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Abstract

Multi-agent combination chemotherapy can be curative in acute lymphoblastic leukemia (ALL). 

Still, patients with primary refractory disease or with relapsed leukemia have a very poor 

prognosis. Here we integrate an in-depth dissection of the mutational landscape across diagnostic 

and relapsed pediatric and adult ALL samples with genome-wide CRISPR screen analysis of 

gene-drug interactions across seven ALL chemotherapy drugs. By combining these analyses, we 

uncover diagnostic and relapse-specific mutational mechanisms as well as genetic drivers of 

chemoresistance. Functionally, our data identifies common and drug-specific pathways modulating 

chemotherapy response and underscores the effect of drug combinations in restricting the selection 

of resistance-driving genetic lesions. In addition, by identifying actionable targets for the reversal 

of chemotherapy resistance, these analyses open novel therapeutic opportunities for the treatment 

of relapse and refractory disease.

ALL is an aggressive hematologic tumor resulting from the malignant transformation of 

immature lymphoid progenitor cells. Diffuse bone marrow infiltration by malignant 

lymphoblasts induces hematopoietic failure, which in the absence of treatment is rapidly 

fatal due to infection and hemorrhagic complications1. Predominantly a pediatric disease, 

the age distribution of B-precursor and T-ALL follow distinct patterns. The highest 

incidence of B precursor leukemias is in children between the ages of 2 and 5, while T-ALL 

is more common in older children with a peak incidence at 9 years of age1,2. Importantly, 

younger children have better outcomes than older pediatric patients, and adult patients with 

ALL do less well compared to children1. Similarly, in adults, the AYA group (adolescents 

and young adults) have a better prognosis compared with older individuals1. Multiple factors 

contribute to these different outcomes, including age-association of favorable/unfavorable 

genetic categories, treatment intensity (better tolerated in children) and eligibility for therapy 

intensification with allogenic bone marrow transplantation1.

Effective treatment for ALL requires intensive chemotherapy which combines drugs with 

non-overlapping mechanisms of action1, followed by intensive outpatient post-remission 

therapy, and subsequent prolonged low-intensity maintenance chemotherapy aimed at 

preventing leukemia relapse. In addition, patients receive therapy targeting the central 
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nervous system sanctuary site1. Tailored treatment incorporating tyrosine kinase inhibitors 

BCR-ABL1-positive cases, therapy intensification based on risk-associated genetic features 

and quantification of minimal residual disease have further improved ALL outcomes1,3. 

However, patients whose leukemia relapses typically show dismal clinical outcomes as result 

of chemotherapy resistance4,5.

Genomic profiling of matched diagnostic and relapsed ALL samples have identified specific 

mutations associated with chemotherapy resistance at relapse including genetic lesions in 

NT5C2 and PRPS1 genes linked with 6-mercaptopurine resistance6–8 and CREBBP related 

to resistance to glucocorticoids9. Moreover, clonal evolution and mutational signature 

analyses of support non-linear evolutionary pathways for disease progression and that 

chemotherapy induced mutations could shape the mutational landscape of relapse10–13. 

However, specific mechanisms contributing to chemoresistance at relapse remain poorly 

understood, which limits the implementation of tailored therapeutic interventions for salvage 

therapy. To bridge this gap we dissected the mutational landscape of an extensive cohort of 

paired diagnostic and relapse samples from children and adults with B precursor and T-ALL 

and functionally explored gene-drug interactions via genome-wide CRISPR screens.

Mutational landscape of relapsed ALL

To gain further understanding of the mechanisms mediating escape from multiagent 

chemotherapy at relapse, we performed genome wide mutation analysis of matched 

diagnosis, germline (remission) and relapse DNA samples from a panel of 175 ALL patients 

(pediatric n=149 and adult n=26) treated with curative intent, using multi-agent 

chemotherapy combinations based on the Berlin-Frankfurt-Munster (BFM) backbone 

(Supplementary Table 1). This series included 129 B precursor ALL and 46 T-cell ALL 

cases analyzed by whole genome (n=105), whole exome (n=46) and combined whole 

genome and whole exome (n=24) sequencing (Supplementary Table 1).

Somatic mutation variant calling identified a median of 27 coding mutations present in 

diagnostic samples and 34 mutations in relapsed leukemia DNAs (Fig. 1a, Extended Fig. 1 

and Supplementary Table 2). Moreover, analysis of co-occurrence and exclusivity of 

mutations and copy number alterations pointed to numerous significant co-occurring genetic 

alterations in support of specific mechanistic interactions driving leukemic transformation 

and progression. In T-ALL we observed highly significant co-occurrence of JAK1 and JAK3 
mutations both at diagnosis (P < 0.0001, hypergeometric test) and relapse (P = 6.13−6); as 

well as an association between WT1 and NRAS mutations (P = 5.54−4) and between JAK1 
and WHSC1 mutations at relapse (P = 0.001) (Fig. 1b, 2a). Less prominent, but significant 

associations in B precursor ALL included a link between SETD2 mutations and ETV6 
deletions (P = 0.001) and between NRAS and CREBBP mutations at relapse (P = 0.017). In 

addition we also observed a significant mutual exclusivity between NRAS mutations and 

CDKN2A deletions in relapse samples (P = 0.016) (Fig. 1b and Fig. 2a).

Despite the overall low mutation burden, some cases in this series showed a hyper-mutation 

phenotype with >100 coding somatic variants. Two cases had evidence of hypermutation 

both in the diagnostic and relapse samples; these were, one B precursor ALL harboring a 
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mutation in ATR and one T-ALL mutated in MSH6. In addition, ten cases showed acquired 

hypermutation at relapse, 5 of which harbored mutations in mismatch DNA repair genes 

MSH2 (n=2) and MSH6 (n=3). Analyzing the 3 cases with relapse-associated hypermutation 

phenotype and available whole genome sequencing data, we found marked enrichment in 

mutational signatures associated with microsatellite instability (signature 21). Further 

inspection of mutational patterns in non-hypermutated samples revealed an overall 

enrichment of signatures associated with the activity of the mutagenic enzymes activation-

induced cytidine deaminase (AID) and apolipoprotein B mRNA editing enzyme (APOBEC) 

(signatures 9 and 13), as well as increased contribution of microsatellite instability 

(signature 21) for relapse-specific somatic mutations compared with the genetic alterations 

present at diagnosis (Fig. 2b and Extended Figs. 2,3). In addition, we noted specifically at 

relapse the presence of mutations previously linked with aristolochic acid induced DNA 

adducts (signature 22) (Fig. 2b and Extended Figs. 2,3). In contrast, presentation specific 

mutations at diagnosis were characterized by an increased contribution of transcriptional 

strand biased T>C substitutions (signature 12) (Fig. 2b and Extended Figs. 2,3).

Out of 9,616 non-synonymous coding somatic mutations identified in total, 1,467 were 

present at diagnosis and relapse, 2,101 were present only at diagnosis and 6,048 mutations 

were observed only at the time of relapse. These alterations identified 186 highly confident 

recurrently mutated genes (Supplementary Table 3). Recurrent somatic mutations found at 

diagnosis included prominent known oncogenes and tumor suppressors including KRAS, 
NRAS, PTPN11, MYC, FLT3, JAK2, JAK3, STAT5B and CREBBP in B-cell precursor 

ALL, and NOTCH1, FBXW7, MYC, KRAS, NRAS, PTPN11, PHF6, DNM2, STAT5B, 
WT1, JAK1, JAK3, BCL11B, TP53, CREBBP, RPL10, RUNX1 and CNOT3 in T-cell 

ALL9,12,14–21 (Fig. 1a,b, Fig. 2a,c,d and Extended Fig. 4). In addition, we identified 

recurrent somatic mutations in NT5C2, CREBBP, TP53, WHSC1, ABL1, FLT3, USP9X, 
CNTN3, PLXNA4, AUTS2, MED12, ODZ3 and CDKN2A occurring exclusively or 

preferentially at the time of relapse (Fig. 1a,b, Fig. 2a,c,d and Extended Fig. 4). A notable 

characteristic of these results is the limited number of mutations in TP53 found in our 

relapsed ALL samples, which is in sharp contrast with early historical reports, which 

described a high frequency (~28%) of TP53 mutations in relapsed ALL samples22,23. This 

observation supports that currently used therapies may have improved capacity to eliminate 

subclonal TP53 mutations, a hypothesis consistent with the improved outcomes of modern 

chemotherapy protocols.

Single nucleotide polymorphism array analyses (n=54) and whole genome and exome 

sequencing-based analysis (n=95) of somatic copy number variants (CNVs) identified an 

average of 18 somatic CNVs per sample for a total of 6,475 alterations in our series. Of 

these, 3,589 CNVs were detected at diagnosis and 2,876 at the time of relapse, with 2,575 

variants present in both diagnostic and relapsed samples (Extended Fig. 5 and 

Supplementary Table 4). Genomic Identification of Significant Targets in Cancer (GISTIC) 

analysis identified 116 recurrent focal areas of deletion and 175 recurrent focally amplified 

regions at diagnosis (q-value < 10−5), 154 deletions and 184 amplifications at relapse (q-

value < 10−5) (Extended Fig. 6). The most common recurrent somatic copy number 

alterations included most prominently deletions involving the CDKN2A and CDKN2B cell 

cycle tumor suppressor loci in the short arm of chromosome 9 present in 49/99 (49%) B-cell 
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precursor and 31/41 (75%) T-cell ALL samples (Supplementary Tables 4 and 5). In addition, 

we identified deletions encompassing the CDKN1B (13/99; 13%) cell cycle inhibitor and B-

cell differentiation factors –PAX5 (28/99; 28%), VPREB1 (10/99; 10%), ETV6 (18/99; 

18%), and IKZF1 (24/99; 24%)– in B-cell precursor ALLs. While in T-cell ALLs we 

observed recurrent deletions encompassing the CDKN1B (2/41; 5%) and WT1 (4/41; 9%) 

tumor suppressor genes and focal microdeletions in the vicinity of the TAL1 locus (3/41; 

7%), which are responsible for aberrant transcriptional activation of this transcription factor 

oncogene24 (Supplementary Tables 4 and 5). Finally, chimeric gene transcript analyses in 85 

cases with available RNAseq data showed the presence of oncogenic gene transcripts 

including the oncogenic drivers PAX5-BCOR, PAX5-CBFA2T3, PAX5-ZCCHC7, MEF2D-
BCL9, MEF2D-HNRNPUL1, NUP214-ABL1, TPR-JAK2, PICALM-MLLT10, ETV6-
RUNX1, KMT2A-AFF1, BCR-ABL1, TCF3-HLF and TCF3-PBX1, as well as a potentially 

activating rearrangement between TBL1XR1 and JAK2 (Supplementary Table 6). In most 

cases, fusion oncogene transcripts were detected both at diagnosis and relapse with the 

exception of two cases positive only at relapse, one for PICALM-MLLT10 and the other for 

NUP214-ABL1 (Fig. 1a and Supplementary Table 6).

Clonal evolution mechanisms of relapse

Copy number alterations25 and mutation data10–13 support a heterogeneous path of clonal 

evolution during ALL disease progression with some cases showing linear evolution, others 

presenting relapses originating from ancestral clones (missing some of the mutations present 

at diagnosis) and in some instances de novo leukemias emerging after a sustained complete 

remission. We reconstructed the molecular clonal history for each case in our cohort, 

represented by a specific phylogenetic tree that relate the genomic information of the 

dominant leukemia clones present at diagnosis and at relapse. Based on whole genome 

sequencing, 49/95 (52%) of the relapse samples contained most, but not all of the genetic 

lesions present in the major clone at diagnosis (Fig. 2e, f and Extended Fig. 7). In addition, 

we noticed a significantly higher level of branched evolution in pediatric ALL cases 

compared with adult leukemias indicative of a less distant divergence between diagnostic 

and relapsed populations in adults (P = 0.03, Wilcoxon rank-sum test). Overall, the number 

of relapsed specific mutations was significantly higher than the number of diagnostic 

specific variants (P < 1.67 10−8, Wilcoxon rank-sum test) (Fig 2e,f and Extended Fig. 7), 

which is consistent with the requirement of additional cell divisions for clonal expansion 

from the point of minimal residual disease to overt relapse, but also with our observation of 

mutational signatures suggestive of a potential increased mutation rate during disease 

progression. To disentangle these mechanisms, we specifically analyzed molecular clock 

signature 1 mutations, which result from endogenous mutational processes initiated by 

spontaneous deamination of 5-methylcytosine. Consistent with the fetal origin of many 

pediatric ALLs with founder chromosomal rearrangements already present at birth26, both 

the total number of mutations and signature 1 mutations correlate with age at diagnosis27 

allowing us to infer a case specific mutational rate and to establish that the most recent 

common ancestor (MRCA) between the clone at diagnosis and relapse often develops early 

and several years before the leukemia is clinically diagnosed (Fig. 2g).
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Chemotherapy treatment represents a major selective force and imposes a strong genetic 

bottleneck in ALL shaping the mutational landscape of relapse (Fig. 1a,b and Fig. 

2a,c,d)6,8,13. In this context, we detected numerous genes with recurrent relapsed-associated 

alterations (no lost events in the relapse clone) (Fig. 2c,d, Extended Fig. 4 and 

Supplementary Table 3). Relapse-associated genetic lesions implicated in chemotherapy 

resistance included most prominently relapse-specific gain-of-function mutations in NT5C2 
(22/175, 12%)6,7. In addition, mutations in the SETD2 histone 3 lysine 36 

trimethyltransferase gene previously implicated in resistance to DNA-damaging agents28 

were found in 4/175 (2.3%) of relapsed ALL samples, while mutations in the glucocorticoid 

receptor NR3C1 and epigenetic regulator genes WHSC129 and CREBBP9 also linked with 

resistance to glucocorticoids were present in 2/175 (1%), 8/175 (4.6%) and 17/175 (9.7%) of 

relapsed cases, respectively. TP53 mutations at presentation were more frequent in adults 

(4/26) than pediatric (5/149) cases (Fisher’s exact text P = 0.029). For cases with TP53 at 

presentation who relapsed, the same mutation was invariably in the relapse sample. In 

addition, 1/22 adult and 7/144 pediatric leukemias with wild type TP53 at diagnosis relapsed 

with TP53-mutant disease. Moreover, WT1 mutations, which have been proposed to blunt 

activation of TP53-induced transcriptional programs in T-ALL30 were found in 11/175 

(6.2%) of relapsed cases. Furthermore, we also noted the presence of tyrosine kinase 

inhibitor resistance-driving mutations in ABL131 in 6 relapsed BCR-ABL1 positive ALLs 

that had been treated with kinase inhibitor-including regimens.

Detailed analysis of the mutations accrued from diagnosis to relapse showed strong positive 

selection of resistance driving genetic lesions, which were uniformly present both at 

diagnosis and relapse or acquired at the time of relapse (Fig. 1a,b and Fig. 2a,c,d). NT5C2 
and ABL1 mutations were selectively acquired at relapse consistent with their specific role 

in therapy resistance. In contrast, most other genetic alterations associated with relapse were 

present also at diagnosis. Interestingly, activating mutations in the NRAS and KRAS 
oncogenes were primarily early events in T-ALL and showed a more heterogeneous 

distribution in B-precursor ALL with some cases showing RAS mutations as early events 

detected both in diagnosis and relapse clones, and others showing them as later events 

present only in the relapsed sample (Fisher’s exact text P = 0.0009).

Genome-wide mapping of drug-gene interactions shaping therapy 

response

Despite the clear signal for positive selection of some resistance driver mutations at relapse, 

relapsed leukemias are largely heterogeneous and the importance and mechanism of most 

mutations present at relapse remains unknown. To better functionalize the landscape of 

relapse-associated mutations, we undertook a genome-wide forward genetics screen strategy 

to identify drug-gene interactions across all major chemotherapy drugs (vincristine, 6-

mercaptopurine, L-asparaginase, cytarabine (Ara-C), methotrexate, daunorubicin, and 

maphosphamide) used in the treatment of ALL in REH cells, a representative model B-

precursor ALL cell line32 with competent TP53 activity(Fig. 3a).
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gRNAs whose inactivation increased vincristine sensitivity included the ATP Binding 

Cassette Subfamily C Member 1 (ABCC1), a known vincristine transporter33, but also 

ATPase Phospholipid Transporting 8B2 (ATP8B2), a factor not previously implicated in 

resistance to vincristine (Fig. 3b and Supplementary Table 7). Of note, multiple genes 

encoding mitotic factors including (TRIP13, HASPIN, CLASP1, ASPM, CENPW, 
PPP2R1A, DLGAP5, KIF15, PSRC1, UBE2C, BUB1, TUBB4B, MAPRE1, SKA1, ZWINT 
and MKI67) showed depletion of targeting gRNAs in support of a previously unrecognized 

sensitizing role for disruption of the mitotic machinery in conferring sensitivity to vincristine 

(Fig. 3b and Supplementary Table 7).

Analysis of resistance driving gRNAs enriched in cells treated with 6-MP (Fig. 3c and 

Supplementary Table 7), a thiopurine antimetabolite, verified the requirement of 

Hypoxanthine Phosphoribosyltransferase 1 (HPRT1), an enzyme mediating 6-MP activation 

via the salvage pathway of purine biosynthesis and Solute Carrier Family 43 Member 3 

(SLC43A3), a membrane transporter mediating the incorporation of 6-MP into the cell34, for 

6-MP incorporation and cytotoxic activity. Interestingly, gRNAs targeting NUDT15, an 

enzyme involved in the clearance of intracellular thiopurine nucleotides35, were negatively 

selected in this screen, in support of a role for this enzyme as a novel therapeutic target to 

enhance the effects of 6-MP therapy (Fig. 3c and Supplementary Table 7). Surprisingly, we 

also observed here depletion of NT5C2 targeting gRNAs in REH cells, which are NT5C2 
wild type (Fig. 3c and Supplementary Table 7). This result suggests a previously 

unappreciated role of wild type NT5C2 in the clearance of thiopurine monophosphate 

nucleotides, and as a potential target for therapy in ALL.

Genes whose inactivation promoted increased response to L-asparaginase included 

Asparagine Synthetase (ASNS), which mediates the conversion of aspartate and glutamine 

to asparagine and glutamate (Fig. 3d and Supplementary Table 7). In addition, we also 

observed negative selection of gRNAs targeting Glutamate-Ammonia Ligase (GLUL), a 

glutamine synthetase that catalyzes the ATP-dependent conversion of glutamate and 

ammonia to glutamine, suggesting an unanticipated functional role for glutamine synthesis 

in supporting asparagine levels in leukemia lymphoblasts (Fig. 3d and Supplementary Table 

7). L-asparaginase sensitivity was also enhanced by gRNAs targeting Eukaryotic Translation 

Initiation Factor 2 Alpha Kinase 4 (EIF2AK4), a signaling factor responsible for blocking 

translation via phosphorylation of the alpha subunit of eukaryotic translation initiation 

factor-2 (EIF2) in response to asparagine deprivation36,37 (Fig. 3d and Supplementary Table 

7).

Selection with Ara-C, a cytotoxic pyrimidine, resulted in positive selection of Deoxycytidine 

Kinase (DCK), which mediates metabolic activation of this drug and Solute Carrier Family 

29 Member 1 (SLC29A1), which mediates cellular import of Ara-C38 (Fig. 3e and 

Supplementary Table 7).

gRNAs driving resistance to the antifolate drug methotrexate included Solute Carrier Family 

19 Member 1 (SLC19A1), which mediates cellular methotrexate uptake39, and 

folylpolyglutamate synthase (FPGS), a major determinant of active intracellular 

methotrexate polyglutamate levels, recurrently mutated in relapsed ALL10 (Fig. 3f and 
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Supplementary Table 7). In contrast, gRNAs against dihydrofolate reductase (DHFR), the 

target enzyme inhibited by methotrexate, as well as downstream enzymes in the salvage 

(HPRT1) and de novo purine biosynthesis (ATIC and PRPS1) pathways were negatively 

selected following treatment with this antifolate (Fig. 3f and Supplementary Table 7).

For daunorubicin, which stabilizes topoisomerase II induced DNA double strand breaks, 

gRNAs targeting DNA Topoisomerase II Beta (TOP2B) and DNA Topoisomerase II Alpha 

(TOP2A) induced resistance to treatment (Fig. 3g and Supplementary Table 7). This finding 

is consistent with a direct role of topoisomerase–DNA cleavage complexes in mediating 

anthracycline induced DNA damage and the antitumor effects of daunorubicin40. In concert, 

multiple genes encoding factors involved in non-homologous end joining and homologous 

recombination double strand DNA break repair (LIG4, PRKDC, ERCC6L2, NHEJ1, SFR1, 

UIMC1, BRE, RAD54L2, PRKDC, ERCC6L2 and PAXX) were also negatively selected 

following daunorubicin treatment, further supporting a critical role for DNA repair 

mechanisms in resolving DNA breaks induced by this drug (Fig. 3g and Supplementary 

Table 7). In contrast, we observed that gRNAs against Tyrosyl-DNA Phosphodiesterase 2 

(TDP2) and zinc finger protein 451 (ZNF451), which mediate resolution of topoisomerase 2 

DNA-protein cross-links41, increased daunorubicin sensitivity (Fig. 3g and Supplementary 

Table 7), which speaks to a major role of DNA-protein adduct DNA lesions as drivers of 

anthracycline-induced genotoxic stress. These results place target availability, double strand 

DNA repair and clearance mechanisms of anthracycline induced DNA-protein adducts as 

important modulators of cellular response to daunorubicin.

In line with, but also differentially from our daunorubicin CRISPR screen results, treatment 

with maphosphamide induced negative selection of gRNAs specifically targeting prominent 

genes involved in DNA inter-strand crosslink recognition and repair (Fig. 3h and 

Supplementary Table 7) including Fanconi factors FANCA, FANCB, FANCD2, FANCE, 
FANCF, FANCG, BRIP1/FANCJ, FANCL and FANCM; Fanconi associated proteins 

APITD1/FAAP16, C1orf86/FAAP20 and C19orf40/FAAP24; and additional DNA damage 

repair proteins such as EXO1, XPA, ERCC1, RANBP9, ERCC5, RAD1, RAD18, UBE2D3 
and ATR.

Beyond the individual effects of each chemotherapeutic drug used, global analysis of the 

relationship of gene-drug interactions across chemotherapy showed clustering of 6-MP, Ara-

C and daunorubicin based on their pattern of enriched and depleted gRNAs; a separate 

grouping of cells treated with vincristine and maphosphamide; and markedly distinct 

patterns of positively and negatively selected gene-gRNA sets for methotrexate and L-

asparaginase (Fig. 4a,b). These results suggest a potential functional overlap on the cellular 

mechanisms mediating the activity of nucleoside/nucleotide analogs (6-MP, Ara-C) and 

topoisomerase inhibitors (daunorubicin), and of drugs interfering with tubulin 

polymerization (vincristine) and alkylating agents (maphosphamide). Moreover, the 

distinctive pattern of gene-drug interactions of L-asparaginase and methotrexate supports 

that their antileukemic effects are largely distinct from other chemotherapy drugs. Of note, 

our genome wide CRISPR screens identified a limited number of genes-gRNA sets 

negatively selected across multiple treatments and a much broader number of gRNAs 

impairing the effects of multiple therapeutic agents (Fig. 4c and Supplementary Table 7). 
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Among these, we observed positive selection of multiple genes encoding essential factors 

involved in cell growth with a prominent representation of mediators of protein biosynthesis 

including components of mTOR signaling (Fig 4d), but also RNA polymerase I, II and III 

complexes, RNA maturation machinery, ribosomal biogenesis factors and translation 

regulators (Supplementary Table 7). This finding is in agreement with a proposed role for 

metabolically quiescent less-proliferative populations as contributors to cancer disease 

persistence and relapse42. In addition, Ikaros (IKZF1) mutations are associated with 

chemoresistance and poor prognosis in B-precursor ALL and IKZF1 targeting gRNAs were 

enriched in cells treated with L-asparaginase (log fold change = 0.72; Fig. 3d), methotrexate 

(log fold change = 0.64; Fig. 3f), maphosphamide (log fold change = 0.93; Fig. 3h), and to 

some extent with Ara-C (log fold change = 0.28; Fig. 3e) (Supplementary Table 7). 

Moreover, TP53 targeting gRNAs were strongly positively enriched in REH cells treated 

with vincristine (log fold change = 0.93; Fig. 3b), daunorubicin (log fold change = 0.93; Fig. 

3g), and maphosphamide (log fold change = 2.1; Fig. 3h) and, albeit more modestly, with 6 

mercaptopurine (log fold change = 0.49; Fig. 3c) and Ara-C (log fold change = 0.66; Fig. 

3e) (Supplementary Table 7) but showed limited selection with methotrexate (log fold 

change = 0.23; Fig. 3f) and no clear enrichment in cells treated with L-asparaginase (Fig. 3d 

and Supplementary Table 7). Consistently, TP53 CRISPR knockout REH and RCH ALL 

cells showed broad resistance to chemotherapy with retained sensitivity to L-asparaginase 

(Fig. 4e).

Cross analysis of the compendium of mutations identified in our series and in previously 

reported cohorts10,43 with genome-wide CRISPR screen gene-drug interactions related to 

chemoresistance in REH cells revealed 355 mutated genes potentially involved in resistance 

to therapy (Supplementary Table 8). Among those it is worth noting the presence of 

recurrent mutations in TP53, IKZF1, DNM2, SETD2, MED12 and USP9X, genes 

potentially related to resistance to multiple drugs. In addition, we found a significant number 

of mutant genes involved in cell growth related pathways including protein biosynthesis 

(Benjamini P = 1.2 1012), mRNA processing (Benjamini P =9.4 10−14), transcription 

(Benjamini P =9.1 10−8) and cell cycle (Benjamini P =2.4 10−10) (Supplementary Table 8). 

Mutated genes with gRNAs selected for specific drugs included SLC19A1 –related to 

methotrexate chemotherapy– and SLC43A3 and HPRT1 –related to resistance to 6-MP. In 

addition, and as mentioned before gRNAs for NT5C2 were negatively selected in cells 

treated with 6-MP related to thiopurine resistance induced by gain of function mutations in 

this cytosolic nucleotidase. These results support that the broad genetic heterogeneity of 

relapsed ALL is related to the multiplicity of genes and pathways that can be engaged to 

reduce the efficacy of multiagent chemotherapy and contribute to disease recurrence.

In this context, and most importantly, we noticed that CRISPR inactivation of particular 

genes induced cellular resistance to some chemotherapy drugs, while enhancing the 

cytotoxic effects of some others (Fig. 4f). This observation may imply that the success of 

modern ALL combination therapies in preventing the occurrence of relapse originates at 

least in part from the selective eradication, via targeting of collateral genetic vulnerabilities 

induced by resistance driver-mutations, of single-drug resistant clones. As an example, 

HPRT1 inactivating gRNAs, which ablate the salvage pathway of purine biosynthesis, 

induce resistance to 6-MP, but cause synthetic lethality to inhibition of de novo nucleotide 
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biosynthesis with methotrexate (Fig. 3c and Supplementary Table 7). Importantly, the 

maintenance phase of ALL therapy combines 6-MP and methotrexate, and consistently, we 

observed that HPRT1 mutations appear only rarely at relapse (Fig. 1a, Extended Fig. 1 and 

Supplementary Tables 3 and 8). In all, these findings suggest that cytotoxic agents and 

empirical combination chemotherapies, often regarded as a broad-brush and non-specific 

therapeutic approach, may actually leverage unforeseen incompatibilities in the gene-drug 

interaction space to create genetic bottlenecks that limit the selection of resistance-driving 

mutations and the emergence of relapse-initiating leukemic clones.

Targeting genetic vulnerabilities overcomes drug resistance at relapse

Among the numerous drug-gene interactions identified in our screens those involving 

multiple chemotherapeutic agents could be of particularrelevance in the context of 

combination chemotherapy treatments. Among these, gRNAs for Protein Phosphatase, 

Mg2+/Mn2+ Dependent 1D (PPM1D), which encodes a phosphatase mediating negative 

feedback regulation of p38-p53 signaling and suppression of stress-induced apoptosis, were 

negatively selected in cells treated with vincristine, 6-MP, Ara-C, daunorubicin and 

maphosphamide (Fig. 3b,c,e,g,h and Supplementary Table 7). Consistently, GSK280371, a 

PPM1D inhibitor, enhanced the antileukemic effects of chemotherapy in relapsed-leukemia 

xenograft samples ex vivo (Fig. 5a). Consistent with increased daunorubicin sensitivity by 

gRNAs targeting TDP2, which encodes an enzyme involved in the excision of 

topoisomerase II-DNA adducts (Fig. 3g), ex vivo treatment with ZW1231, a highly active 

deazaflavin TDP2 inhibitor (compound 11e44), resulted in increased response to 

daunorubicin in relapsed-leukemia xenograft cells (Fig. 5b). Similarly, the observed 

increased sensitivity to maphosphamide in cells with gRNAS targeting the ATR kinase and 

DNA inter-strand crosslink recognition and repair factors (Fig. 3h and Supplementary Table 

7) prompted us to test the effects of VE821, a small molecule ATR inhibitor in combination 

with chemotherapy. In vitro treatment of REH cells with VE821 abrogated chemotherapy-

induced ATR phosphorylation leading to increased DNA damage as determined by 

accumulation of γH2AX and consequently increased response to therapy (Fig. 5c,d). 

Moreover, ex vivo ATR inhibitor treatment increased the response of relapsed leukemia 

xenograft cells to maphosphamide (Fig. 5e). Finally, and with direct therapeutic significance, 

the antiapototic factor BCL2 scored broadly in our CRISPR screens as a common target 

whose inhibition could enhance the response to vincristine, 6-MP, L-asparaginase, Ara-C, 

daunorubicin and maphosphamide, (Fig. 3b–e,g,h and Supplementary Table 7). In 

agreement, and in line with some clinical reports45–47, ex vivo treatment with ABT199, a 

BCL2 inhibitor, enhanced the antitumor effects of chemotherapy against relapsed-ALL 

primary xenograft cells (Fig. 6a). Moreover, in vivo treatment of a relapsed leukemia-

derived ALL xenograft showed enhanced therapeutic efficacy in mice treated with ABT199 

plus an induction-like combination chemotherapy (dexamethasone, vincristine, L-

asparaginase) as evidenced by markedly reduced numbers of human ALL lymphoblasts in 

the spleen (Fig. 6b–d) and bone marrow (Fig. 6e–f). Finally, given the results of our whole 

genome sequencing, which pointed to branched clonal evolution and ongoing mutagenesis 

as a relevant mechanisms conductive to relapse, we tested this therapy in a ΔE-NOTCH1-

APOBEC3A-ERT2 mouse model of ALL that incorporates genetic diversification and 
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chemotherapy selection of resistance traits (Fig. 6g). In basal conditions, ΔE-NOTCH1-

APOBEC3A-ERT2 lymphoblasts showe cytoplasmic localization of APOBEC3A and low 

levels of the DNA damage marker γH2AX (Fig. 6h,i), while treatment with tamoxifen 

resulted in translocation of the APOBEC3A to the nucleus and induction of DNA damage 

(Fig. 6h,i). Using this model we generated a genetically diversified tumor population and 

selected for chemoresistance phenotypes after combinatorial chemotherapy (dexamethasone, 

vincristine, L-asparaginase) collecting tumor cells at relapse (Fig. 6g,j). In this setting, in 
vivo treatment of relapsed ΔE-NOTCH1 APOBEC3A-ERT2 leukemia- bearing mice with 

ABT199 plus induction-like combination chemotherapy overcame this trait and induced 

prolonged survival compared with vehicle, chemotherapy and ABT199-only treatment 

groups (Fig. 6k). In all, our experimental therapeutics results support a role for targeting 

effectors of chemoresistance and collateral vulnerabilities in combination with 

chemotherapy as salvage treatment for relapsed ALL.

Discussion

Induction therapy for newly diagnosed ALL consists of acute highly intensive treatment 

combining drugs with different mechanisms of action, which together induce strong 

antitumor effects and more profound responses than single agent therapies. Modern 

chemotherapy protocols homogeneously include therapy with vincristine, anthracyclines, L-

asparaginase and glucocorticoids plus cyclophosphamide, and/or high doses of methotrexate 

or cytarabine in high-risk cases1. In addition, maintenance post-remission therapy relies on 

sustained treatment with low dose 6-mercaptopurine, complemented with pulses of 

glucocorticoids and methotrexate1. This complex therapy regimen is designed to curtail the 

incidence of relapse by targeting multiple tumor vulnerabilities simultaneously and 

sequentially. In this context, drivers of leukemia relapse likely involve the persistence of rare 

quiescent and intrinsically chemoresistant leukemia cells with self-renewal capacity48; safe-

haven microenvironment niches offering protection from the effects of chemotherapy49, and 

genetic and epigenetic heterogeneity resulting in the Darwinian selection of features 

associated with chemotherapy resistance6,7,50.

Whole genome sequencing results in our series uphold and extend previous studies pointing 

to the presence of broad genetic heterogeneity as a dominant feature of relapsed 

ALL6–13,43,51–53. In addition, mutational landscape, clonal evolution patterns and mutational 

mechanism analyses powered by whole genome data support a dynamic and complex picture 

of drug-gene interactions as drivers of disease progression. In particular, the presence of 

hypermutator phenotypes at relapse indicates that increased genetic heterogeneity may favor 

escape from therapy. We observed an enrichment of microsatellite instability-related 

mutational signatures and signatures associated with the activity of AID and APOBEC 

mutagenic enzymes in relapse-specific mutations in support of a role for these mutagenic 

mechanisms as drivers of genetic diversification conductive of disease progression and 

relapse. However, defects in DNA mismatch repair underlying microsatellite instability can 

impair the efficacy of thiopurine chemotherapy54,55, arguing that functional defects 

involving this specific DNA repair mechanism may also contribute to relapse by directly 

interfering with the activity of 6-MP. Across these analyses we did not recognize 

Oshima et al. Page 11

Nat Cancer. Author manuscript; available in PMC 2021 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



chemotherapy-induced mutational signatures10,56, suggesting that these may account for a 

small fraction of the mutational burden of leukemias at relapse.

The high prevalence of branched clonal evolution as a common feature of relapsed leukemia 

supports a central role for preexisting chemo-resistant clones as the original seed of 

relapse11. In this scenario, selection for resistance-driver features could result from clonal 

competition between leukemia subclones and the normal hematopoietic compartment early 

on in the natural history of the disease, or alternatively, emerge as a late event during 

progression through clonal competition between different leukemia populations. Whole 

genome sequencing analyses across pediatric and adult ALL cases enabled the differential 

analysis of molecular clock-associated mutations to datestamp the time of the last common 

ancestor of the diagnostic and relapsed clones. Surprisingly, these analyses mark the 

divergence of diagnosis and relapse populations to years before clinical presentation 

supporting the concept of clonal diversification during early stages of tumor initiation, at a 

time when clonal diversification is most probably shaped by selection under evolutionary 

pressures derived from the competition of early leukemia-originating cells with the normal 

hematopoietic system, in shaping the nature of the relapse originating cell11. Notably, we 

observed lower levels of branched clonal evolution in leukemias from adult patients 

compared with children, in line with higher levels of minimal residual disease and lower 

rates of complete remission57 indicative of a higher prevalence of primary drug resistance in 

ALL from adults.

The comprehensive genome-wide gene-drug interaction maps reported here show multiple 

resistance factors and genes whose inactivation increases drug activity, which in many cases 

are directly linked to the mechanism of action of these core chemotherapy drugs, validating 

this approach. Integrative analysis of mutational and drug-gene interaction screens reveals a 

heterogeneous resistance-associated mutational landscape with numerous low frequency 

mutations in genes involved in growth regulatory pathways, potentially contributing to 

resistance. In addition, analysis of CRISPR screen results across multiple drugs points to (i) 

highly stringent selection bottlenecks, and (ii) discordant gene-drug interactions across 

different drugs as emerging properties of multiagent chemotherapy that shape the mutational 

landscape of ALLs at relapse. Thus, our observation of broad chemo-resistance induced by 

TP53 inactivation is consistent with the role of this tumor suppressor gene as guardian of 

genomic integrity and mediator of apoptosis downstream of multiple stress signals. 

However, it is worth noting that REH and RCH ALL cell lines remained sensitive to L-

asparaginase after TP53 knockout. A general corollary of these observations is that the 

combination of drugs with non-overlapping resistance mechanisms may enhance cure rates 

in ALL not only by providing enhanced cell killing in the dominant leukemia population at 

diagnosis, but by cross-targeting clones harboring drug escape-driving mutations. Secondly, 

integrative analysis of CRISPR screens highlights the presence of numerous discordant 

gene-drug interactions, with the same CRISPR gene inactivation inducing resistance to one 

drug and sensitivity to another. We propose that successful drug combinations empirically 

selected in clinical trials over the last four decades, exploit highly stringent and 

mechanistically rooted evolutionary bottlenecks to curtail the selection of resistant clones 

capable of driving leukemia relapse. An example could be the successful combination of 6-

MP and methotrexate in maintenance therapy. As highlighted above, we observed that 
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HPRT1 inactivation, which impairs the salvage purine biosynthesis pathway limits the 

activity of 6-MP but may also render HPRT1 mutant clones more readily targetable with 

methotrexate thus explaining why HPRT1, which is located in chromosome X and is an easy 

target for genetic inactivation, is rarely lost in ALL tumors at relapse. Therapeutically, the 

gene-drug interaction maps reported here identify multiple genes whose inactivation results 

in increased drug sensitivity, including numerous factors whose inactivation increase the 

activity of different chemotherapeutic agents. Among these, our proof of principle 

experimental therapeutics supports the expeditious testing in clinical trials of combination 

therapies including inhibitors targeting the anti-apoptotic machinery in the salvage therapy 

of ALL.

Methods

Patient samples.

DNA and leukemia lymphoblasts samples from ALL patients obtained at diagnosis, during 

remission and after relapse were provided by the Children’s Oncology Group and ECOG-

ACRIN leukemia tissue banks; the Pediatric Oncology Division at Columbia University 

Medical Center; the Department of Hematology/Oncology at Saitama Children’s Medical 

Center; the Hemato-Oncology Laboratory at University of Padova; the Erasmus Medical 

Center-Sophia Children’s Hospital; Hospital Universitario Central de Asturias and the 

Department of Oncology/Hematology and Canada’s University Health Network. Informed 

consent was obtained at study entry and samples were collected under the supervision of 

local Institutional Review Boards for participating institutions and analyzed under the 

supervision of the Columbia University Medical Center Institutional Review Board 

(Protocol Number: IRB-AAAB3250) and in compliance with ethical regulations. We 

selected samples for whole exome and whole genome sequencing on the basis of the 

availability of sufficient DNA from diagnosis, remission and relapse samples including a 

subset of cases previously analyzed by exome sequencing in15.

Cells and cell culture procedures.

We performed cell culture in a humidified atmosphere at 37°C under 5% CO2. We purchased 

HEK293T cells from Genecopoeia and REH cells from Thermo Fisher Scientific and RCH 

cells from the Deutsche Sammlung von Mikroorganismen und Zellkulturen (DSMZ) cell 

bank. We grew HEK293T cells were in DMEM media supplemented with 10% fetal bovine 

serum (FBS), 100 U ml-1 penicillin G and 100 μg ml-1 streptomycin for up to two weeks 

and REH and RCH cells in RPMI-1640 media supplemented with 10% FBS, 100 U ml−1 

penicillin G and 100 μg ml−1 streptomycin. Cell lines were regularly authenticated and 

tested for mycoplasma contamination. Primary human xenograft ALL cells were passaged 

and harvested from the spleens of NRG (NOD.Cg-Rag1tm1Mom/I2rgtm1Wjl/SzJ, Jackson 

Laboratory) mice and cultured in RPMI media supplemented with 20% FBS, 100 U ml−1 

penicillin G, 100 μg ml−1 streptomycin and 10 ng ml−1 human IL-7.

Drugs and inhibitors.

Methotrexate hydrate (MTX), 6-mercaptopurine (6-MP), cytosine-D-arabinofuranoside 

(AraC), daunorubicin hydrochloride (DNR) and vincristine sulfate salt (VCR) were obtained 
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from Sigma-Aldrich. Maphosfamide (MAF) was obtained from Santa Cruz Biotechnology. 

L-Asparaginase (LASP) was purchased from BioVendor. Venetoclax (ABT-199), VE-821 

and GSK2830371 were purchased from Selleckchem. ZW1231 was synthesized and 

characterized by Zhengqiang Wang’s laboratory at University of Minnesota as described44. 

For in vitro assays L-Asparaginase was dissolved in water. All other drugs were dissolved in 

DMSO.

In vitro cell viability and chemotherapy response assays.

We measured cell viability and chemotherapy responses of human ALL cell lines in vitro by 

measurement of the metabolic reduction of the tetrazolium salt MTT using the Cell 

Proliferation Kit I (Roche) following the manufacturer’s instructions. We analyzed 

chemotherapy responses following 72 or 96 h incubation with increasing concentrations of 

chemotherapy drugs. We quantified cell viability and chemotherapy responses of patient-

derived xenografts by flow cytometry using Cell Viability Kit with the liquid counting beads 

(BD Biosciences). We performed all experiments in triplicates. Ex vivo drug concentrations 

were optimized based on response of each patient derived xenograft. B-ALL 79R: 200 μM 

6-MP, 0.2 μM Ara-C, 10 nM DNR, 5 nM VCR, 1 μM MAF, 30 μM GSK280371, 2 μM 

ZW1231. T-ALL 11451R: 200 μM 6-MP, 0.2 μM Ara-C, 10 μM MTX, 5 μg/mL L-Asp, 10 

nM DNR, 5 nM VCR, 1 μM MAF, 30 μM GSK280371, 3 μM VE821, 0.1 μM ABT199. T-

ALL 64R: 200 μM 6-MP, 0.2 μM Ara-C, 10 nM DNR, 5 nM VCR, 1 μM MAF, 30 μM 

GSK280371, 30 μM ZW1231. B-ALL 56R: 100 μM 6-MP, 0.1 μM Ara-C, 10 μM MTX, 1 

μg/mL L-Asp, 5 nM DNR, 5 nM VCR, 1 μM MAF, 3 μM VE821, 0.1 μM ABT199 and in 

ZW1231 experiments – 10 nM DNR and 2 μM ZW1231. B-ALL 27009R: 10 nM DNR, 30 

μM ZW1231. B-ALL 37R: 100 μM 6MP, 0.1 μM Ara-C, 10 μM MTX, 1 μg/mL L-Asp, 5 

nM DNR, 5 nM VCR, 1 μM MAF, 2 μM VE821, 0.2 μM ABT199 and in ZW1231 

experiments – 10 nM DNR and 2 μM ZW1231.

Mice and animal procedures.

We generated primary human leukemia xenografts by intravenous injection of cryopreserved 

leukemia lymphoblasts from diagnostic and relapsed acute lymphoblastic leukemia patient 

samples into immunodeficient NRG mice. All animals were maintained in specific 

pathogen-free facilities at the Irving Cancer Research Center at Columbia University 

Medical Center. The Columbia University Institutional Animal Care and Use Committee 

(IACUC) approved all animal procedures. Animal experiments were conducted in 

compliance with all relevant ethical regulations. Animals were euthanized upon showing 

symptoms of clinically overt disease (do not feed, lack of activity, abnormal grooming 

behavior, hunch back posture) or excessive weight loss (15% body weight loss over a week).

For drug synergism studies in primary human leukemia xenografts, PDX-BALL 37R was 

transplanted into secondary recipients and animals were monitored for leukemia progression 

by analysis of human CD45 in peripheral blood (Anti-Hu CD45 APC, Clone HI30, 

eBiosciences). Upon overt leukemia development (25% blast in peripheral blood) mice were 

treated by intraperitoneal injection with vehicle (10% DMSO – 20% (2-Hydroxypropyl)-β-

cyclodextrin – 70% water), combinatorial chemotherapy58 (Vincristine 0.15 mg/Kg days 1 

and 8; dexamethasone 5 mg/Kg days 1–5, 8–9; L-asparaginase 1000 IU/Kg days 1–5, 8–9), 
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ABT-199 (50 mg/Kg days 1–5, 8–9) and combinatorial chemotherapy plus ABT-199 

(Vincristine 0.15 mg/Kg days 1 and 8; dexamethasone 5 mg/Kg days 1–5, 8–9; L-

asparaginase 1000 IU/Kg days 1–5, 8–9, ABT-199 50 mg/Kg days 1–5, 8–9). Animals were 

euthanized and data collected 24 hours after finishing treatment schedule.

Retroviral plasmid constructs.

Apobec3A (A3A) cDNA was kindly provided by Dr. Nathaniel Landau at New York 

University. WE generated the ΔE-NOTCH1-T2A-APOBEC3A-ERT2-IRES-mCherry-LUC 

vector by cloning the Apobec3A cDNA in fusion with sequences coding for a tamoxifen-

sensitive mutant form of the human estradiol receptor (ERT2) ligand binding domain in the 

C terminus into a custom synthetized retroviral vector (pMSCV ΔE-NOTCH1-T2A-IRES-

mCherry-Luc) expressing oncogenic NOTCH1 (ΔE-NOTCH159), and the mCherry-

Luciferase fusion protein60.

Mouse leukemia generation and treatment.

To generate mutagenized and chemotherapy resistant T-cell leukemias, we first infected 

lineage-negative enriched cells from the bone marrow of C57BL/6 donor mice with 

retroviral particles expressing ΔE-NOTCH1-T2A-APOBEC3A-ERT2-IRES-mCherry-LUC 

as described previously60. These cells were then transplanted into lethally irradiated 

recipients and leukemia onset and disease progression was evaluated by luciferase in vivo 
bioimaging with the In vivo Imaging System (IVIS, Xenogen) and FACS analysis. Next, we 

transplanted lymphoblasts from spleens and bone marrow of diseased animals into 

secondary recipients and treated mice with 1 mg of tamoxifen by intraperitoneal injection 

four days after transplant and every 3 days thereafter, for a total of 4 injections, to induce 

APOBEC3A activation. Mutagenized lymphoblasts were then transplanted into tertiary 

hosts, which upon leukemia development were then treated either with vehicle (10% DMSO 

– 20% (2-Hydroxypropyl)-β-cyclodextrin – 70% water) or combinatorial induction 

chemotherapy (Vincristine 0.15 mg/Kg days 1 and 8; dexamethasone 5 mg/Kg days 1–5, 8–

9; L-asparaginase 1000 IU/Kg days 1–5, 8–9)58. We evaluated disease progression and 

therapy response by in vivo bioimaging (IVIS, Xenogen). To evaluate the development of 

secondary drug resistance we collected leukemia lymphoblasts from mice with disease 

progression and evaluated survival of relapsed-leukemia transplanted mice after salvage 

treatment with chemotherapy.

Secondly we used again these relapsed ΔE-NOTCH1-APOBEC3A-ERT2 mutagenized 

leukemias to evaluate the efficacy of salvage therapies in cohorts of mice treated by 

intraperitoneal injection with two cycles of: vehicle (10% DMSO – 20% (2-Hydroxypropyl)-

β-cyclodextrin – 70% water), combinatorial chemotherapy (Vincristine 0.15 mg/Kg days 1 

and 8; dexamethasone 5 mg/Kg days 1–5, 8–9; L-asparaginase 1000 IU/Kg days 1–5, 8–9), 

ABT-199 (50 mg/Kg days 1–5, 8–9) and combinatorial chemotherapy plus ABT-199 

(Vincristine 0.15 mg/Kg days 1 and 8; dexamethasone 5 mg/Kg days 1–5, 8–9; L-

asparaginase 1000 IU/Kg days 1–5, 8–9, ABT-199 50 mg/Kg days 1–5, 8–9). Treatment 

cycles were administered consecutively (2 days apart). Mice were monitored for disease 

progression and survival following treatment.
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Western Blotting.

We performed Western blot analysis using antibodies recognizing P53 [1C12] (1:1000; 

2524, Cell Signaling Technology), GAPDH [D16H11] (1:5000; 5174, Cell Signaling 

Technology), P-ATR [Thr1989] (1:1000; 58014, Cell Signaling Technology), ATR [C-1] 

(1:250; sc-515173, Santa Cruz Biotechnology), P-CHK1 [Ser345; 133D3] (1:500; 2348, 

Cell Signaling Technology), CHK1 [G-4] (1:500; sc-8408, Santa Cruz Biotechnology), P-

RPA32 [S33] (1:1000; A300–246A, Bethyl Laboratories), RPA32 [9H8] (1:1000; ab2175, 

abcam), γH2AX [Ser139] (1:2000; 613402, Biolegend), Vinculin [VIN-11–5] (1:2000; 

NB120–11193, Novus Biologicals), following standard procedures.

Immunofluorescence.

Immunofluorescence analysis was performed on ex vivo cultured ΔE-NOTCH1-

APOBEC3A-ERT2-mCherry-LUC leukemia cells. We cultured cells on coverslips for one 

day and then treat them with either ethanol (vehicle) or 4-hydroxytamoxifen for 9 hours. We 

fixed cells were fixed with PFA 4% in PBS, washed with TBS, permeabilized with Triton 

X-100 0.5% in PBS and blocked with BSA 3%. Cells were stained using antibodies 

recognizing phosphorylated γH2AX [Ser139] (1/3000; JBW301, Millipore), Apobec3A 

(1/300; EPR9165(2), Abcam). Coverslips were mounted on slides using ProLong Diamond 

Antifade Mountant with DAPI (ThermoFisher scientific P36962). Images were acquired 

with the CSU-X1 confocal spinning disk system (Yokogawa Life Sciences) on an Eclipse 

TiE microscope stand (Nikon Instruments). Images were analyzed and γH2AX foci 

quantified using ImageJ software.

CRISPR gene knockout.

We performed gene inactivation of TP53 in REH and RCH cells by lentiviral infection with 

lentiCRISPR v2 (Addgene 52961) lentiviral particles expressing CAS9 and a gRNA 

targeting the TP53 locus. We selected infected cells with puromycin and enriched for TP53 

null populations in a secondary selection with nutlin-3a.

CRISPR-Cas9 screen and analysis.

To generate REH cells with inducible expression of CAS9 we first infected this cell line with 

pCW-Cas9 (Addgene 50661) lentiviral particles followed by selection with 1 μg ml−1 

puromycin. We isolated single cell clones by limited dilution and identified doxycycline 

inducible Cas9-expressing cells by Western blot following doxycycline treatment. For drug-

gene interaction screens we determined the lethal dose 90 (LD90) of 6-MP (1.8 μM), 

methotrexate (10 nM), Ara-C (12 nM), vincristine (0.22 nM), daunorubicin (3.5 nM), 

maphosphamide (0.9 μM) and L-asparaginase (0.8 U/mL) in REH cells over 7 days of 

culture. We conducted pool genome wide CRISPR screens as in61. Briefly, we infected Cas9 

inducible REH cells with a genome-wide gRNA library (SureGuide GeCKO v2 Human 

Exome CRISPR Library; Agilent) at a multiplicity of infection of 1 and selected GFP-

positive infected cells by flow cytometry cell sorting. Library representation was evaluated 

by PCR amplification and sequencing of gRNAs. We induced Cas9 expression with 

doxycycline in cultures containing 250x representation of the library and treated them with 

vehicle-only or chemotherapy at the calculated 7 day-EC90. We removed dead cells via 
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Ficoll density gradient centrifugation and extracted genomic DNA with phenol-chloroform 

using standard procedures. We amplified DNA containing gRNAs by PCR and then 

sequenced these on an Illumina NextSeq 500 instrument, loaded with a 20% spike-in of 

PhiX DNA. We analyzed sequencing data and normalized gRNA abundance as in62. All 

experiments were performed in triplicates.

To assess the global differences and similarities in the gene-dependency profiles across 

different CRISPR screens we performed principle component analysis (PCA) on genes with 

enrichment (positive or negative) greater than 0.5 log fold-change and false discovery rate 

less than 5%. We computed principle components in R version 3.5.0 using the prcomp 

function from the stats package and visualized using ggplot2. We performed hierarchical 

clustering analysis in R using the factoextra package (version 1.0.5) using Euclidean 

distances and complete linkage.

For integrated analysis of mutational and forward-genetic screen data we selected genes with 

positively enriched gRNAs (FDR <0.25) with annotated mutations in this series and in two 

large and non-overlapping cohorts of diagnostic-relapse ALL samples10,43 cohorts 

encompassing in total 354 cases.

Next generation sequencing and mapping.

We extracted genomic DNA from patient leukemic blasts, from the lymphoid fraction from 

peripheral blood or bone marrow of remission samples and from bone marrow derived 

fibroblast cultures using the DNeasy Blood & Tissue Kit (Qiagen). Whole exome 

sequencing was performed and analyzed as previously described12. For whole genome 

sequencing, paired diagnosis, remission, and relapse samples from 15 cases were sequenced 

on the Illumina HiSeq X Ten System at New York Genome Center (remission at 60x 

coverage, diagnosis and relapse at 100x coverage), paired diagnosis, remission, and relapse 

samples from 15 cases were sequenced on the Illumina HiSeq X Ten System at GENEWIZ 

(remission at 30x coverage, diagnosis and relapse at 60x coverage), and paired diagnosis, 

remission, and relapse samples from 19 cases were sequenced on the Illumina HiSeq X Ten 

System at BGI Americas (remission at 30x coverage, diagnosis and relapse at 60x coverage). 

The analysis produced an average of 90.1 million paired-end reads per sample. After 

filtering for duplicate reads (i.e. reads with identical start and orientation), sequences were 

aligned to the reference human genome hg19 assembly using the Burrows-Wheeler Aligner 

(BWA) tool version 0.7.1532.

Identification of somatic variants.

To identify somatic mutations from Illumina whole-genome sequencing data, we applied the 

variant-calling software SAVI2 (statistical algorithm for variant frequency identification)63. 

Only variants with a mutant allele frequency of 5% or greater were considered for further 

analysis.

Whole genome sequencing data for 80 ALL diagnosis, relapse and matched remission trios 

of samples analyzed by Complete Genomics were obtained through the Therapeutically 

Applicable Research to Generate Effective Treatments (TARGET) project (Database of 

Genotype and Phenotype dbGAP access number phs000464). We used SRAtoolkit to 
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generate pileup stats which was then used as input of VarScan to perform variant 

detection64. Only SNP variant calls were considered for this cohort analyzed using the 

Complete Genomics sequencing platform. We removed remove false-positive calls using the 

following filters: i) at least five reads supported the mutant allele in the tumor sample; ii) the 

MAF in normal/remission sample of 0; iii) somatic p-value from VarScan <0.01; iv) the 

mappability (up to 2 mismatches, read length 100bp) of the variant locus is 1. In addition, 

calls of recurrent mutant genes required the presence of >2 mutant samples from Illumina 

data and >2 mutant samples in CGI/TARGET data plus >1 mutation from Illumina 

sequenced data.

Circus plot representation of diagnostic-specific and relapse-specific genetic alterations in 

recurrently mutated (≥3 lesions) genes was generated using R package Circlize65.

Identification of recurrent and focal copy number variants.

Somatic copy number variants (CNV) were identified using BIC-seq266 with default 

parameters from Illumina whole-genome sequencing data. CNV for the TARGET dataset, 

which was generated using Affymetrix SNP 6.0 arrays, was downloaded from Target Data 

Matrix. These CNV were analyzed using GISTIC267 to identify recurrent areas of copy 

number variation.

Clonal evolution analysis.

The number of mutations exclusive to, or in common with, each sample was used to 

construct evolutionary tree for every patient. Each tree was then rescaled by the total lengths 

of its branches and represented with a circle in the positive quadrant in three dimensions on 

a sphere, where the size of each circle was scaled by total number of mutations in its 

corresponding patient68. To exclude false positives, only variants with an allele frequency of 

at least 20% were used in this analysis.

Mutational signature analysis.

In total 30 mutational signatures were downloaded from COSMIC (https://

cancer.sanger.ac.uk/cosmic/signatures). Then mutational signature deconvolution was 

conducted using non-negative matrix factorization technique through R package 

MutationalPatterns69. This was done using 49 trios with Illumina whole genome sequencing 

data (3 trios were separated for hypermutation analysis) by individual sample.

Gene fusion detection.

We used STAR-Fusion70 to identify candidate fusion transcripts. The ‘--

examine_coding_effect’ parameter was invoked to examine effect of fusions on coding 

regions.

Statistical analyses.

We performed analyses of significance using Student’s t test assuming equal variance. 

Continuous biological variables were assumed to follow a normal distribution. A two-sided 

P value of <0.05 was considered to indicate statistical significance. We represented survival 

using Kaplan-Meier curves and calculated statistical significance using the log rank test.
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URLs.

Broad Institute Firehose platform for TCGA data, http://gdac.broadinstitute.org/; AROMA 

for SNP6 data preprocessing, http://www.aroma-project.org/; Cancer Genomics Hub for 

TCGA raw data, https://cghub.ucsc.edu/; TARGET data matrix, https://ocg.cancer.gov/

programs/target/data-matrix.

Code availability.

All custom code is available upon request.

Accession codes.

Whole exome and whole genome sequence Genotypes and Phenotypes (dbGaP) database 

accession number: phs001072.v1.p1. RNA-seq Sequence Read Archive (SRA) access code: 

PRJNA534488.
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Extended Data

Extended Fig. 1 |. Genomic profiling of diagnostic and relapsed ALL samples.
Number of mutations identified in the diagnosis and relapse adult and pediatric ALL 

samples (n= 27 adult; 148 pediatric.). Transitions are indicated in blue bars. Transversions 

are indicated in black bars.
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Extended Fig. 2 |. Mutational profiles of diagnosis and relapsed ALL.
Bar graphs indicate the relative contribution of mutational profiles in diagnosis and relapsed 

ALL patient samples (n=50).
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Extended Fig. 3 |. Mutational signatures of diagnosis and relapsed ALL samples.
The percentage contribution of mutational signatures in diagnosis (blue, n=49 patients) and 

relapsed (red, n=49 patients) ALL samples represented as violin plots. Violin plots use 

median as the center measure with the 1st quantile and 3rd quantile as the bottom and top 

boundary, respectively, of the plot.
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Extended Fig. 4 |. Schematics of the protein structures showing mutations recurrently identified 
in diagnostic and relapse ALL samples.
Proteins involved in chemotherapy resistance and signaling are represented. Black circles 

indicate amino acid substitutions. Red circles indicate truncating mutations. TAD, 

transactivation domain; HAD haloacid dehalogenase domain; SB, substrate binding; Zn, 

zinc finger domain; LBD, ligand binding domain; P, P loop domain; SWI, Switch I domain; 

SWII, Switch II domain; HVR, hypervariable region domain; FERM, 4.1 protein Ezrin 

Radixin Moesin domain; SH2 like, Src homology 2 like domain; FZ, Frizzled domain; 

GPCR, GPCR family 2-like; Ig, Immunoglobulin; PTPase, Tyrosine specific protein 
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phosphatases domain; HEAT, Huntingtin, EF3A, ATM, TOR; FAT, Frap, ATM, TRRAP; 

FRB, FKBP-rapamycin complex binding; RD, regulatory domain; FATC, FAT C-terminal; 

B41, Band 4.1 homologues; PH-like, Pleckstrin homology-like; EGF like, epidermal growth 

factor like domain repeats; LNR, Lin12-Notch repeats; HD, heterodimerization domain; 

TM, transmembrane region; RAM, Rbp-associated molecule domain; ANK, ankyrin repeats; 

PEST, proline (P), glutamic acid (E), serine (S), and threonine (T) domain; FN3, Fibronectin 

type III; OD, oligomerization domain; SH3, Src homology 3 domain; FABD, F-actin 

binding domain.
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Extended Fig. 5 |. Schematics of the protein structures showing mutations recurrently identified 
in diagnostic and relapse ALL samples.
Proteins involved in epigenetic regulation and other recurrently mutated factors are 

represented. Black circles indicate amino acid substitutions. Red circles indicate truncating 

mutations. TAZ, TAZ zinc finger; KIX, kinase-inducible domain interacting domain; Bromo, 

bromodomain; HAT, histone acetyl transferase domain; PWWP, proline (P) tryptophan (W) 

tryptophan (W) proline (P) domain; HMG, high mobility group domain; PHD, plant 

homeodomain; SET, Su(var)3–9 Enhancer of zeste and Trithorax domain; AWS, associated 

with SET; SRI, Set2 Rpb1 interacting; MED12, Mediator complex, subunit Med12; FYRN, 
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FY-rich domain N-terminal; UBL, ubiquitin like domain; USP, ubiquitin specific protease 

domain; ITD, ion transport domain; PH, pleckstrin homology; GED, GTPase effector 

domain; PRD, proline/arginine-rich domain; Neur_chan_LBD, Neurotransmitter-gated ion-

channel ligand binding domain; LIC, Cation transporter family protein; Neur_chan_memb, 

Neurotransmitter-gated ion-channel transmembrane region; TRAF, tumor necrosis factor-

receptor associated factor; HUBL, HAUSP/USP7 ubiquitin-like domain; FN3_D, 

Fibronectin type III-like domain; SEFIR, SEF/IL-17R; Myc_N, Myc amino-terminal region; 

HLH, Helix-loop-helix; LZ, leucine zipper; Jmjc, Jumonji C.

Extended Fig. 6 |. Copy number alterations in diagnostic and relapse ALL samples.
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Human chromosomal ideograms showing the areas of genetic gain and loss identified by 

whole exome sequencing, whole genome sequencing or Genome-Wide Human SNP Array 

6.0 (Affymetrix) in 103 B-precursor ALL samples and 46 T-cell ALL samples at diagnosis 

and relapse (rel). Green bars represent areas of loss. Red bars represent areas of gain.

Extended Fig. 7 |. GISTIC analysis of recurrent Copy number alterations in diagnostic and 
relapse ALL samples.
GISTIC qplots of 149 diagnosis and relapse ALL samples. Copy number segmentation files 

were generated by EXCAVATOR base on Whole Exome Sequencing data, BIC-seq2 for 
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whole genome sequencing or Genome-Wide Human SNP Array 6.0 (Affymetrix). The 

resulting seg files (genomic intervals), together with the union of whole exome probes from 

different platform were used in GISTIC version 2.0.22.

Extended Fig. 8 |. Clonal evolution profiles in relapsed ALL.
Evolutionary trees of 49 matched diagnosis and relapse samples evaluated by whole-genome 

sequencing. The lengths of the branches in the evolutionary tree graph indicate the number 

of shared (orange), diagnosis-specific (blue) and relapse-specific (red) genetic alterations in 

each sample. We used the variant allele frequency cutoff >= 20%.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1 |. Somatic mutations in pediatric and adult relapsed ALL.
a, Distribution of mutations and copy number variations (CNVs) in selected genes in 175 

paired diagnostic and relapse ALL samples. Colored boxes indicate the presence of 

mutations and CNVs in the indicated genes (rows) and samples (columns). Mutation type 

(nonsynonymous substitutions, or truncating mutation) and kind of sample (diagnosis vs. 

relapse) are color coded as indicated. DEL, deletion. Hypermutated samples include patient 

IDs (in order, left to right): 85, 18, 67, 169, 108, 153. b, Pyramid plots highlighting the 

correlation for co-mutated (green color) or mutually exclusive (red color) features in B-ALL. 
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A hypergeometric test was performed for each pair of elements, considering diagnosis and 

relapse ALL samples separately. The size of each circle corresponds to the significance level 

of the correlation. Associations with P < 0.05 are colored.
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Figure 2 |. Mutational co-occurrence, signatures and clonal evolution of relapsed ALL.
a, Graphic representation of co-occurrence between pairs of patient age, genetic alterations 

and outcomes. Orange circles indicate co-occurrence and the size of each circle corresponds 

to the significance level of the correlation. b, Scatter plot representation of the number of 

samples with positive contribution across different mutation signatures in 46 diagnosis (blue; 

x-axis) versus relapse (red; y-axis) samples. c, Circos plot representation of the distribution 

of diagnosis-specific (blue), relapse-specific (red) and common diagnosis and relapse 

(green) mutations in selected recurrently mutated genes in B-cell precursor ALL and T-cell 
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ALL. d, Three-dimensional bubble plot showing the frequency of diagnosis-only (blue; left 

axis), relapse-only (red; right axis), and common diagnosis and relapse (green; upper axis) 

somatic nonsynonymous mutations in B-cell precursor and T-cell ALL. e, CAT(0) 

projections of branched evolution in pediatric and adult patients. f, Violin plot indicating the 

branchedness of pediatric and adult patient trajectories. g, Left: distribution of the inferred 

age of Most Recent Common Ancestor (tMRCA) of the two dominant clones at diagnosis 

and relapse. Right: distribution of the number of years that the most recent common ancestor 

predated the diagnosis of the disease (D-tMRCA). Line of the notched boxplots represents 

the median. Lower and upper hinges represent the 25th and 75th percentiles respectively.
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Figure 3 |. Genome wide CRISPR analysis of chemotherapy-gene interactions.
a, Schematic illustration of inducible Genome-Scale CRISPR/Cas9 knock-out screening in 

REH B-precursor ALL cells. b-h, CRISPR screen results and schematic representation for 

drug-gene interactions across seven chemotherapy drugs. Genes are ranked based on the 

enrichment of their respective gRNAs compared to vehicle-treated controls. Red and blue 

circles in b-h indicate genes with enriched and depleted gRNAs (FDR < 0.05), respectively.
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Figure 4 |. Convergent and divergent gene-chemotherapy drug interactions.
a, Hierarchical cluster analysis of gene-drug interactions from genome-wide CRISPR 

screens in REH cells treated with different chemotherapy drugs. b, Principal component 

analysis (PCA) of gene-drug interactions as in a. Each drug feature is plotted based on the 

top contributing genes to each of the first 2 principle components. Genes with enrichment 

(positive or negative) greater than 0.5 log fold-change and false discovery rate less than 5% 

were used in these analyses. c, Circos plot representation of overlapping genes with gRNAs 

enriched and depleted across different chemotherapy selection-based CRISPR screens. d, 

Oshima et al. Page 39

Nat Cancer. Author manuscript; available in PMC 2021 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Schematic representation of PI3K-mTOR pathway drug-gene interactions identified in 

genome wide CRISPR screens. Red and blue circles in indicate genes with enriched and 

depleted gRNAs (FDR < 0.05), respectively. Drug interactions for each gene are in colored 

arch segments as indicated. e, Western blot analysis of TP53 inactivation and in vitro 
analyses of the antileukemic responses of REH and RCH control and CRISPR TP53 

knockout cells treated with chemotherapy drugs. f, Circos plot representation of genes with 

divergent gRNA selection profiles across CRISPR screens with different chemotherapeutic 

drugs. Green links indicate sensitivity; red links indicate resistance. 6-MP: 6-

mercaptopurine; AraC: cytarabine; MTX: methotrexate; LASP: L-asparaginase, DNR: 

daunorubicin; VCR: vincristine; MAF: maphosphamide; (S): drug-sensitizing; (R): drug 

resistance. Graphs indicate relative cell viability compared to vehicle treated controls.
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Figure 5 |. Therapeutic targeting of chemotherapy resistance.
a, Response of ALL patient-derived xenografts treated ex vivo with different 

chemotherapeutic drugs in combination with the GSK2830371 PPM1D inhibitor. b, 
Response of ALL patient-derived xenografts treated ex vivo with daunorubicin (DNR) as a 

single-agent or in combination with the ZW1231 TDP2 inhibitor. c, Western analysis of 

DNA damage and response markers in REH cells treated with the VE821 ATR inhibitor and 

maphosphamide. d, Cell viability of REH cells treated with VE821 and maphosphamide 

alone and in combination. e, Response of ALL patient-derived xenografts treated ex vivo 
with VE821 and maphosphamide as single agents and in combination. Bars in a, b and e and 

curves in d indicate relative cell viability compared with vehicle treated controls.
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Figure 6 |. Reversal of chemotherapy resistance by BCL2 inhibition.
a, Response of ALL patient-derived xenografts treated ex vivo with different 

chemotherapeutic drugs in combination with ABT199. Bars indicate relative cell viability 

compared with vehicle treated controls. b-f, Response of B-ALL 37R patient-derived 

xenografts treated in vivo with vehicle, single-agent ABT199, combinatorial chemotherapy 

or ABT199 with combinatorial chemotherapy. Panel b shows spleens following acute 

treatment and the quantification of spleen weights represented as bar graphs. Bars in c show 

spleen cell counts, while bars in d represent the percentage of human-CD45+ cells in the 

spleen following the indicated treatment arm. Bars in e show femoral bone marrow cell 

counts, while bars in f represent the percentage of human-CD45+ cells in the bone marrow 

following the indicated treatment arm. g, Schematic representation of the generation and 
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experimental therapeutic treatment of a APOBEC3A-mutagenized relapsed ALL mouse 

model and experimental therapeutics. h, Immunofluorescence analysis of APOBEC3A 

subcellular localization and DNA damage (γH2AX) in vehicle and 4OH-tamoxifen (4OH-

TMX)-treated ΔE-NOTCH1 APOBEC3A-ERT2 ALL cells. i, Quantification of γH2AX foci 

in vehicle and 4OH-TMX-treated ΔE-NOTCH1 APOBEC3A-ERT2 ALL cells. j, Survival 

curves of mice bearing ΔE-NOTCH1 APOBEC3A-ERT2-mutagenized allografts treated 

with either vehicle (black) or combinatorial chemotherapy (survival in chemotherapy treated 

primary tumor in blue, survival in chemotherapy treated relapsed tumor in red). Gray bars 

indicate the duration of treatment. k, Survival curves of mice bearing APOBEC3A-ERT2-

mutagenized relapsed allografts treated with either vehicle, single-agent ABT199, 

combinatorial chemotherapy or ABT199 plus combinatorial chemotherapy. Gray bars 

indicated the duration of treatment.
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