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Abstract

The Baltimore computed tomography (CT) prediction model for bleeding pelvic fractures is a 

multivariable decision tool that predicts angiopositivity from pelvic hematoma volume, active 

arterial bleeding, fracture patterns, and atherosclerosis. We hypothesized that quantitative markers 

of body composition and frailty could further improve model performance.

Methods: This work is a retrospective secondary analysis of a single institution cohort used 

in the development of the Baltimore CT prediction model. The cohort includes 115 consecutive 

patients that underwent admission contrast-enhanced CT of the abdomen and pelvis for blunt 

trauma with pelvic ring disruption followed by conventional angiography. Major arterial injury 

requiring angioembolization served as the outcome variable. Angioembolization was required in 

73/115 patients (63% of the cohort). Average age was 46.9 years (±SD 20.4). Body composition 

measurements were determined as 2-dimensional (2D) or 3-dimensional (3D) parameters and 

included mid-L3 trabecular bone attenuation, abdominal visceral fat area or volume, and percent 

muscle fat fraction (as a marker of sarcopenia) measured using segmentation and histogram 

analysis.

Results: Models incorporating 2D (Model B) or 3D markers (model C) of body composition 

showed improvement over the original Baltimore model (model A) in all parameters of 

performance, quality, and fit (area under the receiver-operating curve [AUC], Akaike information 

criterion, Brier score, Hosmer-Lemeshow test, and adjusted-R2). Area under the receiver
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operating curve increased from 0.83 (A), to 0.86 (B), and 0.88 (C). The greatest improvement 

was seen with 3D parameters.

Conclusion: Once automated, quantitative visualization tools providing “free” 3D body 

composition information can be expected to improve personalized precision diagnostics, outcome 

prediction, and decision support in patients with bleeding pelvic fractures.

Résumé
Le modèle de prédiction par tomodensitométrie (TDM) de Baltimore pour les fractures 

hémorragiques du bassin est un outil de décision multifactoriel qui prédit la positivité 

angiographique du volume d’un hématome pelvien, d’un saignement artériel actif, des types de 

fractures et de l’athérosclérose. Nous avons émis l’hypothèse que des marqueurs quantitatifs de 

composition et de fragilité du corps pourraient améliorer la performance du modèle.

Cette étude est une analyse secondaire rétrospective menée dans un établissement unique sur une 

cohorte utilisée pour l’élaboration du modèle de prédiction par TDM de Baltimore. La cohorte 

inclut 115 patients consécutifs ayant subi à l’admission une TDM avec agent de contraste de 

l’abdomen et du bassin pour traumatisme fermé avec rupture de la ceinture pelvienne, suivie 

d’une angiographie conventionnelle. Les lésions artérielles majeures nécessitant une embolisation 

vasculaire ont servi de variables de résultats. Une embolisation vasculaire a été nécessaire chez 

73 des 115 patients (63 %) de la cohorte. L’âge moyen des patients était de 46,9 ans (ÉT : ± 

20,4 ans). Les mesures de composition du corps ont été déterminées comme étant des paramètres 

bidimensionnels (2D) ou tridimensionnels (3D) et ont inclus une atténuation osseuse trabéculaire 

au milieu de L3, la surface ou le volume de la graisse viscérale abdominale et le pourcentage de 

la fraction muscle/tissu adipeux (marqueur de sarcopénie) mesuré au moyen de segmentations et 

d’une analyse des histogrammes.

Les modèles incorporant des marqueurs 2D (modèle B) ou 3D (modèle C) de la composition du 

corps ont présenté une amélioration par rapport au modèle initial de Baltimore (modèle A) sur tous 

les paramètres de performance, de qualité et d’adaptation (aire sous la courbe [ASC] d’efficacité 

du récepteur, critère d’information d’Akaike, score de Brier, test de Hosmer-Lemeshow et R2 

ajusté). L’aire sous la courbe d’efficacité du récepteur a augmenté de 0,83 (A), à 0,86 (B), et 0,88 

(C). La plus grande amélioration a été obtenue avec les paramètres 3D.

Lorsqu’automatisés, les outils de visualisation quantitative fournissant « librement » des 

informations sur la composition corporelle en 3D mèneront à une amélioration de la précision 

de diagnostics personnalisés, de la prédiction de l’évolution et d’un soutien à la décision chez les 

patients atteints de fractures pelviennes hémorragiques.
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Introduction

Pelvic fracture–related hemorrhage is a leading cause of mortality after blunt trauma.1–3 

Venous bleeding is often amenable to a treatment pathway involving pelvic stabilization 
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using provisional pelvic binders, external fixator devices, and definitive treatment with open 

reduction and internal fixation.4–6 Death is usually related to potentially reversible arterial 

bleeding, which is treated with angioembolization following initial computed tomography 

(CT). A recent multicenter study at 11 major level I trauma centers reported that 90% of 

patients with pelvic fractures presenting with shock will nevertheless undergo admission 

contrast enhanced CT in the trauma bay before intervention.7,8 Today with the speed and 

accessibility of trauma bay-adjacent CT scanners9,10 and shift toward prompt scanning 

without oral contrast,11,12 only a small fraction of patients in extremis will bypass initial 

CT until stabilized using damage control techniques.12–14 Computed tomography promotes 

early and rapid triage to conventional angiography for transcatheter embolization when 

arterial hemorrhage is identified or suspected4,9; however, predicting major arterial bleeding 

on angiography remains challenging even at CT.9,15–17 Intravenous contrast extravasation 

and segmented pelvic hematoma volumes are important CT-based predictors of arterial 

injury requiring angioembolization,18–22 although contrast extravasation can be intermittent 

due to tamponade, vasospasm, transient occlusion, and tenuous hemodynamics.23 Specific 

fracture patterns and the degree of pelvic ring instability are also predictive6,17,24; however, 

no single CT sign is deterministic. We have previously described multivariable model 

derived from a range of predictive CT features25—the Baltimore CT prediction model 

for major arterial injury after pelvic fractures. Independent predictors included in the final 

model are segmented hematoma volumes, measured using a semiautomated seeded region

growing method,22,5,26 intravenous contrast extravasation, displaced obturator ring fractures, 

rotational instability, and degree of atherosclerosis.

Quantitative markers of body composition at CT, including measurements of visceral, 

subcutaneous, and intermuscular adipose tissue; skeletal muscle mass; and osteopenia 

have been assessed in a variety of disease states. For example, the size of visceral and 

subcutaneous fat compartments are correlated with the risk of metabolic syndrome and 

diabetes mellitus.27 Changes in skeletal muscle mass over time are quantifiable in ICU 

patients with respiratory failure.28 Attenuation of vertebral trabecular bone (in Hounsfield 

units [HU]) can be employed for opportunistic screening of osteoporosis.29,30

Recently, markers of CT body composition have been used as surrogates of frailty in 

trauma patients. The degree of sarcopenia (loss of muscle mass) predicts disposition after 

hospitalization in elderly patients31; sarcopenia is independently associated with severe 

thoracic trauma and osteopenia with spine trauma after crash injury32; and both parameters 

also predict 1-year survival after trauma in elderly patients.33 Area measurements of psoas 

muscle mass correlate with decreased survival in elderly patients with hip fractures.34 

In critically ill trauma patients, abdominal adiposity has been linked with the risk of 

acute kidney injury.35 Body composition markers can be incorporated into personalized 

explanatory models in acute blunt trauma for predicting the need for urgent intervention.

A variety of 2-dimensional (2D) surface area measurements and 3-dimensional (3D) 

volumetric measurements have been employed.27,28,32,35 In the present analysis, we 

hypothesized that discrimination, calibration, model quality, and overall model accuracy 

would improve with the addition of either 2D or 3D body composition measurements 

as predictor variables. These models were compared to one another and our originally 
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published “conventional” multivariate Baltimore CT prediction model for angiopositivity 

after pelvic fracture from a development data set of 115 patients who underwent 

angiography following CT for blunt pelvic ring disruption.

Methods

Patient Cohort

The study was institutional review board–approved and Health Insurance Portability 

and Accountability Act–compliant. The previously described cohort consisted of 115 

consecutive patients with blunt pelvic ring disruptions, age ≥18 years, who underwent 

admission contrast-enhanced multidetector CT (MDCT) of the abdomen and pelvis prior 

to digital subtraction angiography between January 2008 and October 2013. Major arterial 

injury requiring transarterial embolization was used as the dependent variable. Seventy-three 

of 115 patients (63% of the cohort) had positive angiograms requiring angioembolization. 

Sixty-seven percent of the cohort was male and 33% female. The average age was 46.9 years 

(SD ± 20.4). We refer readers to our previously published work for additional information 

regarding selection criteria, demographics, and patient characteristics.25

Image Analysis and Processing

Abdominopelvic CTs were routinely performed on 40- and 64-section MDCT scanners 

(Brilliance; Phillips Healthcare) in the arterial phase, typically as part of a single acquisition 

whole-body CT protocol, with the following scanner settings: 120 kVp, 250 mAs, 0.67 

pitch; 0.5 second rotation time, and 0.625 collimation) using 100-mL Iohexol (350 mg/mL; 

Omnipaque; GE Healthcare), administered at a rate of 4 mL/sec with 50-mL saline flush. 

Computed tomography studies were archived at 3-mm section thickness.

Randomized de-identified studies were reviewed using a 3D software client (Aquarius 

iNtuition version 4.4; TeraRecon). All 2D and 3D body composition measurements 

were performed using the client by a single-blinded reader with 5 years of full-time 

clinical experience in trauma radiology. Single measurements of five 2D parameters and 

5 corresponding 3D parameters were taken. The semiautomated volumetric measurement 

tools employed were previously validated and are approved for clinical use by the US Food 

and Drug Administration.

2-Dimensional parameters.—2-Dimensional measurements included: (1) mid-L3 

vertebral body trabecular bone attenuation using a circular region of interest measuring 1 

to 1.5 cm2 (note the existing precedent for use of L3-level measurements corresponding with 

sarcopenia and various trauma and non-trauma-related outcomes;32,36,37 (2) semi-automated 

measurements of visceral fat and (3) subcutaneous fat compartment areas (cm2) at the 

mid-L3 level using the client’s 2D fat analysis tool (see Figure 1); (4) manually traced total 

paraspinal muscle area (cm2) at the mid-L3 level; and (5) % fat fraction calculated using the 

client’s area histogram tool, with the fat attention range set to −300 to −10 HU, and muscle 

attenuation range set to −9 to −150 HU.
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3-dimensional parameters.—Corresponding 3D parameters included: (1) spherical ROI 

HU measurements centered at the L3 mid-vertebral body level, with equator area of 1–1.5 

cm2; (2) volumetric visceral fat; and (3) volumetric subcutaneous fat measurements (cm3) 

using the 3D fat analysis tool with range set using coronal images, from the diaphragmatic 

insertion at the body wall to the ischial spines; (4) semiautomated segmentation of the 

paraspinal muscles (cm3) using the region grow tool from the lower margins of the 12th 

ribs to the axial slice where the psoas muscle is no longer contiguous with the remaining 

paraspinal musculature; and (5) % fat fraction calculated using the volume histogram tool, 

with fat attenuation range set to −150 to −10 HU and muscle attenuation range set to −9 to 

−150 HU (see Figure 2).

Statistical Analysis

Statistical analysis was performed using Stata (Stata) and R statistical software (R 

Foundation for Statistical Computing; https://www.r-project.org/). Logistic regression with 

backward elimination was used to generate new models, using predictors from the original 

model, together with either 2D or 3D body composition parameters. Individual predictors 

in the final models were assessed for significance (P < .05). Variables were interrogated 

for collinearity using the variance inflation factor (VIF). Discrimination and accuracy of 

the previously derived Baltimore CT prediction model (model A), the model including 

area measurements (model B), and the model including volumetric measurements (model 

C) were compared using the area under the receiver-operating curve (AUC) and Brier 

score. Overall model quality was compared using the Akaike information criterion (AIC). 

Higher AUC, lower Brier score, and lower AIC indicate improved performance. The ability 

of the models to explain variation in the population was compared using adjusted R2. 

Model calibration was evaluated using the Hosmer-Lemeshow statistic, with P values > .05 

indicating goodness of fit.

In all 3 models, the VIF was < 4 for all variables, indicating absence of significant 

multicollinearity. K-fold cross-validation with 10 equal-sized subsamples was used to assess 

for model overfitting. Results of cross-validation were consistent across all folds with root 

mean square error of 0.18 (model A, standard error, 0.05); 0.18 (model B, standard error, 

0.08), and 0.17 (model C, standard error, 0.06).

Results

The results of regression for model B and C are presented and compared with previously 

described results for model A (Tables 1–3). In both model B and C, all variables found to be 

important in the original model (hematoma volume, contrast extravasation, atherosclerosis, 

obturator ring fracture, and rotational instability), remained independently predictive of 

major arterial injury.

In model B (2D parameters), paraspinal fat fraction (cm2) was the only body composition 

measurement to reach significance (P = .03). In model C, subcutaneous fat volume (cm3) 

and paraspinal muscle fat fraction (%) were both significant independent predictors of 

major arterial injury (P = .04 and .02, respectively). Paraspinal muscle volume remained in 

the final model incorporating volumetric body composition measurements and approached 
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significance (P = .09). Surprisingly, age was not included in any of the final models; 

however, scatter matrices showed linear relationships with body composition markers. These 

are shown in Figure 3.

Regression diagnostics using the Hosmer-Lemeshow statistic revealed that all 3 models were 

well-calibrated to the actual data with P values of .53 (model A), .80 (model B), and .65 

(model C). All measures of model performance showed successive incremental improvement 

from the originally published model (model A—incorporating bleeding features and pelvic 

fracture patterns but not markers of body composition). Improvement was greater using 3D 

(model C) than 2D (model B) body composition markers. Area under the receiver-operating 

curve increased from 0.83 (model A) to 0.86 (model B) to 0.88 (model C), and Brier 

score decreased from 0.16 to 0.14 to 0.13. Akaike information criterion decreased from 121 

to 118 to 115. Adjusted R2 improved from 0.28 to 0.34 to 0.37. It should be noted that 

substantially lower R2 values are to be expected when using binary logistic regression, over 

the counterfactual example of linear regression with a continuous outcome.

Discussion

Quantitative CT biomarkers of body composition, such as those related to muscle mass, 

intermuscular fat, visceral and subcutaneous abdominal fat compartments, and bone density 

have been associated with a number of nontraumatic disease processes including metabolic 

syndrome and diabetes, wasting in the setting of respiratory failure, and osteoporosis.27–30 

Recently, there has been a growing interest in the potential predictive utility of these 

biomarkers in the setting of trauma.31–33,35

Arterial hemorrhage after pelvic ring disruptions is a leading cause of death after trauma. 

Admission MDCT has become a widely accepted cornerstone of early triage; however, no 

single CT feature is deterministic. We have previously shown that a multivariate model 

incorporating (among other features) categorical grading of atherosclerosis severity as a 

marker of frailty has similar accuracy to radiologist prediction of major arterial injury 

requiring angiointervention. The importance of atherosclerosis as a predictor led us to 

explore the added value of body composition markers corresponding to sarcopenic obesity 

and osteopenia. These are additional markers of patient frailty that can potentially increase 

the risk of bleeding in pelvic trauma. Surprisingly, osteopenia was not found to be 

independently predictive of major bleeding. This may be due to the underrepresentation 

of elderly patients in the study cohort.

At this time, methods for measuring these parameters are not well-established, and no 

standard has emerged. In published works, area measurements are primarily utilized.32–34 

We compared models incorporating area and volumetric measurements corresponding with 

paraspinal muscle mass, intermuscular fat, visceral fat, and subcutaneous fat to our initially 

developed model. Our results show relatively modest but consistent improvement in every 

parameter of model quality, fit, and performance compared with our published Baltimore 

CT prediction model when markers of body composition are included. Improvement was 

more pronounced with volumetric measurements. Paraspinal fat fraction (P = .02) and 
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subcutaneous fat (P = .04) were found to be independent volumetric predictors of major 

arterial bleeding after blunt pelvic ring disruptions.

The patient cohort used is retrospective, from a single institution, and restricted to 

patients who underwent angiography after CT, limiting the generalizability of our results. 

Reproducibility of the measurements will need to be assessed in future studies. Nevertheless, 

our findings build on our previous results showing the high explanatory value of volumetric 

hematoma segmentation for predicting major arterial bleeding, and incorporation of 

atherosclerosis as a single marker of frailty. The results suggest that future predictive 

models for major arterial bleeding after pelvic ring disruptions should include additional 

volumetric biomarkers, including those related to body composition. The limited ability 

of the models to explain variation in the population, demonstrated by low adjusted R2 

values, indicate that additional predictors to those previously described in the literature 

should be identified, and existing predictors measured volumetrically wherever possible to 

derive more personalized precision diagnostic models and clinical prediction tools. The 

inclusion of volumetric parameters will preclude application of such predictive models at 

the point of care until such time that sufficiently rapid and robust auto-segmentation and 

classification algorithms emerge for each important variable. Another direction to consider 

is the possibility of assessing additional outcome measures such as length of hospital stay, 

length of ICU stay, and ventilator associated days to gain additional understanding of 

multivariable CT prediction for bleeding pelvic fractures.

Future Avenues of Investigation

Toward this end, we have since developed deep learning (DL) algorithms for the 3 major 

deterministic features in our Baltimore CT prediction model for bleeding pelvic fractures 

including segmentation and volumetric measurement of pelvic hematomas, active arterial 

bleeding, and automated pelvic fracture severity classification using the Tile system.38–41

Furthermore, recent work by Lee et al illustrates the feasibility of automated lean 

muscle mass measurements using a DL algorithm.42 Other authors have also shown that 

robust automated visceral muscle and subcutaneous adiposity quantitative visualization 

tools can be developed with DL.43 While our pilot single-center secondary analysis is 

exploratory and translational at the present time (our DL pelvic fracture and hemorrhage 

quantitative visualization tools are not yet combined with novel experimental DL body 

composition tools. At the time our study was conducted, only semiautomated methods 

were available). We show an important proof of concept; however, as mentioned, point 

of care use is currently impracticable due to the extensive time effort required to carry 

out all measurements. Future rapid, robust, and increasingly explanatory CT-volumetry

based computational models leveraging automated bleeding features (or other traumatic 

pathology) with body composition markers could serve important decision support 

functions, augmenting the radiologist’s ability to render objective and accurate point of 

care recommendations with no end-user burden. This has moved from fanciful pipe dream 

to software prototypes. Following containerization, these can be disseminated, initially as 

research tools through existing AI marketplaces, with future potential following multicenter 

clinical trials for widespread clinical adoption.
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Figure 1. 
Fat analysis. Automated 2D fat analysis tool which distinguishes visceral from sub-q fat. 

The 3D tool performs the same function but provides visceral and sub-q fat volumes and 

volume ratios. 2D indicates 2-dimensional; 3D, 3-dimensional.
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Figure 2. 
3D and histogram segmented paraspinal muscles. Semiautomated region-grow tool 3D 

segmentation of paraspinal muscles with histogram analysis (cm3) using the region grow 

tool. Parameters including % fat fraction are calculated with fat attenuation range set to 

−150 to −10 HU and muscle attenuation to −9 to −150 HU. 3D segmentation is shown in 

axial, coronal, and 3D planes (see insets A and B). Quantitative histogram analysis is shown 

in inset B. All Paraspinal muscles were segmented from the lower margins of the 12th ribs to 

the axial slice where the psoas muscle is no longer contiguous with the remaining paraspinal 

musculature, Segmented muscles included the psoas major anteriorly, quadratus lumborum 

laterally, the iliocostalis, longissimus, and spinalis posteriorly, and erector spinae posteriorly 

and inferiorly. 3D indicates 3-dimensional; HU, Hounsfield units.
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Figure 3. 
Scatter matrices for 2D measurements by age. Age (y-axis) is plotted against area 

measurements (x-axis) with units in cm2. Fat fraction is presented as a percentage. fat 

fraction indicates paraspinal fat area/total paraspinal area; L3 (third lumbar mid-vertebral 

level); parasp., paraspinal; sub-q, subcutaneous; 2D, 2-dimensional.
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