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Abstract

Recently, we showed that the functional heterogeneity of the right dorsal premotor (PMd) cortex 

could be better understood by dividing it into five subregions that showed different behavioral 

associations according to task-based activations studies. The present study investigated whether 

the revealed behavioral profile could be corroborated and complemented by a structural brain 

behavior correlation approach in two healthy adults cohorts.

Grey matter volume within the five volumes of interest (VOI-GM) was computed using voxel-

based morphometry. Associations between the inter-individual differences in VOI-GM and 

performance across a range of neuropsychological tests were assessed in the two cohorts with and 

without correction for demographical variables. Additional analyses were performed in random 

smaller subsamples drawn from each of the two cohorts.

In both cohorts, correlation coefficients were low; only few were significant and a considerable 

number of correlations were counterintuitive in their directions (i.e., higher performance related to 

lower grey matter volume). Furthermore, correlation patterns were inconsistent between the two 

cohorts. Subsampling revealed that correlation patterns could vary widely across small samples 

and that negative correlations were as likely as positive correlations.

*Correspondence to: Sarah Genon, Institut für Neurowissenschaften und Medizin (INM-7), Forschungszentrum Jülich GmbH, 
D-52425 Jülich, Germany. s.genon@fz-juelich.de (S. Genon).
1These authors contributed equally to the study.

Appendix A. Supporting information
Supplementary data associated with this article can be found in the online version at doi:10.1016/j.neuroimage.2017.05.053.

HHS Public Access
Author manuscript
Neuroimage. Author manuscript; available in PMC 2021 March 31.

Published in final edited form as:
Neuroimage. 2017 August 15; 157: 144–156. doi:10.1016/j.neuroimage.2017.05.053.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Thus, the structural brain-behavior approach did not corroborate the functional profiles of the PMd 

subregions inferred from activation studies, suggesting that local recruitment by fMRI studies does 

not necessarily imply covariance of local structure with behavioral performance in healthy adults. 

We discuss the limitations of such studies and related recommendations for future studies.

Keywords

Structural brain behavior; Functional characterization; Voxel-based morphometry; Replication; 
Type S error

Introduction

Understanding the relationship between brain and behavior is the essence of cognitive 

neuroscience. Within the brain mapping perspective, brain-behavior relationships are 

addressed by behavioral characterization of brain regions, i.e., by assigning behavioral 

functions to brain specific grey matter units. A challenging region in this respect is the 

dorsal premotor cortex (PMd). Representing an interface between prefrontal and motor 

regions, it showed rostro-caudal organization as well as functional inferior-superior 

differentiation and a diverse profile of associated behavioral functions (e.g. (Picard and 

Strick, 2001; Hanakawa, 2011)). Recently, we identified five functional subregions within 

the right dorsal PM (PMd) by connectivity-based parcellation (CBP) based on co-activations 

of right PMd voxels during thousands of activation (task-based fMRI and PET) studies. In 

order to characterize the delineated functional parcels of the right PMd in terms of 

associated behavioral functions, we examined hundreds of activation studies reporting 

activation peaks in the right PMd parcels using quantitative forward and reverse inferences 

based on the BrainMap (Laird et al., 2011) database (Genon et al., 2017). As illustrated in 

Fig. 1, this approach revealed a clear cognitive-motor gradient in terms of recruitment by 

fMRI tasks along the rostro-caudal axis. The rostral PMd was mainly activated by higher 

order cognitive functions, such as working memory and attention, the caudal PMd mainly by 

motor tasks, while the central PMd showed a mixed profile, i.e., was activated by both 

“higher cognitive” and “basic motor” paradigms. The ventral subregion was mainly recruited 

by tasks related to eye movements, such as visual attention, suggesting premotor eye field 

properties, whereas the dorsal subregion was mainly activated by paradigms using finger 

movement and sequence/rhythm aspects.

As noted, the behavioral characterization of the right PMd parcels was based on a 

quantitative assessment of activation studies recruiting the respective regions. Nevertheless, 

such an approach provides a pattern that is inherently limited to the task-based fMRI and 

PET studies. Behavioral tasks used in fMRI and PET experiments, in turn, may have limited 

ecological validity. Furthermore, the performance is frequently constrained within a 

predefined range due to behavioral design parameters (such as limited reaction-time) or to 

subsequent analysis parameters (for example, contrast between task success and failure in an 

event-related design requires a sufficient number of events in both conditions). In addition, 

the collection of studies can be biased towards the most popular behavioral domain or 

paradigm classes in cognitive neurosciences. In a related issue, our quantitative approach of 
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activation studies is based on reported activation peaks from published studies. That is, only 

studies that have been published are taken into account, rendering the results potentially 

susceptible to publication bias (Rothstein et al., 2006). Therefore, there is a strong need for 

corroborating and complementing this behavioral characterization from task-activation data 

by alternative information from a large-scale analysis based on complementary cerebral 

data.

During the past decade, there has been an increased number and prominence of structural 

brain-behavior correlations either to explore the morphometric correlates of inter-individual 

variations in specific behavioral aspects (e.g. (Smolker et al., 2015), or confirm the 

conceptual relationship between a given brain region and a behavioral function (e.g. (Wolk 

et al., 2011)). In a review paper, Kanai and Rees (2011) collected evidence that 

interindividual variability in behavior/cognition can be related to interindividual variability 

in brain structural features, such as grey matter volume (GMV), cortical thickness (CT) or 

white matter (WM)-derived measures. Importantly, the relationships between brain and 

behavior highlighted in previous structural brain behavior studies include a wide range of 

behavioral aspects or phenotypes. These range from basic perceptual abilities (e.g. (Kanai et 

al., 2011)), to action related processes (e.g. (van Gaal et al., 2011)), higher cognitive 

functions (e.g. (Taki et al., 2011; Genon et al., 2014; Genon et al., 2016)) and complex 

phenotypes captured by interviews and questionnaires (e.g. (Nostro et al., 2016)). Given the 

wide range of behavioral aspects whose variability correlates with inter-individual variability 

of brain structure, structural brain-behavior correlation appears as a promising approach for 

examining brain-behavior relationship. Therefore, we assumed that the heterogeneous 

profile of behavioral associations of the right PMd parcels revealed by task-based functional 

data could be corroborated and complemented by using a structural brain behavior 

correlation approach.

One measure for examining grey matter brain structure is grey matter volume (GMV) as 

computed with voxel-based morphometry (VBM). During the past decade, VBM has stood 

as the most widely used method for such purpose. It has been demonstrated that GMV 

yielded by VBM does convey relevant neurobiological aspects of brain structure, as whole 

brain GMV pattern extracted by VBM can be accurately related to biological variables such 

as age (Luders et al., 2016) and can capture meaningful structural changes in aging and 

neurodegenerative pathology (e.g.(Draganski et al., 2013; Gee et al., 2017)), as well as 

structural neuroplasticity related to training (Draganski et al., 2004). Of note, some authors 

have pointed out the uncertainty of the biological interpretation of VBM-based findings 

considering that VBM outcomes reflect changes in several structural aspects including 

cortical thickness, cortical volume and cortical folding, and thus suggested that surface-

based measures could be additionally used to specifically examine one aspect or another 

(Palaniyappan and Liddle, 2012; Kong et al., 2015). However, VBM and surface-based 

approach as provided by Freesurfer (Dale et al., 1999) differ in several technical regards. 

Consequently, if divergent findings between VBM and cortical thickness based on surface 

are observed, the differences are challenging to interpret, as the divergence could be 

attributed either to the different biological aspects captured by the two approaches or to the 

methodology (Hutton et al., 2009). One alternative approach to surface-based cortical 

thickness is voxel-based cortical thickness (VBCT). Nevertheless, a recent study has shown 
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that while GMV showed a consistent pattern of association with cognitive score, CT as 

computed with VBCT in the same sample showed poor sensitivity in correlation with 

behavior (Manard et al., 2016). Thus, GMV as computed with VBM appeared as a 

neurobiologically meaningful measure likely to correlate with behavioral performance and 

thus that has the potential to reveal specific relationship between brain regions and behavior.

The present study examined behavioral characterization of the right PMd functional parcels 

revealed by a structural brain behavior correlation approach between GMV and a range of 

behavioral measures. Importantly, for the last few years, cognitive neurosciences have been 

facing a replication crisis (e.g. (Ioannidis, 2005; Pashler and Wagenmakers, 2012; Eklund et 

al., 2016)) that has incited collection of big data samples and replication studies. More 

recently, the replication issue has concerned studies assigning brain regions to behavioral 

functions through structural brain behavior correlation, questioning the replication of the 

findings of those studies in healthy young subjects (Boekel et al., 2015). The same concerns 

should hold true for the reverse purpose, that is, assigning behavioral functions to brain 

modules using structural brain-behavior correlation. Acknowledging these concerns, 

characterizing the right PMd parcels with a structural brain behavior correlation approach 

should thus be performed on data samples of substantial size. Therefore, in the current study, 

we investigated the relationship between grey matter volume (GMV) of the five PMd parcels 

and behavioral performance in two large samples of healthy adults. We additionally 

examined how stable the correlations were across smaller subsamples covering different 

sample sizes including smaller size commonly used in structural brain-behavior correlation 

studies. We expected the pattern of correlation to mirror the behavioral preferences of the 

parcels revealed by activation studies and to be positive in nature, i.e., better performance 

should correspond to higher local GMV across subjects, nevertheless, we did not constrain 

our correlation analyses to any specific behavioral measures or any correlation direction, 

thus considering all patterns revealed by the data.

Methods

Subjects

Structural brain behavior correlations were based on data acquired at the Research Center 

Jülich (FZJ), Germany, and at the Nathan S. Klein Institute (NKI), New York, USA (Nooner 

et al., 2012). Both cohorts’ data collection received ethics agreements from local 

institutional committees and all subjects gave informed written consent prior to any testing. 

Subjects were free of any recent neurological or psychiatric disorders as verified by 

structured interviews and questionnaires including the Beck Depression Inventory (BDI-II; 

(Hautzinger et al., 2006)). Hand preference was assessed using the Edinburgh Handedness 

Inventory (EHI; (Oldfield, 1971)). Subjects exceeding the cut-off score for mild depression 

(BDI>14) and those with left or ambidextrous hand preference (EHI < 48; cf. (Oldfield, 

1971)) were excluded from further analysis. Both cohorts were globally matched for age and 

gender, resulting in a total of 222 healthy subjects (FZJ = 87, NKI = 135; Table 1).
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Behavioral measures

All subjects performed batteries of standard neuropsychological tests assessing cognitive 

functions, such as attention, executive functions, working memory, verbal fluency, as well as 

tests on basic motor performance detailed in supplementary Tables S2 and S3. Some 

behavioral paradigms were similar in both cohorts, such as the Trail Making Test (TMT) and 

Stroop test/Color Word Interference Test. However, basic motor performance was only 

assessed in FZJ, while abstraction/fluid intelligence abilities were only assessed in NKI. 

Subjects with outlier scores in one of the neuropsychological tests (scores of ± 3 standard 

deviations (SD) from the mean) were excluded in a case-wise fashion (of note, the number 

of outliers removed for each test was < 10).

Image acquisition, preprocessing and GM extraction

Structural T1 weighted MR scans for both samples were acquired on Siemens 3 T whole-

body scanners (FZJ: TR = 2.25 s, TE = 3.03 ms, flip angle = 9°, resolution = 1 mm 

isotropic; NKI: TR = 2.5 s, TE = 3.5 ms, flip angle = 8°, resolution = 1 mm isotropic). T1 

images were processed using the VBM8 toolbox (http://dbm.neuro.uni-jena.de/vbm.html) 

implemented in SPM8 (http://www.fil.ion.ucl.ac.uk/spm) using standard settings. Images 

were corrected for bias-field inhomogeneities, segmented into grey matter (GM), white 

matter (WM) and cerebrospinal fluid (CSF) and adjusted for partial volume effect (with a 

simplified mixed model of at most two tissue types: GM-WM and GM-CSF). This 

procedure results in an estimation of the amount (or fraction) of each tissue type present in 

every voxel. Normalization was performed to the Montreal Neurological Institute (MNI) 

stereotaxic space and included non-linear modulation of the segmented images in which the 

value of each voxel is modulated by the Jacobian of the warp field (i.e. Jacobian 

determinants from the spatial normalization; (Good et al., 2001)).

Regional grey matter volumes (GMV) were then computed by the sum of the modulated 

voxel-wise values within each of the five right PMd VOIs. i.e., caudal (784 voxels), central 

(1049 voxels), rostral (1035 voxels) ventral (685 voxels) and dorsal (590 voxels). The GMV 

values within the VOIs (VOI-GM) were corrected for total brain volume (TBV, i.e., GM + 

WM) to account for individual differences in brain size as it has been suggested that the use 

of the standard modulation in combination with intracranial volume as covariate gives more 

reliable results (Malone et al., 2015).

Thus, in sum, this procedure yielded a value of GM for each parcel (rostral VOI-GM, central 

VOI-GM, caudal VOI-GM, ventral VOI-GM and dorsal VOI-GM) in each individual 

subject.

Correlation analysis

In order to identify demographic variables accounting for variations in both behavioral 

measures and VOI-GM, we first performed Pearson’s product-moment correlations between 

demographic factors (age, gender and education) and both sets of variables. In both cohorts, 

this preliminary analysis revealed associations of the demographic covariates with 

subjects’neuropsychological test performance and some VOI-GM. Age, gender and 

education may hence influence the covariance between behavioral measures of interest and 
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VOI-GM. Therefore, the relationship between VOI-GM and neuropsychological measures 

was examined by partial correlation (as implemented in SPSS: https://statistics.laerd.com/

spss-tutorials/partial-correlation-using-spss-statistics.php) accounting for the confounding 

effect of these covariates. Nevertheless, recent replication studies have brought confusion 

regarding the effect of correction for confounding covariates by suggesting that correction 

for nuisance variables can actually increase effect size (Boekel et al., 2016; Muhlert and 

Ridgway, 2016). Furthermore, for sake of parsimony, adjustment was performed by 

assuming an (only) linear relationship between age and our variables of interest (VOI-GM 

and behavioral scores) and by assuming that time spent in formal education is an accurate 

measure of “cognitive/intellectual” training, while these assumptions may not be fully met. 

In order to investigate such potential detrimental effect of confound-adjustment on the 

correlation patterns (be it by increasing effect size or, reversely, obscuring true association), 

we additionally performed full (crude) Pearson correlation analyses between VOI-GM and 

neuropsychological measures without accounting for demographic covariates.

In addition to the aforementioned concerns about adjustment for demographic covariates, 

there is an ongoing debate about the influence of sample size and power in structural brain 

behavior correlation and neuroimaging in general (e.g. (Friston, 2012; Button et al., 2013; 

Friston, 2013; Ingre, 2013; Carter et al., 2016)). While it is generally admitted that larger 

sample sizes provide more accurate account of the studied effects, recent studies have 

demonstrated low-powered experiments may actually yield stronger evidence than high-

powered ones (Wagenmakers et al., 2015a, 2015b). In order to explore to which extent the 

relationship between neuropsychological measures and VOI-GM revealed in the two large 

samples can be evidenced in sample sizes used in standard structural brain behavior 

correlation studies, we performed partial correlations in 1000 random subsamples of i) 15 

subjects ii) 30 subjects from each cohort (i.e. FZJ and NKI, separately), as well as iii) 60 

subjects in NKI.

For all correlation analyses, statistical significance was set at p < .05 (without correction for 

multiple comparisons to balance the analysis towards sensitivity rather than specificity).

Sanity check

To ensure that our data met quality criteria for valid structural brain behavior correlation, a 

sanity check was performed at several stages and for both structural data and behavioral 

data.

Raw structural images in native space, as well as derived normalized GM images were 

manually checked for major artifacts, deformations, displacements, structural abnormalities 

or tissues segmentation errors. In order to illustrate the data quality and in particular accurate 

segmentation, the anatomical images normalized to standard space and the resulting 

normalized modulated GM segment image of three random subjects from each cohorts (with 

the rostral VOI highlighted in red for helping visual comparison) are illustrated in the 

Supplementary Material. Furthermore, we performed data quality measurements with the 

CAT toolbox implemented in SPM12 (http://www.neuro.uni-jena.de/cat/) for each sample, 

which computes the covariance of each non-linearly modulated grey matter segment over the 

respective sample. Checking sample homogeneity thereby revealed that one subject in FZJ 
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(Fig. S2A) cohort showed a covariance score of less than two standard deviations of the 

mean, while seven subjects were such outliers in the NKI sampled (Fig. S2B). Careful visual 

inspection of these subjects nevertheless did not reveal any global artifact or deformation 

(Fig. S3). It seemed that local pattern of deviation related either to local atrophy made these 

images less similar than their relative samples. Thus, this additional quality checking 

confirmed that the structural data has been accurately preprocessed and ensured data quality 

in the region of interest (PMd).

Furthermore, in both cohorts, total brain volume (TBV) showed significant negative 

correlation with age. In addition, global covariance between behavioral performance and age 

was explored in both cohorts. In FZJ, all neuropsychological tests showed correlation 

between at least one of its derived index and age (except hand-arm movement task in which 

only a marginally significant correlation was observed between right hand-arm movement 

and age, p = .051). In NKI, TMT, Card Sorting and Design Fluency showed significant 

correlation with age, but ANT, CWI, Word context test, Tower of London, Proverbs and 

Verbal Fluency tests did not show significant correlations with age.

In order to further ensure that a structural brain behavior correlation approach was valid in 

our data, we performed whole brain correlation structural brain behavior with basic motor 

performance. The median score at Hand-Arm movement task was introduced in a SPM 

General Linear Model (GLM) when adjusting for demographical variables (age, gender and 

education). In line with our VOI correlation analysis, we searched for a significant 

correlation without controlling for multiple testing (i.e. at p uncorrected for multiple 

comparison in SPM). Nevertheless, only cluster of minimum 10 voxels were considered. 

The anatomical localizations of the significant clusters were labeled according to 

cytoarchitecture maps with the SPM Anatomy toolbox (Eickhoff et al., 2005). We found a 

significant correlation between basic motor performance and GMV in the right (MNI 

coordinates: 12 −31 72; 82 voxels) and left (MNI coordinates: −18 −28 69, 29 voxels) 

primary motor cortex (Area 4), as well as in the right supramarginal gyrus (MNI 

coordinates: 64 −44 42, 34 voxels). Thus, sanity check showed that the quality of the brain 

structural data (such as images normalization) and the quality of behavioral data allowed 

structural brain behavior correlation analyses.

Results

Correlation analyses controlling for the influence of demographic covariates (i.e., age, 

gender and education) on right PMd VOI-GM and neuropsychological test performance 

revealed only few significant correlations (Fig. 2). For reader’s convenience, we flipped the 

direction of the correlations for timing-based and errors-based behavioral measures such that 

positive correlations indicate that higher GMV was associated with better performance. 

Conversely, all negative correlations reflect a rather counterintuitive relationship between 

VOI-GM and behavioral performance in which higher GMV is associated with lower 

performance.

Genon et al. Page 7

Neuroimage. Author manuscript; available in PMC 2021 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Partial correlation analyses

FZJ—In the FZJ cohort, significant positive correlations were only found between rostral 

VOI-GM and performance at Benton Test (correct items, r = .23, p < .05), between caudal 

VOI-GM and performance at Hand-Arm Movement test (right, r = − .26, p < .05; left, r = 

− .23, p < .05, median, r = − .23, p < .05, please note that direction of correlation has been 

flipped such that the negative correlation reflects higher GMV to be associated with lower 

performance), and between the dorsal VOI-GM and performance at Benton Test (errors, r 
= .22, p < .05). In addition, we found that caudal VOI-GM showed significant positive and 

negative correlations with the Benton Test (correct items, r = − .22, p < .05; errors, r = .22, p 
< .05, please note that direction of correlation has been flipped such that the positive 

correlation reflects higher GMV to be associated with higher performance, i.e., fewer 

errors). Other negative significant correlation was found between ventral VOI-GM and 

Hand-Arm Movement test (left, r = .24, p ;< .05). In summary, our analysis hence revealed 

only a limited number of associations of which some conformed to our expectations (rostral 

PMd volume is associated with cognitive performance, caudal PMd volume with motor 

performance), but others were highly counter-intuitive.

NKI—In the NKI cohort, the only significant positive correlation was found between rostral 

VOI-GM and performance at TMT-A, this result was highly significant (r = .32, p < .01). In 

contrast, negative correlations (indicating that higher GMV was associated with worse 

performance) were only found for the dorsal VOI-GM with the Card Sorting Test (r = − .23, 

p < .05), Word Context test (r = − .24, p < .05) and the Proverbs Test (Free Inquiry, r = − .28, 

p < .05).

Full correlation analyses

Since correction for confounding variables can have unexpected detrimental effects on the 

correlations, we also examined correlation without correction for confounding effects of age, 

gender and education. The results of this full correlation approach are illustrated in Fig. 3.

FZJ—Significant positive correlations between ventral VOI-GM and Hand-Arm Movement 

median performance, as well as negative correlation between caudal VOI-GM and Hand-

Arm Movement performance (left harm score: r = −.22, p < .05; median score: r = −.22, p 
< .05) were replicated with the full Pearson Correlation approach. In contrast, the other 

positive and negative correlations that were found to be significant with the Partial 

Correlation approach did not remain significant with the Full Correlation Approach.

In turn, several associations not found previously were observed in the full correlation 

approach. These related the rostral VOI-GM to performance at Block Tapping Test 

(Forwards, r = .26, p < .05), the central VOI-GM to performance at Block-Tapping test 

(forwards: r = .29, p <.01; backwards: r = .22, p < .05) and median number of Finger-

Tapping (r = .23, p < .05), as well as the ventral VOI-GM to forward Digit Span scores 

(Score: r = .26, p < .05, Span: r = .21, p < .05) and Block-Tapping performance (Forwards; r 
= .25, p < .05).
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NKI—The significant positive correlation between rostral VOI-GM and performance at 

TMT-A was replicated with the Full Correlation approach (TMT-A; r = .26, p < .01). In 

addition, the negative correlations between dorsal VOI-GM and Card Sorting (Sort 

Recognition: r = −.24, p < .05), as well as Word Context test (r = −.26, p < .05) remained 

significant with the Full Correlation approach. In contrast, the positive correlation between 

dorsal VOI-GM and performance at Benton Test did not remain significant with the Full 

Correlation Approach.

In turn, several significant positive correlations were revealed only by the Full Correlation 

approach. These comprised caudal VOI-GM with Conflict-dimension of the Attention 

Network Task (ANT; r = .18, p < .05) as well as ventral VOI-GM with Alert-Dimension of 

the ANT (r = .18, p < .05) and performance at TMT-A (r = .20, p < .05). Somewhat 

surprisingly, we also observed many additional negative correlations indicating better 

performance being associated with lower GMV (that were not evidenced with the Partial 

Correlation approach). These were found for rostral VOI-GM with performance at the 

Switching condition of the Design Fluency test (r = −.18, p < .05), central VOI-GM with 

performance at the Design Fluency test (Filled Dots: r = −.19, p < .05; Empty Dots: r = −.21, 

p < .05), ventral VOI-GM with performance at Design Fluency test (Empty Dots; r = −.25, p 
< .01; Switching: r = −.18, p < .05), dorsal VOI-GM with Free Sorting in Card Sorting Task 

(r = −.27, p < .01), the Filled Dots condition of the Design Fluency test (r = −.18, p < .05) 

and Verbal Fluency (Category, r = −.19, Category Switching, r = −.23; p < .05).

To sum up, our results revealed relatively few significant associations between behavioral 

performance in individual volumes of the PMd parcels, in particular when considering that 

we focused the analysis on sensitivity by not correcting for multiple comparisons. In 

addition, only two findings that indicate a positive relationship between local GMV and 

behavioral performance were consistent across both approaches (partial correlations 

adjusting for demographic factors and full correlations). In the FZJ cohort, we found 

significant positive correlations between ventral parcel GMV and performance in a motor 

task (Hand-Arm Movement, which also shows negative correlation with caudal GMV). In 

turn, in the NKI cohort, we found consistent positive correlations between rostral VOI-GM 

and visuo-motor speed (TMT-A). Unexpectedly, we also found a negative correlation 

between dorsal VOI-GM and inferential reasoning (Card Sorting and Word Context Test) in 

NKI cohort that was stable across both approaches.

In turn, there was little convergence between the findings from the two samples. Evidently, 

we would have expected, that we would be able to obtain conceptual replications between 

the tests in either sample that tap into the same mental functions (such as Stroop-like tasks). 

Even more interestingly, though, we found that for the same test (TMT-A) a correlation with 

GMV of the rostral PMd was found in the NKI but not FZJ sample. As illustrated in Fig. 4, 

the variance in rostral VOI-GM values appeared similar in both cohorts, while the range of 

TMT-A completion times was more concentrated to faster reaction times in the FZJ cohort.

Random sampling

We first examined whether the direction of observed correlations was stable across many 

independently drawn small samples from our cohorts. When considering that the probability 
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of observing a positive/negative correlation by chance given no systematic effect in the 

underlying population is 50%, it appeared that the proportion of positive/negative 

correlations in the smaller subsamples was close to chance level for many behavioral 

measures and VOI-GM, and even more especially when n = 15. This pattern is illustrated for 

rostral VOI-GM in Fig. 5. For this particular VOI, the highest rate of convergence across 

subsampling was prevalent for negative correlations with 80–85% in FZJ when n = 30 and 

93–94% in NKI when n = 15. In FZJ, this highest rate was observed for negative correlation 

with performance in the Stroop test (naming and interference performance). In the NKI 

subsamples, this highest rate was reached for the negative correlations between rostral VOI-

GM and performance in Card Sorting, as well as Word Context.

Examination of the percentage of actually (nominally) significant correlation coefficients 

across subsamples revealed that it was generally low. As illustrated in Fig. 6, for rostral 

VOI-GM, it closely resembled the rate of expected false positive results at p < .05 under 

Gaussian assumptions. In particular, the rates were mostly below 5% in very small samples 

(i.e. n = 15) and almost only bigger subsamples (i.e. n = 30) outperformed the rate of 5%. 

Importantly, the highest percentage of significant correlation for rostral VOI-GM was 

reached by performance in the Stroop test, which was also one of the most stable 

correlations in its direction (though a negative one). In contrast, the positive association 

between rostral VOI-GM and performance at TMT-A in the NKI data, which appeared as 

one of the most robust finding in the whole NKI cohort, and one of the most stable in its 

direction across subsamples, barely reached 5% (4.9%) of significance in these small 

samples.

Discussion

Relating behavior to premotor functional parcels with structural brain behavior correlation: 
uninformative results

The present study aimed to corroborate functional characterization by task-activation data as 

compiled in the BrainMap database using structural brain-behavior correlations, providing 

an alternative approach to describe what a given brain region does. In particular, we 

examined the association between inter-individual variations in GMV computed for five 

right PMd parcels and a broad range of neuropsychological measures in healthy adults, in 

order to test the hypothesis that preferential activation in task-based studies is mirrored by 

relationships to individual behavioral performance. The analyses were performed in two 

independent samples using both partial correlations adjusting for effects of age, gender and 

education, as well as full correlations. For both samples, our results revealed only few 

significant associations between VOI-GM and test performance, whose correlation 

coefficients (i.e., effect sizes) were generally low and often not robust to adjusting for 

confound effects. Importantly, one of the strongest individual effects (correlation between 

TMT-A and rostral PMd GMV in the NKI sample) was not replicated in the FZJ cohort and 

was significant in less than 10% of subsamples, even when n = 60, and even reversed in 

direction in ~20% to 40% of all subsamples. Thus, our analysis did not allow corroborating 

or extending the findings from behavioral decoding based on fMRI activations. Importantly, 

sanity check of structural data, behavioral data, and their relationship had ensured that our 
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data met standard quality for structural brain behavior correlation approaches. Therefore, we 

consider several issues below that may account for the low brain-behavioral inferential 

power of the used approach.

Structural brain behavior correlations in healthy adults: positive, and equally likely, 
negative correlations

One striking finding in our analyses was the relatively high rate of negative correlations (i.e., 

higher VOI-GM related to lower performance). Somewhat surprisingly, the high prevalence 

of such associations going against the common conception that higher GMV should be 

associated with better behavioral performance was found across both cohorts. Accordingly, 

examination of the proportions across small samples revealed that negative correlations were 

equally as likely as positive correlations. Nevertheless, negative correlations are rarely 

reported in published studies using structural brain-behavior correlations. One reason may 

be that most of the studies only examined the more intuitive positive relationships (i.e., 

higher GMV is associated with higher performance), following the hypothesis that “the 

bigger the better” (cf., (Yuan and Raz, 2014)). In their recent structural brain behavior 

replication study, Boekel et al. (2015) focused on the direction of the structural brain 

behavior correlations reported in the original articles resulting in one-sided as opposed to 

two-sided hypothesis tests. Therefore, to the best of our knowledge, the present study is the 

first to examine potential negative correlations between VOI-GM and a range of behavioral 

measures. However, in a recent study, Smolker et al. (2015) reported negative correlations in 

whole-brain structural brain behavior correlation studies examining brain regions in which 

GMV correlated with performance in tests of executive functions in a cohort of 68 healthy 

subjects. The convergent finding of negative correlation between our VOI-GM structural 

brain behavior correlation study and an independent whole brain structural brain behavior 

correlation study suggests that negative correlation is not an artifact of our VOI-GM 

approach. Nevertheless, probably due to the lack of substantial evidence of negative 

correlation in the scientific literature, a convincing methodological explanation (or 

neurobiological theory) accounting for this phenomenon is still lacking. One potential 

explanation for negative correlation could be related to opposite effects of age on some 

behavioral performance and grey matter. That is, aging could be related to both performance 

improvement (due to higher expertise in higher age, (Craik and Bialystok, 2006)), and grey 

matter decrease (Raz, 2000), resulting in a spurious negative relationship between higher 

performance and decreased GMV. Nevertheless, this hypothesis holds true only for negative 

correlation following the full correlation approach, not adjusted for confounding effects of 

age. Hence, negative correlations were also observed when controlling for confounding 

effects of age on the relationship between behavioral performance and GMV. One can not 

exclude the hypothesis that optimal neurobiological development across adult age would 

imply some kind of synaptic pruning or apoptosis resulting in higher cognitive performance 

but lower grey matter volume as estimated by the VBM approach. However, there is 

currently no well-supported neurobiological theory accounting for negative structural brain 

behavior correlations, thus these hypotheses remain speculative. Accumulating evidence of 

negative correlation would help either to identify a methodological explanation or build a 

well-supported neurobiological theory of the phenomenon. Therefore, future structural brain 
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behavior correlation studies should systematically examine and report both, positive and 

negative, correlations.

Limitations of the VOI approach

While most of the structural brain behavior correlation studies examined the neural 

correlates of a particular behavioral aspect across the whole brain (Genon et al., 2014, 2016; 

Müller et al., 2015; Smolker et al., 2015), in the present study, we examined the behavioral 

correlates of GMV in some specific VOIs. In other words, while many structural brain 

behavior correlation studies searched for a significant correlation between a priori defined 

behavioral measures and brain GMV with a voxel-wise approach, we searched for 

significant correlations between GMV in some a-priori defined VOIs and a wide range of 

behavioral measures. However, when compared to whole brain structural brain behavior 

analyses, the VOI-GM approach may underestimate structural brain behavior correlations 

for two main reasons: the statistical approach and the VOI definition method.

In our VOI-GM approach, for each subject, each VOI-GM is a summary estimate of voxel 

intensity. Correlation analyses between these summary VOI-GM values and behavioral 

scores were then performed either when controlling for variance related to confounding 

variables age, gender and education or with full variance range. In contrast, most of the 

whole brain structural brain behavior studies have used the General Linear Model (GLM) as 

implemented voxel-wise in SPM (Friston et al., 1994). Searching for structural brain-

behavior correlation with this approach is often performed by introducing several regressors 

(or predictors) in addition to the behavioral measure of interest (X) in the design matrix, 

such as age, gender, TBV, and a behavioral measure of general cognitive functioning (e.g. 

(Takeuchi et al., 2010, 2013; Genon et al., 2014)). Consequently, each voxel intensity (V) is 

modelled as a function of explanatory or confounding variables (e.g., V = ß1X + ß2age + 

ß3gender + ß4TBV + ß5 general cognitive functioning + ε). Therefore, within such a linear 

setting, the inclusion of extraneous determinants of the outcome (i.e., predictors of GMV) 

may potentially result in greater efficiency for the estimation of the association of interest 

due to better fit of the prediction model to the data. On the other hand, searching across all 

brain voxels or all voxels within one brain lobe (such as frontal lobe) for voxels fitting a 

prediction (be it complex or simple, such as V = β1X + ε) could result in false positives. 

Nevertheless, many previous voxel-wise VBM studies were performed on a great number of 

voxels without correction for multiple comparisons as correction is frequently too 

conservative in standard setting (Smith and Nichols, 2009). In sum, either the VOI approach 

might lack sensitivity due to summarizing all voxels pattern to one value, or the voxel-wise 

GLM approach might be too lenient thus overestimating the relationship between GMV 

variations and behavioral performance.

Another potential limitation of the VOI-GM approach is related to the issue of VOI 

definition as already suggested by Kanai (2016). This author schematically demonstrated 

how the spatial uncertainty in the VOI definition could influence the estimation of the 

correlation with a slight shift in the (true) peak (or center of gravity) resulting in smaller 

correlations. In our opinion, Kanai raised an important issue. In the framework of relating 

task-related brain activation to behavioral phenotype, the VOI definition issue has already 
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been empirically addressed showing that VOI estimates should be defined at the subject-

level by the most-activated voxels within each subjec’s statistical map (e.g., (Tong et al., 

2016)). In contrast, the VOI definition question still lacks empirical examination in the 

framework of structural brain behavior correlation analyses. In the present study, our VOIs 

were defined based on a meta-analytic approach of activation studies from a previous 

parcellation study (Genon et al., 2017). Importantly, cerebral topographical organization 

(i.e., location of brain modules) can be complicated by interindividual variability (e.g., 

(Geyer et al., 1996)). Hence, a meta-analytically-defined VOI by essence reflects average at 

the group level. Thus, the definition of a given brain subregion based on a meta-analytic 

approach can be slightly shifted from the exact location of the target brain modules in some 

subjects. In such cases, the estimation of the correlation would be underestimated as 

suggested by Kanai. For these reasons, the VOIs definition in structural brain behavior 

correlation studies should be addressed in future studies. From the methodological 

perspective, future studies should address how different VOI definitions influence the 

correlation estimations. In a more conceptual view, future studies could address whether a 

structural brain behavior correlation approach can confirm a brain-behavior relationship 

evidenced by an fMRI activation study when VOIs are defined at the subject level by the 

subject-specific cluster of activation.

Significant structural brain behavior correlation and the need of variations

By definition, a correlation reflects a ratio between the covariance of the two variables and 

the product of their standard deviations (i.e., their respective range of variations). Significant 

and powerful structural brain behavior correlations can be observed when the variations in 

behavioral measures associated with neurobiological substrates (be it cortical thickness, grey 

matter volume or white matter) are higher than variations in behavioral measures that are 

driven by putative confounding factors such as mood, arousal state, personality or 

motivation. In other words, the between-subjects behavioral differences should be primarily 

driven by between-subjects cortical morphological differences. However, most of the 

neuropsychological measures have been originally developed to identify behavioral 

perturbations in clinical populations and, therefore, should not be primarily sensitive to 

variations in the healthy young and middle-age adult population. For example, the Delis 

Kaplan Executive Function System (D-KEFS; (Delis et al., 2001)) has been designed to 

assess brain damages in clinical settings. Thus, the neurobiological origins of between-

subject variations in behavioral performance at standard neuropsychological tests in the 

healthy young and middle-age adult population could be questioned.

In the present study, we found evidence that correlation crucially depends on the variations 

in the selected sample. For example, we found a highly significant positive correlation 

between performance at TMT-A and VOI-GM in one cohort (NKI) but not in another cohort 

(FZJ). Examination of the scatter plot for the correlation between rostral VOI-GM and TMT-

A suggested that slightly more scattered TMT-A performance in NKI cohort has allowed 

significant correlation in NKI, but not in FZJ. Thus, our results support the hypothesis that 

evidence of a correlation crucially depends on the variance in the selected sample. In line 

with this hypothesis, Yuan and Raz (2014) have previously shown that effect in structural 

brain behavior studies of executive functions are greater for behavioral measures and 
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samples with greater variations of age, thus suggesting that variations in behavioral 

measures that related to neurobiological substrates are more likely to be observed in an older 

population.

Therefore, we suggest that, in order to identify a significant relationship between a given 

behavioral measure (e.g., visuo-motor coordination performance) and a given brain 

structural aspect (e.g., grey matter volume), a study should one the one hand promote 

sensitive behavioral measures and on the other hand capitalize on populations showing 

variations in both brain structural data and behavioral measurements. Such conditions, 

underlying significant structural brain behavior correlations, are more likely to be met in 

populations that have encountered neurocognitive changes or deviations such as older and 

clinical populations.

Low effect sizes in noisy data possibly reflect spurious findings

The lack of relevant variations in the selected data discussed in the previous section raised a 

related issue: the noise in the data and its plausible relation to statistical significance’s 

fallacy. While our data have been extensively checked for major and global deviations from 

quality standard, they can contain a large noise component. First, collection of behavioral 

data in human cohorts is often performed by several experimenters, which can result in 

uncontrolled variations in test administration (such as variations in instructions, variations in 

attitude to participant and variations of administration rules). Despite such bias can be partly 

reduced with computerized assessment, one can assume that uncontrolled variations (due to 

the participant’s attitude, e.g. (Weber et al., 2002)) cannot be completely ruled out. Second, 

as discussed in the previous section, behavioral measurements in cohort datasets (and big 

data) have usually not been calibrated for the specific purpose of the subsequent brain-

behavior studies, which can possibly result in a lack of sensitivity and/or validity. 

Furthermore, despite the computed GMV data conveys neurobiologically meaningful 

information, they are likely to contain significant levels of noise due for example to field 

inhomogeneities, local deformations, or movement artifacts. We can therefore consider that 

correlation analyses are often performed between GMV and behavioral variables in data that 

contain a non-negligible noise component. In this context, we observed a low effect size (or 

r) and unreliable direction (correlation sign). Such a pattern is actually in line with the recent 

statistical work and discussion of Gelman and collaborators. These authors have shown that 

statistically significant results in a noisy setting (i.e. noisy measurements) are highly likely 

to be in the wrong direction (Type S error) and overestimate the actual effect sizes ((Type M 

error; (Gelman and Carlin, 2014; Loken and Gelman, 2017)). In light of this empirical 

consideration, our own findings of poor reliability might be considered as reflecting spurious 

results that can arise when VOI-based structural brain behavior correlations are performed in 

healthy adult cohorts with possibly noisy measurements. Thus, together and in line with the 

recent replication crisis (Boekel et al., 2015; Gelman and Geurts, 2017), the present study 

emphasizes that low effect size in noisy brain-behavior correlation should be taken with 

caution rather than indicative of a robust feature of brain-behavior relationship.
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Conclusions and perspectives

In the present study we demonstrated that the functional differentiation of the right PMd as 

evidenced by task-based activation profiles could not be corroborated by structural brain 

behavior correlations, questioning the hypothesized complementary convergence between 

approaches for behavioral characterization of brain regions. The present study thus suggests 

that, within the right PMd, functional specialization as observed in fMRI studies does not 

reliably entail a significant covariance of individual structure with behavioral performance in 

healthy adults. Based on the current results and recent findings from others (Boekel et al., 

2015, 2016; Kanai, 2016; Muhlert and Ridgway, 2016), we outlined a few potential 

limitations and related recommendations for future studies. Namely, future studies should 

more systematically examine, report and discuss negative correlations, address the influence 

of the VOI definition on null results, and consider low effect size in data with possibly a 

large noise components as likely reflecting spurious findings.
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Fig. 1. 
The five right PMd parcels and their behavioral functional characterization across the 

Brainmap database (Genon et al., 2017).
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Fig. 2. 
Partial correlations between right PMd VOI-GM and behavioral performance in the FZJ and 

NKI cohorts; color coding: blue = negative, red = positive; significant correlation 

coefficients (p ≤ .05, uncorrected for multiple testing) are highlighted with a bold font and 

square frame; TMT: Trail-Making Test, CWI: Color Word Interference, ANT: Attention 

Network Test.
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Fig. 3. 
Pearson’s correlations between right PMd VOI-GM and behavioral performance in the FZJ 

and NKI cohorts; color coding: blue = negative, red = positive; significant correlation 

coefficients (p ≤ .05, uncorrected for multiple testing) are highlighted with a bold font and 

square frame. TMT: Trail-Making Test, CWI: Color Word Interference, ANT: Attention 

Network Test.
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Fig. 4. 
Scatter plot of rostral VOI-GM and raw TMT-A performance in FZJ and NKI cohorts.
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Fig. 5. 
Percentage ratio of positive (red) and negative (blue) correlation coefficients in the rostral 

VOI-GM parcel for the FZJ (A) and NKI (B) cohorts, irrespective of level of significance. 

TMT: Trail-Making Test, CWI: Color Word Interference, ANT: Attention Network Test.
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Fig. 6. 
Percentage of significant correlations across 1000 random subsampling of different sizes (n 

= 15, yellow; n = 30, orange; n = 60, red) with replacements in FZJ cohort (A) and in NKI 

cohort (B).
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Table 1

Sample characteristics.

FZJ NKI t-/X2-statistic p-value

N 87 135

Age (± SD) 44.25 (14.03) 47.45 (15.20) −1.58 .116

Age Range 21–71 20–75

Gender (% female) 54.02 61.48 1.21 .329

BDI (± SD) 2.79 (3.27) 2.79 (2.48) −.09 .931

EHI (± SD) 85.47 (15.37) 84.67 (13.80) .41 .686

Education (Years) 14.76 (4.13) 15.47 (2.29) −1.66 .098

Note: SD = Standard Deviation, BDI = Beck Depression Inventory, EHI = Edinburgh Handedness Inventory, t = Student’s t-test statistic, X2 = Chi-
square test statistic, significant p-value threshold set at p < 05.
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