ only 

from the starting molecule or traversal direction, shift the entries in the path list 

such that the first element has the lowest molecule index and the second element 

has a lower molecule index than the last element. This second condition controls 

the “clockwise-ness” of the cycle.

• Append the end of the path list with the first element to close the cycle.

• If the path has not yet been restrained, then include it as an additional restraint.

Giese and York Page 8

J Chem Theory Comput. Author manuscript; available in PMC 2022 March 09.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



The algorithm does not include all possible closures; instead, it includes all smallest closed 

paths such that the selected paths do not encircle two or more smaller closed paths. 

Although this was our chosen algorithm, other choices for selecting the cycle closure 

conditions are certainly possible.

As a technical note, the constrained objective function F is convex if we ≥ 0 for all edges, 

because each f is convex and the sum of convex functions is also convex. Furthermore, one 

can show that the Hessian in generalized parameters, ∂2F/∂qi∂qj, is positive semidefinite 

because the Hessian in the full set of paramters, ∂2F / ∂Gie* ∂Gjf* , is positive semidefinite28 

and there is a linear relationship between the generalized set and full set of parameters (Eq. 

11).

In summary, the MBARnet procedure consists of the following steps:

• Read the potential energies from file and convert to reduced energy units.

• Make an initial guess for the reduced free energies Gje* .

• Generate the generalized coordinate transformation matrix Ti,(je) and vector Gje
* , °

from singular value decomposition of the constraint matrix (Eqs. 9–10 and).

• Use Eq. 12 to obtain an intial guess for the free parameters.

• Initiate the nonlinear optimizer, providing it the objective function and Mfree 

generalized coordinates.

• For each objective function evaluation, convert the generalized coordinates to Gje*

values and evaluate Eq. 11.

• If the optimization method requires parameter gradients, then evaluate Eqs. 14 

and 15.

• When a minimum is found, convert the generalized coordinates to reduced free 

energies and divide them by the appropriate value β to express them with the 

desired energy units.

∂F
∂Gie*

= we
∂f Ge*

∂Gie*
+ 2 ∑

r = 1

Nres.
kr Cres . , (r, ie) − ΔGres . , r* (14)

∂F
∂qi

= ∑
e = 1

Nedges
∑
j = 1

Me ∂F
∂Gje*

T i, (je) (15)

Network Optimization using the Bennett Acceptance Ratio Method.

We extend the MBARnet method by defining an objective function for BAR analysis such 

that the free energy network can be similarly constrained and restrained during the 

optimization. The BARnet optimization is similar to Eq. 13.
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minFBAR G* = min ∑
e

Nedges
wefBAR Ge*

+ ∑
r

Nres.
kr ∑

e

Nedges
∑

i

Me
Cres . , (r, ie)Gie* − ΔGres . , r*

2

subject to  ∑
e

Nedges
∑

i

Me
Ccon.,(c, ie)Gie* = ΔGcon.,c*  for c = 1, ⋯, Ncon.

(16)

The fBAR objective function is a sum of BAR objective functions corresponding to each 

adjacent pair of alchemical states:

fBAR Ge* = ∑
u = 1

Me − 1
f Gue* , Gu + 1, e* (17)

For example, the expression for f Gue* , Gu + 1, e*  is shown in Eq. 18.

f Gue* , Gu + 1, e* = 1
Nue + Nu + 1, e

∑
j = u

u + 1
∑

k = 1

Nje
ln ∑

l = u

u + 1
exp − ule rjek + ble

+ ∑
i = u

u + 1 Nie
Nue + Nu + 1, e

bie

(18)

Bootstrap Error Analysis.

To estimate the BARnet and MBARnet errors in the calculated values of Gie* , we perform 

many optimizations of F to obtain many optimal sets of generalized coordinate parameters. 

The optimizations differ by having constructed new ensembles for each state by random 

sampling with replacement. To account for correlation within the data, we calculate the 

statistical inefficiency of each trajectory’s reduced potential energy timeseries and group the 

trajectory into blocks, whose size is chosen to be twice the statistical inefficiency. The 

bootstrap is performed blockwise by sampling from the available blocks. The resulting 

distributions for each generalized coordinate has a mean value qi and unbiased sample 

variance Sqi
2 . Given sufficient resampling effort, the transformation of the average values will 

match the optimized parameters from the initial ensembles; that is,

Gie* = Gie
* , ° + ∑

j

Mfree
qjT j, (ie) (19)

The standard errors of Gie*  are propagated from the generalized coordinate variances:
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σGie* = ∑
j

Mfree 
sqj

2 T j, (ie)
2 (20)

In the present work, we estimate the errors from 300 bootstrap calculations.

Network Anaylsis using Multiple, Independent Simulations.

The bootstrap BARnet and MBARnet error analysis provides a measure of the uncertainty 

caused by fluctuations within the observed ensembles. Because the simulations are 

performed for a finite length of time, the observed ensembles are only an approximation of 

the theoretically converged ensembles generated from infinite sampling. One can estimate 

the error caused by finite time length simulations by performing multiple, independent trial 

simulations that differ only by their initial conditions. This is sometimes called the 

“Ensemble Average Approach”.39,40 Each simulation’s trial is included in the global 

optimization and they are each optimized with their own free energy parameters. The 

constraints and restraints involving the multiple trials are chosen such that the average value 

across all trials satisfy the condition, rather than having each trial satisfy the condition.41 

When performing the error analysis, we combine the standard deviation among the trials 

with the bootstrap errors from each trial.42 For notational purposes, let Gite*  be the free 

energy of trial t of state i within edge e, and σGite*  is the corresponding standard error from 

bootstrap analysis. We compute the average-across-trials for state i in edge e, Gie* , and 

combined standard error, σGie* , from Eqs. 21 and 22, respectively.

Gie* = 1
Ntrial

∑
t = 1

Ntrial
Gite* (21)

σGie* = Ntrial
−1 ∑

t = 1

Ntrial
σGite*

2 + ∑
t = 1

Ntrial Gite* − Gie*
2

Ntrial − 1 (22)

Adjustment of edge weights.

The we weights appearing in Eqs. 4 and 16 are unity in the present work. If constraints are 

not applied to the objective functions, then the unequal weighting would not effect the result 

because each edge is decoupled from all other edges. When a constrained optimization is 

performed, the parameters (free energies) within each edge become coupled throughout the 

thermodynamic network and the optimization solution then depends on the relative weight 

applied to each edge. Undoubtedly, approaches can be adopted such that these weights can 

be adjusted to improve robustness and predictive capability. This is an area of ongoing active 

research, but not one that we are able to address in the present work. We note that one of the 

major challenges to developing any such approach is the lack of very high-precision 

benchmark quality simulation results for non-trivial protein-ligand systems that can serve as 
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target reference data. Nonetheless, an important direction for future research is to test 

different approaches for adjustment of the weights in order to reduce statistical errors and 

improve predictions.

Computational details.

The tables and figures summarize the RBFE analysis of CDK2 (PDBID: 1H1Q),43 MCL1 

(PDBID: 4HW3),44 p38 (PDBID: 3FLY), Tyk2 (PDBID: 4GIH),45 PTP1B (PDBID: 2QBS),
46 and Thrombin (PDBID: 2ZFF) protein targets previously studied in Ref. 8 The CDK2 

system has 16 ligands whose RBFEs are connected by 25 edges. The MCL1, p38, Tyk2, 

PTP1B, and Thrombin systems have 42, 33, 16, 23, 10 ligands, respectively, connected by 

71, 54, 24, 48, 10 edges, respectively. Each ligand transformation is performed in three 

stages (decharge, softcore, and recharge) and two environments (protein-bound and in 

solution), and the RBFE is the free energy difference between the protein-bound and 

aqueous-phase transformation free energies. The decharge stage removes the charges of the 

atoms that are being deleted; the recharge stage adds the charges of the atoms that being 

inserted. The softcore stage linearly mutates the remaining potential energy terms between 

the initial and final states except for the Lennard-Jones (LJ) interactions, which are modeled 

using the (nonlinear) softcore LJ potential described in Ref. 47. For completeness, the 

general form of the alchemical potential energy function is given by Eqs. 23–27.

U(λ) = (1 − λ)Uelec.
(0) + λUelec.

(1)

+ (1 − λ)Ubonded
(0) + λUbonded

(1)

+ USCLJ(λ)
(23)

Ubonded
(0) = ∑

b = 1

Nbonds
kb

(0) r − r0
(0) 2

+ ∑
a = 1

Nangles
kθ, a

(0) θ − θ0
(0) 2

+ ∑
d = 1

Ndihed.
∑

n

V in
(0)

2 1 + cos nωi − γi
(0)

(24)

Uelec.
(0) =

qi
(0)qj

(0)

rij
(25)

USCLJ(λ) = (1 − λ)4ϵij u−2 − u−1 (26)

u = αλ + rij
σij

6
(27)

The decharge and recharge stages linearly scale the electrostatic interactions Uelec. The 

superscript (0) within Eq. 25, for example, indicate that the parameter values describe the λ 
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= 0 state. Similar equations can be written for the λ = 1 state. The bonded energy (Eq. 24) 

contains terms that model bond, angle, and dihedral components. The kb and kθ values are 

spring force constants. The r0 and θ0 values are spring equilibrium positions. The Vin values 

control the mangitude of the periodic torsion potential, and γi is a phase offset. The qi values 

are electric charges, and ϵij and σij are the LJ well-depth and the point where the LJ crosses 

zero, respectively. The α = 0.5 is a control parameter of the softcore LJ potential. The 

softcore stage linearly transforms the bonded energy and nonlinearly modifies the 

nonbonded Lennard-Jones interactions using Eqs. 26–27. The decharge and recharge stages 

were performed using 5 evenly-spaced λ states. The softcore stages were performed using 

12 states: λ = 0.0, 0.0479, 0.1151, 0.2063, 0.3161, 0.4374, 0.5626, 0.6839, 0.7937, 0.885, 

0.9521, and 1.0. Each simulation was performed with Amber’s graphics processing unit 

(GPU) accelerated version of PMEMD for 2 ns using a 4 fs timestep and hydrogen mass 

repartitioning.42,48,49 The ligand was modeled using the GAFF2 force field,50 and the 

condensed phase environment was explicitly modeled with TIP3P51 waters. MBAR potential 

energies were output every 100 steps (0.4 ps). Each simulation was performed 10 times with 

differing initial random number seeds.

The simulations were run in the isothermal-isobaric ensemble (NPT). Pressure was regulated 

with Berendsen barostat to maintain a pressure of 1 atm using a 5 ps collision frequency.52 

The Langevin thermostat was used to maintain a temperature of 298.15 K.53 The Lennard-

Jones potential was truncated at 8 Å, and a a long-range tail correction is used to model the 

interactions beyond the cutoff. The long-range electrostatics were evaluated with the particle 

mesh Ewald method using a 1 Å3 grid spacing.54,55 The simulation data was taken from Ref. 

56 and further details can be found therein.

To perform the nonlinear optimizations of the BARnet and MBARnet global objective 

functions, we used the Low-storage Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) 

algorithm57 implemented in the NLopt software library.58 When constraints and restraints 

are unused, the initial guess for each free energy is zero. When constraints and/or restraints 

are used, we first perform an optimization without constraints nor restraints and then 

reoptimize the free energies with the constraints and/or restraints activated.

The simulations were performed on NVidia GeForce GTX 1080 Ti GPUs. The protein-

bound and solution-phase simulations require approximately 0.3 and 0.06 GPU hours to 

complete, respectively. Each edge requires approximately 80 GPU hours to complete 10 

trials of each simulation in both environments. The 6 protein systems consist of a total of 

232 edges, corresponding to an aggregate of 2 GPU years of simulation.

After the simulations are performed, the MBAR energies are extracted from the output files. 

We store the energies in energy timeseries files. A timeseries file is a text file containing two 

columns of numbers. The first column is the simulation time and the second column is a 

potential energy. MBAR requires each λ state trajectory be evaluated with all λ state 

potentials within the stage. For example, a single trial of a decharge stage produces 25 

timeseries files because the stage is performed with 5 λ states. All 3 stages of a single trial 

produce 194 files. Considering that the transformations need to be performed in 2 

environments and repeated 10 times, each edge produces 3880 files. Each timeseries file 
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contains 5000 rows and uses 140 KB of disk storage. The storage of each edge’s timeseries 

files thus requires 530.5 MB of disk space.

The calculated RBFEs will be compared to experimental values. The experimental ligand 

binding free energies for the protein systems examined in this work were compiled in Ref. 8. 

The CDK259 and P3860 binding free energies were computed from the reported IC50 values 

using Eq. 28.

ΔGexpt. = RT lnIC50 (28)

The Tyk2,61,62 MCL1,63 and PTP1B64 binding free energies were computed from the 

reported Ki dissociation constants using Eq. 29

ΔGexpt. = RT lnKi (29)

The Thrombin8,65 binding free energies were obtained from isothermal titration calorimetry.

3 Results and Discussion

Figure 1 illustrates the correspondence of the BARnet/MBARnet results with and without 

cycle closure constraints for the set of 71 MCL1 RBFEs. The RBFEs computed with 

BARnet and MBARnet are in good agreement and yield similar error estimates. When the 

MBARnet analysis is treated as the target values, the MCL1 MUE of BARnet is only 0.024 

to 0.040 kcal/mol, depending on the use of cycle closure restraints, which is an order of 

magnitude smaller than the uncertainties in both the BARnet and MBARnet values. 

Analogous comparisons for the other protein RBFEs yield similar results. The BARnet 

method requires far fewer reduced potential energies to be stored, which is its primary 

advantage when performing network-wide analysis. For the specific case of the MCL1 

RBFEs, MBARnet analysis requires 37 gigabytes (GB) of potential energy timeseries files, 

whereas BARnet analysis requires storage of only 12 GB of raw data. Only MBARnet 

results will be presented and discussed henceforth because of the similarity between the 

BARnet and MBARnet results.

Table 1 summarizes the number of restrained thermodynamic cycles in the RBFE network 

and the associated error in the free energy closure conditions. The cycles included in the 

summary only include those thermodynamic paths that cannot be decomposed into two or 

more smaller cycles. The number of closed paths included in the summary is shown in the 

column labeled Nres.. The free energy is a state function, so the sum of free energies along a 

closed path should theoretically be zero. In practice, limited sampling often causes the free 

energy sum to erroneously be nonzero. We compute the free energy sum for each of the Nres. 

cycles and report the average and standard deviation of the Nres. error values in the ΣΔG* 

and σ columns, respectively. The cycle closure errors are less than 1 kcal/mol on average 

when restraints are not applied. Application of restraints within the optimization procedure 

lower the cycle closure errors to 0.001 kcal/mol.

Table 2 summarizes the edge RBFE mean unsigned errors (MUEs) with and without cycle 

closure restraints for each protein target, and it further examines how the edge RBFE MUEs 
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are affected when 0, 1, or 2 edges in the graph are constrained to match the experimental 

RBFE. The MUEs measure the agreement between the calculated RBFEs and corresponding 

differences between experimental binding free energy values. For a protein target graph 

consisting of Nedge edges, there are Nedge possible ways of constraining 1 edge. The RBFEs 

are reoptimized using each of the possible constraint conditions, and the values reported in 

the table are the mean and standard deviation from the distribution of MUEs. There is only 

one MUE to consider when there are no experimental constraints, so no standard deviation is 

reported in this case. When two edges are constrained, there are formally Nedge(Nedge − 1)/2 

possible constraint conditions; however, to generate the statistics, we randomly selected 100 

constraint conditions to generate the MUE distribution. The use of cycle restraints appears to 

lower the MUEs in most cases, but the average change (less than 0.1 kcal/mol) is less than 

the uncertainty of the calculations. The Tyk2 RBFE MUE relative to experiment increased 

by 0.01 kcal/mol upon enforcement of the cycle closure conditions. This observation 

emphasizes that there is no guarantee that closure conditions enforcement alone will cause 

better agreement with experiment. The magnitude of this change is much smaller than the 

calculation’s uncertainty and a rigorous exploration of systematic bias in the comparison 

requires a set of highly converged simulation results, which may necessitate further 

development of enhanced sampling techniques to sufficiently explore the ensemble of bound 

ligand conformations. As expected, including experimental RBFE constraints decreases the 

MUEs. When cycle closure restraints are also included, the reduction is amplified because 

the constraint(s) then effect the solution for the other RBFEs via their coupling through the 

restraints. The improvements continue to be modest, however, with MUE reductions on the 

order of 0.1 kcal/mol when two experimental constraints are applied.

Figure 2 compares the convergence of the MBARnet-analyzed RBFEs with and without 

cycle restraints. In the context of this figure, our interest is comparing how much data each 

method requires to approach the force field’s expected result; therefore, the reference 

RBFEs are computed from MBARnet using all available production data and optimized with 

cycle restraints. The abscissa of the plots shown in Figure 2 are percentages of the 

production data used in the analysis. For example, the values shown at 10% are the RBFE 

MUEs when only the first 1/10th of the production data is analyzed. In addition to 

illustrating the convergence of the RBFEs with and without cycle restraints, we also make 

comparison to the maximum likelihood estimator (MLE) method described in Ref. 32 for 

enforcing cycle closure conditions. Unlike the optimization method described in this work, 

the MLE method does not enforce cycle closures from the analysis of the raw data. Instead, 

the MLE method maximizes the following objective function to obtain cycle-corrected 

estimates of the RBFEs, ΔGa b
MLE , provided one’s best estimate of the RBFEs ΔGa→b and 

their standard errors σΔGa b.
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max ∑
c = 1

Ncyc
∏
e ∈ c

Nedge
exp − |ΔGeMLE − ΔGe|2

2σΔGe
2

2πσΔGe
2

subject to ∑
e ∈ c

Nedge
ΔGe

MLE = 0     for each cycle, c 

(30)

The product operator appearing in Eq. 30 multiplies the normal distributions of each edge, e, 

in the cycle c.

Figure 2 shows that inclusion of cycle closure restraints in the optimization of partial sets of 

data produces results that match the analysis of the complete set of data more closely than 

other approaches. The MBARnet optimizations without cycle closure restraints yield the 

largest MUEs. Application of the MLE method to our cycle-restrained optimized RBFEs has 

no effect because, in this case, our RBFEs already enforce the cycle closure conditions. For 

this reason, the red and black circles appearing in Figure 2 always coincide. When the MLE 

method is applied to the unrestrained MBARnet results, the RBFE MUEs are reduced, and 

they appear to approach our cycle-restrained MBARnet results. The extent to which the 

MLE method succeeds in approaching our cycle-restrained results varies. The MLE method 

does well for Tyk2 and Thrombin likely because the unrestrained MBAR results on which 

they are based are already similar to the cycle-restrained values.

4 Conclusions

We develop BARnet and MBARnet methods for use in network-wide free energy analysis 

with restraints and affine linear constraints. The BARnet and MBARnet results are nearly 

identical (within 0.04 kcal/mol), however the BARnet objective function requires only a 

fraction of the amount of disk storage relative to the MBARnet approach. Restraints were 

used in the non-linear optimization to enforce the closure of thermodynamic cycles within 

the free energy network, and the constraints were chosen to enforce the reproduction of 

known RBFEs. The utility of the constraints is demonstrated in situations where a partial list 

of experimental free energies are known, in which case the solution for the other RBFEs are 

affected by coupling their solutions through the cycle closure restraints. We analyzed the 

RBFEs of 6 protein targets and showed that the use of cycle closure restraints yields a 

modest improvement relative to the experimental RBFEs, and the estimates were improved 

more substantially when one or two constraints to experimental values were included. The 

BARnet/MBARnet framework enables efficient and robust free energy analysis with 

enhanced predictive capability for drug discovery applications.
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Figure 1: 
Comparison between BARnet and MBARnet RBFEs for MCL1 both (a) without and (b) 

with cycle closure restraints. The red line is a linear fit to the data. The error bars are the 

standard error of the calculated values.
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Figure 2: 
Convergence of the MBARnet mean unsigned errors relative to the MBARnet analysis of all 

production data with cycle restraints. Filled black circles: MBARnet optimization with cycle 

restraints. Open red circles: MBARnet optimization with cycle restraints and post-

optimization MLE correction. Filled green squares: MBARnet optimization without cycle 

restraints. Open blue squares: MBARnet optimization without cycle restraints and post-

optimization MLE correction.
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Table 1:

Cycle closure information for each system. The Nlig. and Nedge columns list the number of ligands and 

connected edges in the transformation graph, respectively. The Nres. values are the number of thermodynamic 

cycles included in the summary. The columns labeled “CCR” and “no CCR” indicate whether cycle closure 

restraints are applied to the optimization. The ΣΔG* and σ columns report the average and standard deviation 

of the cycle closure errors, respectively.

System Nlig. Nedge Nres. no CCR CCR

Σ ΔG* σ Σ ΔG* σ

CDK2 16 25 22 0.88 1.65 0.00 0.00

P38 33 54 42 0.83 1.42 0.00 0.00

MCL1 42 71 70 0.91 1.20 0.00 0.00

Tyk2 16 24 18 0.24 0.35 0.00 0.00

PTP1B 23 48 50 0.47 0.68 0.00 0.00

Thrombin 10 10 2 0.13 0.17 0.00 0.00
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Table 2:

MBARnet-calculated RBFE average mean unsigned errors relative to experiment when 0, 1, or 2 graph edges 

are constrained to match experiment.

System Number of Reference (Expt.) Constraints

0 1 2

no CCR CCR no CCR CCR no CCR CCR

CDK2 0.95 0.93 0.91 ± 0.03 0.88 ± 0.05 0.87 ± 0.04 0.82 ± 0.07

P38 0.70 0.66 0.69 ± 0.01 0.64 ± 0.02 0.68 ± 0.01 0.63 ± 0.02

MCL1 1.31 1.28 1.29 ± 0.02 1.25 ± 0.04 1.27 ± 0.02 1.21 ± 0.08

Tyk2 0.96 0.97 0.92 ± 0.03 0.91 ± 0.05 0.89 ± 0.04 0.86 ± 0.06

PTP1B 0.90 0.89 0.88 ± 0.02 0.85 ± 0.06 0.86 ± 0.02 0.81 ± 0.07

Thrombin 0.41 0.41 0.37 ± 0.04 0.37 ± 0.03 0.33 ± 0.05 0.32 ± 0.05
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