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Abstract

Recently, there has been much interest in using volume-outcome data to establish causal 

associations between measures of surgical experience or quality and patient outcomes following a 

surgical procedure, such as coronary artery bypass graft, total hip replacement, and radical 

prostatectomy. However, there does not appear to be a standard approach to a volume-outcome 

analysis with respect to specifying a volume measure and selecting an estimation method. We 

establish the recurrent marked point process as a general framework from which to approach a 

longitudinal volume-outcome analysis and examine the statistical issues associated with using 

longitudinal data analysis methods to model aggregate volume-outcome data. We review 

assumptions to ensure that linear or generalized linear mixed models and generalized estimating 

equations provide valid estimates of the volume-outcome association. In addition, we provide 

theoretical and empirical evidence that bias may be introduced when an aggregate volume measure 

is used to address a scientific question regarding the effect of cumulative experience. We conclude 

with the recommendation that analysts carefully specify a volume measure that most accurately 

reflects their scientific question of interest and select an estimation method that is appropriate for 

their scientific context.
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1. Introduction

Volume-outcome studies are typically used to evaluate whether patients treated by high-

volume healthcare providers (e.g., surgeons or hospitals) experience better post-treatment 

outcomes than those treated by low-volume providers. Examples include evaluating the 

association between surgeon volume and patient mortality following coronary artery bypass 

graft [1] and estimating the effect of hospital volume on patient mortality following 

treatment with mechanical ventilation [2]. Volume-outcome studies are important among 

health services researchers because the results may have direct policy implications [3], such 

as regionalization of health care into large healthcare centers [4] or selective referral of 

patients to high-volume providers [5]. In our motivating example, interest lies in estimating 

the effect of surgeon volume, as a measure of surgeon experience, on patient mortality 

following lung resection, in which cancerous regions are removed.

1.1. Estimation methods for longitudinal outcomes

Even though volume-outcome analyses have become common in the applied literature, there 

does not appear to be definitive guidance on appropriate estimation methods in the 

methodological literature. Volume-outcome studies typically involve repeatedly collecting 

patient information on the same surgeons or hospitals over time, often from an 

administrative database. Collecting information in this fashion motivates the application of 

longitudinal data analysis methods, which account for temporal dependence. These include a 

semi-parametric generalized estimating equation (GEE) approach [6] and a likelihood-based 

generalized linear mixed model (GLMM) approach [7]. Results of case studies have been 

used to determine appropriate methods for a volume-outcome analysis [8]. Illustrative 

examples [9] and simulation studies [10, 11] have explored the statistical properties of an 

estimating equation estimator and a mixed-model estimator in the context of volume-

outcome data.

A volume-outcome analysis raises unique methodological issues because volume represents 

not only the time-dependent exposure of interest but also the cluster size [10–13]. If the 

outcome is dependent on cluster size, then cluster size is termed ‘informative’ or ‘non-

ignorable.’ Several specialized estimation methods have been proposed to generate inference 

when cluster size is ‘informative’. One approach is based on within-cluster resampling 

(WCR) [12, 14] and is similar in spirit to multiple imputation [15]. Another approach is to 

weight each cluster by the inverse cluster size [13, 16] and analyze the data by using a 

weighted estimating equation [17]. Researchers recently developed specialized methods to 

provide efficiency gains over WCR and cluster-weighted GEE [18].

To provide guidance on appropriate estimation methods, we adopt the recurrent marked 

point process [19] as a general framework from which to approach a longitudinal volume-

outcome analysis. The defining characteristic of recurrent marked point process data is that 

an outcome (e.g., post-surgery patient mortality) exists if and only if an event (e.g., a 

surgery) occurs. The recurrent marked point process setting motivates specific assumptions 

regarding any time-dependent exposure process and the event-time process that determine 

which repeated measures regression methods are appropriate. The latter assumption 

regarding the timing of events—specifically, the endogeneity between past outcomes and 
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occurrence of a subsequent event—is a natural assumption to explore in the context of 

volume-outcome data and facilitates consideration of the ‘informative’ cluster size issue. For 

example, if a patient experiences an adverse outcome, then the surgeon may obtain fewer 

patient referrals due to his or her past surgical performance. Therefore, the surgeon will have 

a smaller cluster size, which will appear to be ‘informative’ of an adverse outcome for his or 

her patients.

1.2. Volume as a longitudinal covariate

Whereas a growing body of statistical literature has focused on the comparison of multilevel 

marginal methods and mixed-model methods, and on issues related to potentially 

informative cluster sizes, little attention has been given to two key longitudinal aspects that 

are central in volume-outcome studies. First, the ‘volume’ for a given provider is not a fixed 

quantity but rather a time-dependent quantity that changes over the course of study. In most 

volume-outcome studies, the ‘cluster’ of outcome data from a given provider is linked to a 

volume measure that is determined on a coarse time scale, such as the annual total 

procedures performed in the current calendar year. Using an annual volume measure risks 

using a mismeasured covariate that is also subject to endogeneity because the volume used 

as a predictor for patient i at time t is actually an aggregate of past (earlier in the year) and 

future (later in the year) procedure occurrences. Second, many volume-outcome studies do 

not discuss the selection of the appropriate volume measure for the scientific question of 

interest, and there are two key options to consider: recent volume and cumulative volume. In 

this setting, recent volume may be the number of procedures performed in the last year; an 

analysis that uses recent volume assumes that ‘acute’ experience is of primary interest. 

Alternatively, cumulative volume is analogous to cumulative exposure used in 

epidemiological studies and would be calculated by considering volume accumulated over 

all years.

A critical consideration in a volume-outcome analysis is selecting a volume measure that is 

appropriate for the type of healthcare provider under study. Volume-outcome data are often 

composed of a patient outcome and information regarding patient case mix. In this situation, 

the data are non-aggregate in the sense that the outcome and exposures are measured on a 

fine time scale, that is, at each surgery time. Conversely, in much of the applied literature, 

surgeon volume and hospital volume are modeled in an aggregate fashion on a coarse time 

scale, usually as a yearly total, that is, the total number of surgeries performed in a calendar 

year, or a yearly average, that is, the cumulative volume at the end of follow-up divided by 

the length of follow-up. However, hospital volume and surgeon volume are typically used to 

quantify different provider characteristics. Hospital volume is typically used as a measure of 

hospital size [2] or quality. In this case, an aggregate volume measure may be appropriate 

because hospital size is roughly constant over shorter durations of time [20]. Surgeon 

volume is typically used as a measure of surgeon experience [21]. In this case, an aggregate 

volume measure may not be appropriate because surgeon experience is an evolving process 

on a fine time scale. An aggregate measure of surgeon volume on a coarse time scale may 

ignore this serial structure [22,23].
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A related issue in a volume-outcome analysis is selecting a volume measure that most 

accurately addresses the scientific question of interest. Suppose that primary interest lies in 

surgeon volume as a measure of surgeon experience. In this situation, there is more than one 

volume measure that may be used to quantify surgeon experience. For example, consider 

two surgeons who both accumulated 100 patients during their career. The first surgeon 

attained this experience in 5 years, with 20 patients per year, whereas the second surgeon 

attained this experience in 20 years, with five patients per year. These surgeons have 

identical cumulative volume but different contemporaneous volume. A non-aggregate 

measure of surgeon volume may more accurately quantify cumulative surgeon experience. 

An aggregate measure of surgeon volume, such as a yearly total, may more accurately 

quantify contemporaneous experience. However, the applied literature does not typically 

distinguish between cumulative volume and contemporaneous volume as measures of 

surgeon experience [21,22].

In this paper, we consider situations in which the primary target of inference is a regression 

model that quantifies the association between provider volume and a post-surgery patient 

outcome among those who receive surgery. Our goals are to provide a general framework 

from which to approach a longitudinal volume-outcome analysis, and to articulate the 

statistical issues associated with an aggregate analysis. We establish the recurrent marked 

point process as a general framework in Section 2.2 and review assumptions for generating 

valid inference regarding the volume-outcome association from non-aggregate data in 

Section 2.4. We examine the statistical issues associated with selecting an aggregate volume 

measure in Sections 2.5 and 2.6. In Section 3, we explore via simulation the potential for 

bias when estimating a volume-outcome association if the recurrent marked point process 

assumptions are violated and/or surgeon volume is specified using an aggregate measure. In 

Section 4, we describe a motivating example by using Surveillance, Epidemiology, and End 

Results (SEER)-Medicare data and illustrate non-aggregate and aggregate analyses of 

volume-outcome data. We provide concluding discussion in Section 5.

2. Statistical methods

2.1. Notation

We assume that an outcome exists if and only if a surgery occurs and therefore limit our 

focus to observations collected in discrete time. Let Xi(t) and Yi(t) denote a patient-level 

exposure and post-surgery patient outcome (or mark), respectively, observed for surgeons i = 

1, …, n at discrete calendar times t = 1, …, T. Similarly, let Ni(t) denote cumulative surgeon 

volume, that is, the total number of surgeries performed by surgeon i through time t. We 

denote the complete history of each variable ascertained retrospectively at time t by 

Xi(t) = Xi(s) ∣ s ⩽ t ; Ni(t) = Ni(s) ∣ s ⩽ t  and Yi(t) = Y i(s) ∣ s ⩽ t . In addition, we use 

the notation dNi(t) = Ni(t) − Ni (t − 1) that such that dNi(t) = 1 indicates a surgery at time t.

For simplicity of presentation, surgeons are assumed to be independent. However, in 

practice, surgeons are typically nested (either fully or partially) within hospitals, and patient 

outcomes collected within the same hospital may be correlated. In our application, we 

accommodate the clustering of surgeons within hospitals by using hierarchical generalized 
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linear models [24]. There are also options for specifying a hierarchical structure within a 

marginal model [25,26].

2.2. Recurrent marked point process framework

Table I provides an illustration of recurrent marked point process data for a hypothetical 

surgeon at 12 calendar times during three calendar years and alternative specifications for 

time-dependent surgeon volume during year 3. The symbol ‘×’ indicates the occurrence of a 

surgery; the symbol ‘−’ indicates that a surgery did not occur. Non-aggregate volume is 

computed at each calendar time: total volume is calculated by summing the number of 

surgeries through each calendar time, and recent volume is calculated by summing the 

number of surgeries in, for example, the year previous to each calendar time. Aggregate 

volume is computed at each calendar year, with the option of either including the year-3 

surgeries in the calculation or lagging by, for example, a calendar year and excluding the 

year-3 surgeries from the calculation. Given the apparent differences between these 

specifications, selecting a volume specification therefore represents the primary challenge of 

a volume-outcome analysis. A secondary issue is considering the factors that influence the 

occurrence of a surgery.

2.3. Target of inference

Suppose that primary scientific interest lies in quantifying the volume-outcome association 

between surgeon volume Ni(t) and a post-surgery patient outcome Yi(t) among individuals 

who receive surgery, that is, dNi(t) = 1. As the target of inference, we identify a marginal (or 

‘partly conditional’ [27]) regression model:

μi(t) = E Y i(t) ∣ dNi(t) = 1, Ni(t), Xi(t) = xitβ. (1)

The vector of covariates xit is composed of the relevant components of the exposure and 

event-time processes. Parameters β quantify the association between these components and 

the average outcome. Note that dNi(t) = 1 is required in μi(t) because, otherwise, Yi(t) would 

not exist.

The marginal model in Equation (1) is a useful target of inference for a volume-outcome 

analysis in which primary interest lies in describing the marginal association between a full 

or partial history of the event-time process and the mark process after adjusting for a full or 

partial history of the exposure process. In particular, the marginal model may be used to 

quantify the volume-outcome association among a population of patients who receive 

surgery. It may also be used to predict a future patient outcome as a function of the observed 

exposure and event-time processes.

2.4. Assumptions for time-dependent covariates

To ensure consistency of a covariance-weighted GEE estimator or a likelihood-based mixed-

model estimator for β, it is sufficient to assume that for all t′ > t:

Assumption 1
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Y i(t) ⊥ Ni t′ ∣ Xi(t), Ni(t), dNi(t) = 1, (2)

Assumption 2

Y i(t) ⊥ Xi t′ ∣ Xi(t), Ni t′ , dNi(t) = 1, (3)

where ⊥ denotes independence. If either of these conditions is not satisfied, then an 

independence estimating equation (IEE) is the only estimating equation option that can 

generally be used for consistent estimation of β [19,28].

Assumption (1) states that the current patient outcome is conditionally independent of the 

future number of events for a particular surgeon given the history of the exposure and event-

time processes. Assumption (1) implies that there is no causal association between a patient 

outcome and the occurrence of a subsequent surgery for the surgeon. This is an important 

association to explore in the context of volume-outcome data because if a patient 

experiences an adverse outcome, then the surgeon may subsequently obtain fewer patient 

referrals due to his or her past surgical performance. Therefore, the surgeon will have a 

smaller cluster size, which will appear to be ‘informative’ of an adverse outcome for his or 

her patients. Assumption (1) therefore facilitates direct consideration of a mechanism for 

‘informative’ cluster size, secondary to the volume-outcome association of interest.

Assumption (2) states that the current patient outcome is conditionally independent of a 

future patient-level exposure, given the history of the exposure process and the future history 

of the event-time process. Assumption (2) implies that there is no causal association between 

a patient outcome and a subsequent patient-level exposure for a particular surgeon. This is 

also an important association to explore in the context of volume-outcome data because if a 

patient experiences an adverse outcome, then the surgeon may subsequently be assigned 

patients with a lower risk of an adverse outcome. In this case, biased estimates of the 

exposure-outcome association may result due to endogeneity between outcome and 

exposure, so that the volume-outcome association may not be properly adjusted for patient-

level exposures. It is generally possible to evaluate Assumptions (1) and (2) by using the 

observed data [19].

In summary, the recurrent marked point process setting provides a general framework from 

which to approach a longitudinal volume-outcome analysis. It is a realistic framework to 

consider because a patient outcome exists if and only if a surgery occurs. It motivates 

specific assumptions regarding the exposure and event-time processes that determine which 

longitudinal data analysis methods generate valid inference regarding the volume-outcome 

association. In Section 3, we evaluate the potential for bias when estimating a volume-

outcome association if the recurrent marked point process assumptions are violated.

2.5. Aggregate specifications for cumulative volume

Recall that Ni(t) = Σs = 1
t dNi(s) denotes a non-aggregate specification for cumulative 

volume, that is, the total number of surgeries performed by a surgeon i through time t. 
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Suppose that Ni(t) is aggregated using f Ni Tj , a function of Ni Tj  for time j = 1, …, J . 

Consider the following specifications for f Ni Tj . First, a running average—an average 

that includes cumulative volume through the previous year:

f1 Ni T j = Ni T j − 1 + δj
2 = Ni T j − 1 + Ni T j − Ni T j − 1

2
= Ni T j + Ni T j − 1

2 .
(4)

Second, a total average—an average of cumulative volume at the start and end of follow-up:

f2 Ni T j = Ni TJ + Ni T0
2 ≡ Ni = 1

2 ∑
s = 1

TJ
dNi(s) if Ni T0 = 0. (5)

Figure 1(a) presents aggregate specifications for cumulative volume, along with non-

aggregate volume, for a hypothetical surgeon. Non-aggregate surgeon volume ( ) 

represents the total number of surgeries performed by the surgeon through each calendar 

time. Running average ( ) and total average ( ) represent aggregate measures that 

quantify cumulative surgeon experience at each calendar year. Both specifications appear to 

provide a satisfactory approximation to non-aggregate volume. Non-aggregate volume is an 

increasing step function; running average and running total simply have larger steps.

The impact of specifying surgeon volume by using a running average can be explored by 

examining the estimating function for estimation of β. Assume a cross-sectional model for 

the expectation of Yi(t): μi(t) = β0 + β1Xi(t) + β2Ni(t). However, suppose that the fitted mean 

model for Yi(t), denoted by μi⋆(t), includes f Ni Tj :

μi⋆(t) = β0 + β1Xi(t) + β2f Ni T j = xit⋆β. (6)

The vector of covariates xit⋆ includes the running average specification for cumulative 

volume. Let witt′ denote the (t, t′) element of the inverse of a working covariance matrix Vi. 

Then the estimating equation for estimation of β is:

Uβ(β) = ∑
i = 1

n
Xi

⋆TV i
−1 Y i − μi⋆ dNi

= ∑
i = 1

n
∑
j = 1

J
∑

t′ = Tj − 1

Tj
∑

t = Tj − 1

Tj
xit′

⋆ witt′ Y i(t) − μi⋆(t) dNi(t)dNi t′ .
(7)

Recall that consistency of β  relies on the assumption that the estimating function is 

unbiased. Examine each summand of Uβ(β):
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xit′
⋆ witt′ Y i(t) − μi⋆(t) dNi(t)dNi t′

= xit′
⋆ witt′ Y i(t) − β0 − β1Xi(t) − β2f Ni T j dNi(t)dNi t′

= xit′
⋆ witt′ Y i(t) − β0 − β1Xi(t) − β2Ni(t) + β2Ni(t) − β2f Ni T j dNi(t)dNi t′

= xit′
⋆ witt′ Y i(t) − μi(t) + β2Ni(t) − β2f Ni T j dNi(t)dNi t′ .

(8)

In this case, consistency of β  requires that either E Ni(t) − f Ni Tj = 0 or β2 = 0. For the 

running average specification defined in Equation (4), recall that δj = Ni(Tj) − Ni(Tj – 1) and 

examine Ni(t) − f1 Ni Tj  for Tj – 1 ⩽ t ⩽ Tj:

∑
t = Tj − 1

Tj
Ni(t) − f1 Ni T j = ∑

t = Tj − 1

Tj
Ni(t) − Ni T j − 1 + δj

2

= ∑
t = Tj − 1

Tj
Ni(t) − Ni T j − 1 − δj

2

= ∑
s = 1

δj
s − δj + 1 × δj

2

= δj δj + 1
2 − δj δj + 1

2
= 0.

(9)

Therefore, in a linear model, a running average specification for surgeon volume provides a 

consistent estimate of the effect of cumulative surgeon experience.

The total average specification defined in Equation (5) can be viewed as a 

reparameterization of β2Ni(t) that partitions the variability in Ni(t) into within-surgeon and 

between-surgeon variability:

β2Ni(t) = β2 Ni(t) − Ni + Ni = β2 Ni(t) − Ni + β2Ni . (10)

The fitted mean model for Yi(t) includes Ni:

μi⋆(t) = β0 + β1Xi(t) + β2Ni = μi(t) − β2 Ni(t) − Ni . (11)

Although β2 Ni(t) − Ni  is not included in the fitted mean model, consistent estimation of β2 

is not hampered because Ni and Ni(t) − Ni are orthogonal. Therefore, in a linear model, a 

total average specification for surgeon volume provides a consistent estimate of the effect of 

cumulative surgeon experience.

It is important to note that for a non-linear model, μi(t) − μi⋆(t) is not necessarily proportional 

to Ni(t) − f Ni Tj . Therefore, in a non-linear model, a running average or total average 

specification for cumulative volume may not provide a consistent estimate of the effect of 

cumulative surgeon experience. In addition, if there is endogeneity in the exposure or event-

time processes, then Assumptions (1) and (2) or working independence no longer assure that 

the estimating function in Equation (7) is unbiased because xit⋆ is not equivalent to xit .
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2.6. Aggregate specifications for contemporaneous volume

Recall that f Ni Tj  denotes a function of a volume measure Ni Tj  for time j = 1, …, J. 

Consider the following specifications for f Ni Tj  First, a yearly total— a total volume for 

each year:

f3 Ni T j = Ni T j − Ni T j − 1 = ∑
s = 1

Tj
dNi(s) − ∑

s = 1

Tj − 1
dNi(s)

= ∑
s = Tj − 1

Tj
dNi(s) .

(12)

Second, a yearly average—an average volume across the follow-up period:

f4 Ni T j = 1
J ∑

j = 1

J
f3 Ni T j = 1

J ∑
s = 1

TJ
dNi(s) = J

2 f2 Ni T j . (13)

Figure 1(b) presents aggregate specifications for contemporaneous volume, along with non-

aggregate volume ( ), for a hypothetical surgeon. Yearly total ( ) and yearly average 

( ) represent aggregate measures that quantify contemporaneous surgeon experience at 

each calendar year. The yearly total and yearly average specifications appear to provide a 

poor summary of non-aggregate volume. Although non-aggregate volume increases steadily 

over time, yearly average volume is constant and yearly total volume decreases.

2.7. Summary

In this section, we focused on a marginal regression model to generate inference regarding 

the volume-outcome association. We used the recurrent marked point process framework to 

motivate specific assumptions that determine which longitudinal data analysis methods 

generate valid inference. We highlighted situations in which estimation of the volume-

outcome association is identical using either aggregate or non-aggregate specification for 

cumulative volume. Although we focused on estimation and inference within the framework 

of GEE [6], identical issues arise within a mixed-model framework [7]. First, because 

volume is a time-dependent exposure, endogeneity in the event-time process may bias 

estimation of the volume-outcome association [19]. Second, because volume represents not 

only the time-dependent exposure of interest, but also the cluster size, Assumption (1) may 

be evaluated to determine whether cluster size is ‘informative’ [10–13]. In subsequent 

sections, we explore the impact of these issues on estimation and inference via a simulation 

study (Section 3) and motivating application (Section 4).

3. Simulation study

We designed a simulation study to emulate our motivating example: a multiyear volume-

outcome study in which interest lies in the association between cumulative surgeon volume 

and patient outcomes among those who receive surgery [29]. Although the outcome in our 

motivating example is binary, we generated a continuous outcome in the simulation study to 
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facilitate a direct comparison of marginal and conditional parameter estimates. The goal of 

the simulation study was to evaluate the potential for bias when estimating a volume-

outcome association if:

1. Impact of endogeneity: The recurrent marked point process assumptions are 

violated, and/or

2. Impact of aggregation: Surgeon volume is specified using an aggregate measure.

We generated patient outcomes dependent on non-aggregate surgeon volume, but in 

aggregate analyses, we specified volume by using a yearly total and a yearly average 

volume, which are strategies frequently used in the applied literature [1, 21]. We also 

specified volume by using a running average and total average.

3.1. Parameters

At each of 1000 iterations, we generated data for a population of 10,000 surgeons at t = 1, 

…, 100 discrete time points [19]. We selected T = 100 to emulate a volume-outcome study 

conducted over a lengthy follow-up period. We generated a binary variable to indicate a 

surgery at time t such that the probability of a surgery depended on the previous outcome 

and current exposure:

dNi t Xi t , Ni t , Yi t = dNi t Xi t , Y i t − 1
B expit η0 + η1Ri t − 1 + η2Xi t , (14)

where expit(·) = exp(·)/[1 + exp(·) and Ri(t − 1) denotes a residual for Yi(t − 1) centered by 

its conditional expectation given Xi(t − 1). The parameter η1 quantifies the extent to which 

Assumption (1) is violated. We considered η1 = (log 1, log 2), which correspond to no 

association and a moderate association, respectively, between the previous outcome and the 

probability of a surgery. We specified an autoregressive exposure process:

Xi t Xi t , Ni t , Yi t = Xi t Xi t − 1 , Y i t − 1
N θ0Xi t − 1 + θ1Ri t − 1 , v2 1 − θ0

2 . (15)

The parameter θ1 quantifies the extent to which Assumption (2) is violated. We considered 

θ1 = (0, 0.1), which correspond to no association and a moderate association, respectively, 

between the previous outcome and current exposure.

To generate the mark process, we specified a marginal mean μi(t) = β0 + β1Xi(t) + β2Ni(t) in 

which (β1, β2) = (−1, 0.05) represent moderate effects of exposure and volume. We 

generated surgeon-specific random intercepts and slopes γi = {γi0, γi1, γi2}, serial 

correlation Wi(t) and measurement error ∊i(t) from independent Gaussian distributions. 

Therefore, the mark process was

Y i t ∣ Xi t , Ni t , Yi t , Zi t
= Y i t ∣ Xi t , Ni t , Zi t
= β0 + β1Xi t + β2Ni t + γi0 t + γi1 t Xi t + γi2 t Ni t + W i t + ϵi t ,

(16)
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where {Zi(t) = {Wi(t), γi} denotes unmeasured error for the longitudinal process Yi(t) and 

Zi t = Zi s ∣ s ⩽ t . Note that γi0 t , γi1 t , γi2 t  and W i t  were sequentially centered by 

their conditional expectation given dNi(t) = 1 so that the marginal expectation of Yi(t) was 

correctly specified.

From each simulated population, we sampled n = 300 surgeons and calculated non-

aggregate cumulative volume Ni(t) as the total number of surgeries performed by a surgeon i 
through time t. We aggregated Ni(t) into four blocks corresponding to a total volume through 

year j = 1, …, 4. In aggregate analyses, we specified volume by using four measures:

1. running average volume [Equation (4)],

2. total average volume [Equation (5)],

3. yearly total volume [Equation (2)], and

4. yearly average volume [Equation (13)],

where (1) and (2) quantify cumulative experience and (3) and (4) quantify contemporaneous 

experience. We fit an IEE, a GEE assuming an exchangeable correlation structure, a linear 

mixed model with random intercepts (LMM-RI), and a linear mixed model with random 

intercepts, random exposure and volume effects, and an autoregressive correlation structure 

(LMM-RS). For the total average and yearly average specifications, a mixed model with 

random volume effects is not appropriate because volume is not time-dependent. We report 

mean point estimates for the volume-outcome association (β2 = 0.05), mean standard error 

estimates, empirical standard error of point estimates, and estimated coverage of 95% 

confidence intervals.

3.2. Results

3.2.1. Impact of endogeneity.—Table II provides simulation results for a non-

aggregate specification for cumulative volume. In the scenario that specifies no endogeneity 

(η1 = log 1, θ1 = 0), every method provides an approximately unbiased parameter estimate 

with acceptable confidence interval coverage. In the scenario that specifies endogeneity in 

the event-time process (η1 = log 2, θ1 = 0), an IEE provides an approximately unbiased 

parameter estimate with acceptable coverage. However, covariance-weighting methods 

provide a biased parameter estimate with reduced coverage. The relative bias in estimating 

β2 is approximately 10% for GEE and LMM-RI. If there is also endogeneity in the exposure 

process (η1 = log 2, θ1 = 0.1), then covariance-weighting methods may provide substantially 

biased parameter estimates with poor coverage. The relative bias in estimating β2 is 

approximately 24% for GEE and LMM-RI. A key observation is that endogeneity in the 

exposure process does not appear to negatively impact estimation of β2 if there is no 

endogeneity in the event-time process (η1 = log 1, θ1 = 0.1).

Standard error estimates obtained via IEE are often greater than those obtained via GEE and 

LMM. This is not surprising; it is well-known that an IEE may be inefficient relative to a 

covariance-weighting method under non-independence correlation structures [30]. However, 

LMM-RI appears to underestimate the standard error. Recall that to generate the data, we 

specified surgeon-specific random effects and serial correlation. LMM-RI therefore 
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misspecifies the within-surgeon correlation structure and provides inconsistent standard 

error estimates, whereas LMM-RS correctly specifies the correlation structure. Although the 

IEE and GEE misspecify the correlation structure, the standard errors are consistent, 

courtesy of the robust standard error estimator.

Note the contrast in the performance of LMM-RI and LMM-RS with respect to bias. 

Although LMM-RS is the correctly specified model, LMM-RI provides parameter estimates 

with a smaller amount of bias. For example, with η1 = log 2 and θ1 = 0.1, the mean 

estimates of β2 obtained via LMM-RI and LMM-RS were 0.038 and 0.034, respectively. 

The difference is due to the different weighting scheme specified by the covariance models. 

Table III provides a subset of the covariance weight matrix from one simulated data set for 

(i) LMM-RI and (ii) LMM-RS. Of note are the larger off-diagonal elements for LMM-RS, 

which accentuate the bias incurred from violation of Assumption (1) or Assumption (2).

3.2.2. Impact of aggregation.—Table IV provides simulation results for a running 

average and total average specification for cumulative volume. In the scenario that specifies 

no endogeneity (η1 = log 1, θ1 = 0), if volume is specified using a running average, then 

both estimating equations provide an approximately unbiased parameter estimate with 

acceptable confidence interval coverage. Although the mixed model with random intercepts 

provides an approximately unbiased point estimate, coverage is reduced because the 

correlation model is misspecified and the standard error is underestimated. The mixed model 

with random volume effects underestimates the volume-outcome association and provides 

reduced coverage, possibly because the surgeon-specific volume effects are not properly 

estimated because of the lack of variability in within-surgeon volume measurements. If 

volume is specified using a total average, then every estimation method provides an 

approximately unbiased parameter estimate with acceptable coverage. These results show 

that, in this specific aggregate analysis, bias is not incurred from ignoring the serial structure 

of the event-time process.

Table V provides simulation results for a yearly total and yearly average specification for 

contemporaneous volume. Results are provided for the scenario in which there is no 

endogeneity in either the exposure or event-time process. If volume is specified using a 

yearly total, then every estimation method underestimates the effect of cumulative 

experience and provides substantially reduced confidence interval coverage. The 

independence point estimate is on average half of the true value. All non-independence point 

estimates are on average approximately zero. If volume is specified using a yearly average, 

then every estimation method overestimates the effect of cumulative experience and provides 

reduced coverage. All point estimates are on average double the true value, which is 

expected in this case because the yearly average is half of the total average. These results 

show that substantial bias may be incurred from using an aggregate volume measure that is 

incongruous with the scientific question of interest.

3.2.3. Impact of aggregation and endogeneity.—Table IV also provides simulation 

results for a running average and total average specification for cumulative volume in 

scenarios that specify endogeneity in the exposure and/or event-time processes. In the 

scenario that specifies endogeneity in the event-time process (η1 = log 2, θ1 = 0) if volume 
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is specified using a running average, then every estimation method provides a biased 

estimate of the volume-outcome association with reduced confidence interval coverage. If 

volume is specified using a total average, then every estimation method provides a 

substantially biased parameter estimate with poor coverage. Positive bias is expected in this 

case because surgeon volume is positively associated with the outcome, which in turn is 

positively associated with occurrence of a subsequent event. Every estimation method 

performs slightly worse using either volume specification if there is also endogeneity in the 

exposure process (η1 = log 2, θ1 = 0.1). These results highlight the fact that if there is 

endogeneity in the underlying event-time process and an aggregate measure is used to 

specify cumulative volume, then an IEE may not guarantee consistent estimation of the 

effect of cumulative experience.

Biases incurred from aggregation and from endogeneity may be in the opposite direction. 

For example, comparing the results in Table IV for the running average specification with 

those presented in Table II shows that the amount of positive bias incurred from aggregation 

was constant across each estimation method, whereas negative bias was incurred from 

violation of Assumption (1). We performed additional simulation studies to examine the 

sensitivity of this result to the specified association between Ni(t) and Yi(t) and that between 

Yi(t) and Ni(t + 1). We specified all combinations for the sign of β2 and η1: (+, +); (−, −); (−, 

+); and (+, −). In each case, the biases incurred from aggregation and from endogeneity were 

in the opposite direction.

3.3. Summary

We explored the potential for bias when estimating the association between a non-aggregate 

specification for cumulative volume and patient outcomes if the recurrent marked point 

process assumptions are violated. We found that covariance-weighting methods may provide 

a biased estimate of the volume-outcome association if the assumptions are violated. We 

also explored the potential for bias when cumulative surgeon experience is specified using 

an aggregate volume measure. We found that an estimating equation estimator provides an 

unbiased estimate of the volume-outcome association when an aggregate measure of 

cumulative volume is used. However, every method may provide a biased estimate when an 

aggregate measure of contemporaneous volume is used. In addition, we explored the impact 

of endogeneity in the event-time process on estimation when using an aggregate measure of 

cumulative volume. We found that every method, including an independence estimation 

equation, may provide a biased estimate.

4. Application

According to the World Health Organization, lung cancer is the most common cause of 

cancer-related death in men, the second most common in women, and is responsible for 1.3 

million deaths annually worldwide [31]. Early stage non-small cell lung cancer is optimally 

treated with pulmonary resection, for example, lobectomy (removal of a lobe of the lung) or 

segmentectomy (removal of an anatomic division of a particular lobe). We used the SEER-

Medicare linked database (1992–2002) to explore the association between surgeon volume 

and 30-day patient mortality following lung resection. The database combines clinical 
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information from population-based cancer registries in the USA with Medicare claims 

information [32]. Because the database excludes patients treated in a geographical region 

outside the SEER registry boundary and operated patients not insured by Medicare, SEER-

Medicare volume is an undercount of the actual provider volume. For the purposes of 

illustration, we limited our focus to approaches to modeling provider volume and therefore 

ignored the effect of volume misclassification, which tends to bias the volume-outcome 

association toward the null [33].

4.1. Materials and methods

The outcome of interest was death from any cause within 30 days following resection. 

Information was available on resection date, patient demographic characteristics (gender, 

race, age, and Charlson comorbidity index), tumor characteristics (stage and histology), 

unique provider study number (surgeon and hospital), and provider characteristics (teaching 

hospital). Using the resection date and surgeon identifier, we calculated non-aggregate 

surgeon volume at each resection date, which quantifies cumulative experience. We also 

calculated aggregate specifications for surgeon volume: a running average and a total 

average volume, which quantify cumulative experience, and a yearly total and yearly 

average volume, which quantify contemporaneous experience.

To estimate the volume-outcome association, we modeled non-aggregate and aggregate 

surgeon volume as a continuous variable. We adjusted for gender, race, age (linear spline), 

Charlson comorbidity index, tumor stage and histology, indicator of teaching hospital, and 

yearly hospital volume (linear spline). We fit an IEE and a GEE assuming an exchangeable 

correlation structure. We also fit a GLMM with surgeon-specific random intercepts 

(GLMM-RI), a GLMM with surgeon-specific random intercepts and volume effects 

(GLMM-RS), and a hierarchical generalized linear model with surgeon-specific and 

hospital-specific random intercepts (HGLM). We completed all analyses by using R 2.8.0 

[34].

4.2. Results

Following exclusion criteria described elsewhere [29], our data set consisted of 20,208 

patients who underwent surgery by 1334 surgeons at 727 hospitals. The mean and median 

total surgeon volume (N.B., SEER-Medicare) were 11 and 3 patients, respectively. 

Approximately 5% of patients died within 30 days of surgery, a rate that was constant across 

the follow-up period. Figure 2 presents observed patient outcomes for three surgeons over 

the follow-up period. The surgeon in the top, middle, and bottom frame performed 10, 27, 

and 54 resections, respectively, over the study period that were captured by SEER-Medicare. 

For each surgeon, there appears to be an association between experience and patient 

mortality. Patients appear to be more likely to die if their surgeon is inexperienced. Although 

an aggregate measure of volume might classify these three surgeons differently, the apparent 

pattern in patient outcomes is similar across surgeons.

4.2.1. Non-aggregate surgeon volume.—Table VI provides estimates of the odds 

ratio for 30-day patient mortality for non-aggregate surgeon volume. According to the IEE, a 

10-patient increase in surgeon experience was associated with a −2.0% difference in the 
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odds of 30-day patient mortality, 95% CI (−4.1%, +0.2%), which includes the null value of 

0%. According to the GEE, a 10-patient increase in surgeon experience was associated with 

a −2.5% difference in the odds of 30-day patient mortality, 95% CI (−4.8%, −0.1%). These 

estimates quantified the effect of cumulative surgeon experience among a population of 

patients. According to the GLMM-RI, a 10-patient increase in surgeon experience was 

associated with a −2.6% difference in the odds of 30-day patient mortality, 95% CI (−5.0%, 

−0.2%). According to the GLMM-RS, a 10-patient increase in surgeon experience was 

associated with a −2.7% difference in the odds of 30-day patient mortality, 95% CI (−5.1%,

−0.2%). These estimates quantified the effect of cumulative surgeon experience among a 

population of surgeons. According to the HGLM, a 10-patient increase in surgeon 

experience was associated with a −2.7% difference in the odds of 30-day patient mortality, 

95% CI (−4.9%, −0.4%). This estimate quantified the effect of cumulative surgeon 

experience among a population of hospitals.

Although the IEE is assured to provide a consistent estimator for the volume-outcome 

association, it may be preferable to generate inference by using a more efficient covariance-

weighting method. This requires evaluation of the recurrent marked point process 

assumptions. To evaluate Assumption (1) we fit a Cox regression model, defining surgeons 

as clusters, for time between successive surgeries and adjusted for previous patient outcome. 

The estimated hazard rate ratio for a subsequent surgery associated with previous patient 

death was 1.014, 95% CI (0.945, 1.090). Thus, the hazard of a subsequent surgery among 

surgeons with a previous patient death were 1.4% higher than that among surgeons without a 

previous patient death, although this difference was not statistically significant (p = 0.710). 

Therefore, there was no evidence to suggest that Assumption (1) is violated.

Evaluating Assumption (2) is difficult in this application because six of the nine adjustment 

variables are patient specific and hence time dependent. However, our simulation results 

revealed that violation of Assumption (2) did not negatively impact estimation of the 

volume-outcome association if Assumption (1) is satisfied. Given that Assumption (1) 

appears to be satisfied, it may not be necessary to satisfy Assumption (2) in this application.

4.2.2. Aggregate surgeon volume.—Table VI also provides estimates for each 

aggregate volume measure: running average, total average, yearly total, and yearly average. 

The estimates obtained using a running average and total average specification for 

cumulative volume were similar to those obtained using non-aggregate volume with respect 

to effect size. However, unlike those obtained using non-aggregate volume, none of the 

differences obtained using a total average were statistically significant. The estimates 

obtained using a yearly total or yearly average specification revealed that an increase in 

contemporaneous surgeon experience was associated with a weak but non-significant 

decrease in the odds of 30-day patient mortality. For each estimation method, the estimated 

effect of contemporaneous experience was larger than the effect of cumulative experience. 

We obtained the largest association by using a yearly average specification for volume. 

However, none of these associations were statistically significant.
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4.3. Summary

We used SEER-Medicare data to explore the association between surgeon volume and 30-

day patient mortality following lung resection. Covariance-weighted methods revealed that 

cumulative surgeon experience as measured by non-aggregate surgeon volume was 

associated with a significant decrease in the risk of patient mortality following lung 

resection. Use of these methods required verification of recurrent marked point process 

assumption (1). There was no evidence to suggest that Assumption (1) was violated. A 

running average and total average specification for cumulative surgeon volume provided 

results similar to those obtained using non-aggregate surgeon volume. Contemporaneous 

surgeon experience as quantified by a yearly total or yearly average volume was not 

significantly associated with the risk of patient mortality.

5. Discussion

In this paper, we established the recurrent marked point process as a general framework 

from which to approach a longitudinal volume-outcome analysis. The recurrent marked 

point process framework motivates specific assumptions regarding the exposure and event-

time processes to ensure that GEEs and GLMMs provide valid estimates of the volume-

outcome association. We provided theoretical and empirical evidence that bias may be 

introduced when an aggregate volume measure is used to address a scientific question 

regarding the effect of cumulative surgeon experience. In our application, we found that 

spurious results may be obtained when surgeon volume is specified using an aggregate 

measure and the effect of cumulative surgeon volume is of primary interest.

Researchers interested in ‘informative’ cluster size suggest that a weighted estimating 

equation must be used to estimate the effect of exposure when cluster size is related to the 

outcome of interest [12–14, 16, 18]. We suggest that an unweighted estimating equation may 

be used to estimate a volume-outcome association. This contrast is due to an important 

difference between our setting and that of other researchers. These researchers defined 

cluster size as ‘ignorable’ if E[Yi(t) | Ni(T), Xi(t)] = E[Yi(t) | Xi(t)] and viewed cluster size 

as a nuisance variable. In their simulation studies, they generated cluster size by imposing a 

negative relationship between cluster size and a cluster-specific baseline risk, that is, a 

cluster-specific random intercept. Conversely, in a volume-outcome study, the expectation of 

Yi(t) given Ni(t) is the target of inference and cluster size is the exposure of interest. In this 

case, cluster weighting may be problematic because Ni(t) would appear in μi(t) and in the 

cluster weights. We have addressed the ‘informative’ cluster size issue via an assumption 

regarding the endogeneity between past outcomes and occurrence of a subsequent event. 

Evaluation of Assumption (1) explicitly allows analysts to explore a mechanism for 

‘informative’ cluster size, secondary to the volume-outcome association of interest.

We provided theoretical and empirical evidence that substantial bias may be incurred from 

selecting a volume measure that may be incongruous with the scientific question of interest. 

We focused on cumulative surgeon volume to capture the learning effect within a surgeon. 

The effect of contemporaneous volume may also be of interest to capture cross-sectional 

differences across surgeons based on their current practice. Recall the two hypothetical 

surgeons who both accumulated 100 patients during their career. The first surgeon achieved 
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this experience in 5 years, whereas the second surgeon achieved this experience in 20 years. 

It is plausible that patient outcomes will improve over time for both surgeons. However, it is 

also plausible that patient outcomes may be relatively better for the first surgeon due to 

economy of scale; the first surgeon may be more likely to invest in equipment and staff to 

accommodate the larger number of patients treated per year. Establishment of the volume-

outcome association for cumulative volume may suggest more investments in surgeon 

training to improve patient outcomes. Establishment of the association for contemporaneous 

volume may suggest more investment in infrastructure. It is possible that both effects are 

present and that both interventions are necessary to improve the overall quality of patient 

care.

In applications, both effects may be explored by including measures of cumulative and 

contemporaneous volume in the fitted mean model:

g μi t = β0 + β1Xi t + β2Ni T j − 1
Cumulative 

+ β3 Ni t − Ni T j − 1
Contemporaneous 

. (17)

We considered the model presented in Equation (17) in our application. According to an 

IEE, the odds ratios associated with a 10-patient increase in cumulative and 

contemporaneous surgeon volume were 1.002, 95% CI (0.815, 1.233) and 0.978, 95% CI 

(0.955, 1.003), respectively. According to a GEE, with an exchangeable correlation 

structure, the odds ratios associated with a 10-patient increase in cumulative and 

contemporaneous surgeon volume were 0.985, 95% CI (0.800, 1.213) and 0.974, 95% CI 

(0.948, 1.002), respectively. These results are similar to those obtained via separate models 

(Table VI). In practice, it may be difficult to separate the effects of cumulative and 

contemporaneous volume; collinearity may result in wide confidence intervals.

It may also be of interest to test for an interaction between Ni(Tj − 1) and Ni(t) − Ni(Tj − 1) to 

ascertain, for example, whether the effect of contemporaneous experience differs between 

surgeons with different levels of cumulative experience. We also considered this model in 

our application and found a positive interaction between cumulative and contemporaneous 

surgeon experience with respect to risk of 30-day mortality. For example, according to an 

IEE, a 10-patient increase in contemporaneous experience for a surgeon with a cumulative 

experience of 10 patients was associated with a −6.6% difference in the odds of 30-day 

patient mortality, 95% CI (−28%, +21%), whereas a 10-patient increase in contemporaneous 

experience for a surgeon with a cumulative experience of 40 patients was associated with a 

−3.7% difference in the odds of 30-day patient mortality, 95% CI (−24%, +22%).These 

results indicate that recent surgeon experience was more beneficial to patients treated by 

surgeons with less total experience. It may be difficult to identify interaction effects due to 

collinearity that may result in wide confidence intervals. However, both IEE and GEE 

indicate the possibility of an interaction between cumulative and contemporaneous 

experience (p = 0.054 and p = 0.043, respectively).

For the purposes of illustration, we only considered a linear term for cumulative surgeon 

volume in our application. However, there was evidence that the relationship between 
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cumulative volume and 30-day patient mortality was non-linear. For example, in an IEE, a 

quadratic term for cumulative volume revealed a small but highly significant non-linear 

association (p = 0:013). Analysts must carefully specify the correct functional form for the 

volume measure they select [23]. There is a large amount of literature that urges caution 

when categorizing a continuous variable [35], which is a strategy frequently employed with 

provider volume.

An important limitation of our application, and of volume-outcome analyses in general, is 

the lack of information regarding surgeon volume prior to the start of follow-up, that is, 

previous experience. In our application, we assumed that surgeon volume was zero at the 

start of follow-up and effectively ignored any previous surgeon experience. Therefore, non-

aggregate surgeon volume may not accurately represent cumulative surgeon experience, 

which may lead to improper estimation of the volume-outcome association. We recommend 

that analysts consider this important limitation to their volume-outcome analyses.

Analysis choices are often limited by the type or amount of information available to the 

analyst. In our application, we used the resection date and unique surgeon study number to 

calculate non-aggregate surgeon volume at each resection date. The information required to 

calculate non-aggregate surgeon volume is usually available for a volume-outcome analysis 

because volume-outcome data are typically collected using an administrative database. 

However, if specific dates are not available and only an aggregate volume measure is 

available, such as the total number of surgeries performed in a calendar year, then we 

recommend using a running average specification that includes cumulative volume through 

the previous year. In our simulation study and in our application, the running average 

specification provided a satisfactory approximation to non-aggregate surgeon volume and 

properly estimated the effect of cumulative surgeon experience.
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Figure 1. 
Aggregate specifications for surgeon volume.
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Figure 2. 
Observed patient outcomes for three surgeons from SEER-Medicare data.
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Table I.

Illustration of recurrent marked point process data and alternative specifications for time-dependent volume at 

t = 10, 11, 12; the symbol ‘×’ indicates the occurrence of a surgery, and the symbol ‘−’ indicates that a surgery 

did not occur.

Time t 1 2 3 4 5 6 7 8 9 10 11 12

Surgery × × - × × × - - - × × ×

Year j 1 2 3

Volume Non-aggregate Total 6 7 8

Recent 2 2 3

Aggregate Total (not lagged) 8 8 8

Total (lagged) 5 5 5

Recent (not lagged) 3 3 3

Recent (lagged) 2 2 2
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Table II.

Simulation results for a non-aggregate specification for cumulative volume: mean of estimated regression 

coefficients (mean β2), mean of standard error estimates (mean SE), empirical standard error of estimated 

regression coefficients (ESE β2), and percent coverage of 95% confidence intervals (% coverage).

(η1, θ1) Method Mean β2 Mean SE ESE β2 % coverage

(log 1, 0) IEE 0.050 0.0020 0.0021 95

GEE 0.050 0.0020 0.0020 95

LMM-RI 0.050 0.0008 0.0020 52

LMM-RS 0.050 0.0019 0.0020 95

(log 1,0.1) IEE 0.050 0.0018 0.0017 95

GEE 0.050 0.0018 0.0017 95

LMM-RI 0.050 0.0007 0.0017 61

LMM-RS 0.050 0.0019 0.0019 95

(log 2, 0) IEE 0.050 0.0023 0.0022 95

GEE 0.045 0.0022 0.0021 36

LMM-RI 0.045 0.0009 0.0021 6

LMM-RS 0.043 0.0022 0.0021 8

(log 2,0.1) IEE 0.050 0.0029 0.0028 95

GEE 0.038 0.0027 0.0027 1

LMM-RI 0.038 0.0012 0.0027 0

LMM-RS 0.034 0.0028 0.0031 0
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Table III.

Linear mixed model (LMM) covariance weights for simulated data.

(i) LMM-RI (ii) LMM-RS

0.605 −0.014 −0.014 0.760 −0.403 −0.028

0.605 −0.014 0.982 −0.391

0.605 0.979
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Table IV.

Simulation results for aggregate specifications for cumulative volume: mean of estimated regression 

coefficients (mean β2), mean of standard error estimates (mean SE), empirical standard error of estimated 

regression coefficients (ESE β2), and percent coverage of 95% confidence intervals (% coverage).

Running average Total average

% %

(η1, θ1) Method Mean β2 Mean SE ESE β2 coverage Mean β2 Mean SE ESE β2 coverage

(log 1,0) IEE 0.050 0.0021 0.0020 96 0.050 0.0181 0.0184 94

GEE 0.050 0.0021 0.0020 96 0.050 0.0179 0.0182 94

LMM-RI 0.050 0.0008 0.0019 56 0.050 0.0180 0.0182 95

LMM-RS 0.046 0.0019 0.0018 36

(log 2, 0) IEE 0.053 0.0024 0.0024 78 0.090 0.0088 0.0091 1

GEE 0.048 0.0023 0.0023 82 0.088 0.0085 0.0090 1

LMM-RI 0.048 0.0009 0.0023 37 0.088 0.0084 0.0090 1

LMM-RS 0.047 0.0022 0.0022 66

(log 2, 0.1) IEE 0.056 0.0030 0.0031 53 0.098 0.0071 0.0071 0

GEE 0.044 0.0028 0.0029 43 0.106 0.0065 0.0066 0

LMM-RI 0.044 0.0013 0.0029 10 0.106 0.0063 0.0066 0

LMM-RS 0.046 0.0028 0.0030 71
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Table V.

Simulation results for aggregate specifications for contemporaneous volume: mean of estimated regression 

coefficients (mean β2), mean of standard error estimates (mean SE), empirical standard error of estimated 

regression coefficients (ESE β2), and percent coverage of 95% confidence intervals (% coverage).

Volume specification Method Mean β2 Mean SE ESE β2 % coverage

Yearly total IEE 0.025 0.015 0.015 63

GEE 0.003 0.016 0.016 16

LMM-RI 0.003 0.006 0.016 2

LMM-RS 0.008 0.011 0.011 4

Yearly average IEE 0.099 0.036 0.036 72

GEE 0.099 0.036 0.035 72

LMM-RI 0.098 0.036 0.035 73
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Table VI.

Estimated association between various specifications for surgeon volume and odds of 30-day patient mortality 

from SEER-Medicare data: odds ratio (OR) and 95% confidence interval (CI).

Volume specification Method OR 95% CI

Cumulative

 Non-aggregate IEE 0.980 (0.959, 1.002)

GEE 0.975 (0.952, 0.999)

GLMM-RI 0.974 (0.950, 0.998)

GLMM-RS 0.973 (0.949, 0.998)

HGLM 0.973 (0.951, 0.996)

 Running average IEE 0.980 (0.959, 1.001)

GEE 0.974 (0.951, 0.998)

GLMM-RI 0.974 (0.950, 0.998)

GLMM-RS 0.973 (0.950, 0.998)

HGLM 0.973 (0.950, 0.996)

 Total average IEE 0.980 (0.953, 1.008)

GEE 0.970 (0.939, 1.002)

GLMM-RI 0.967 (0.934, 1.002)

HGLM 0.972 (0.944, 1.002)

Contemporaneous

 Yearly total IEE 0.935 (0.835, 1.046)

GEE 0.916 (0.816, 1.028)

GLMM-RI 0.917 (0.798, 1.053)

GLMM-RS 0.933 (0.764, 1.139)

HGLM 0.915 (0.806, 1.039)

 Yearly average IEE 0.897 (0.769, 1.047)

GEE 0.845 (0.708, 1.009)

GLMM-RI 0.834 (0.689, 1.010)

HGLM 0.858 (0.729, 1.010)
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