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Abstract

We report a concise, stereocontrolled synthesis of the neuro- toxic sesquiterpenoid, (–)-

picrotoxinin (1, PXN). The brevity of the route owes to regio- and stereoselective formation of the 

[4.3.0] bicyclic core by incorporation of a symmetrizing geminal dimethyl group at C5. 

Dimethylation then enables selective C–O bond formation in multiple intermediates. A series of 

strong bond (C–C and C–H) cleavages convert the C5 gem-dimethyl group to the C15 lactone of 

PXN.

Graphical Abstract

Picrotoxinin (1, PXN) is the flagship member of the picrotoxane family of natural products 

and continues to attract considerable attention from the synthesis community1–2,3,4,5,6,7,8 

due to its stereochemically-dense polyoxygenated structure and its use as a tool compound 

in neuroscience.9–,1,11 Picrotoxin (PTX), which consists of an equimolar mixture of PXN 

and its less-active C12 hydrate, picrotin (PTN), can exhibit useful therapeutic properties: 

chronic dosing of Down’s syndrome model mice (Ts65Dn) normalizes memory performance 

by reducing overactivity of GABAergic neurons.12 However, the therapeutic window of PTX 

is narrow: lethal convulsion through hyperexcitatory GABAA receptor antagonism occurs at 

low dose (LD50 = 2 mg/kg, rat, I.P.).13 In contrast, GABAAR antagonists like bilobalide14 

can share the therapeutic properties, target, and binding site of PXN yet avoid acute toxicity.
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15 Our group has identified ‘neurotrophic’ sesquiterpenes jiadifenolide16 and O-

debenzyltashironin17 as sharing the hyperexcitatory effects of convulsant GABAAR 

antagonists anisatin17 and PXN, yet jiadifenolide displays no convulsive signature in mice 

(Figure 1a).15,18 A short synthetic route might allow interrogation of analogs of PXN that 

similarly reduce its toxicity yet still antagonize GABAA receptors.19

The seminal work of Corey,1,2 Yamada,3 Yoshikoshi,4 and Trost5–,6,7 illustrated the 

difficulty of the contiguous stereotetrad of 1 (Figure 1b). Intermolecular formation of this 

stereo-dense motif is challenged by the cis-fused orientation of the C7, C9, and C15 carbons, 

which arises biosynthetically by an anti-Markovnikov cationic cyclization of a cadinyl 

cation and oxidative cleavage (Figure 1c).20,21 Corey1 and Yamada3 employed 

intramolecular cyclization/C–C oxidative cleavage steps to overcome this problem, while 

Trost5–,6,7 leveraged torsional strain with a small nucleophile to set the C7/C15 stereodiad 

and a classic palladium-cataly-zed cycloisomerization to make the C7/C9 junction. Yet all 

syntheses concede some C–C disconnections within and about the [4.3.0]-bicyclononane, 

rather than directly accessing the core by disconnections solely between the [4.3.0] ring 

junctions (Figure 1d). We found brevity of stereotetrad formation in the literature to 

correlate with overall synthesis length (Figure 1b). Disconnections solely between the 

junctions of the bicyclic core should then promote a shorter synthesis of 1.

With this strategic goal in mind, we encoded the oxidations of 1 with alkenes to arrive at 

carbocycle 2, which might derive from (R)-carvone1,3,5,22 via annulation of methyl-2-oxo-

butanoate (Figure 1e). Most oxidation patterns were embedded into starting materials,23 with 

the exception of the C15 carboxylate. Our decision to decrease C15 to the methyl oxidation 

state was informed by problems encountered in the literature4–,5,6,7,9–,10,11 with C10/C15 

translactonization and intramolecular epoxide opening at higher oxidation states of C15. 

However, we quickly discovered that a single methyl group on carvone led to the incorrect 

stereoisomer (1314, see Figure 2a). Instead, we found that geminal dimethylation enabled 

efficient synthesis of 2 in only 4 steps. The challenge then became discovery of a late-stage, 

stereoselective, cleavage of a strong C–C bond—a counterintuitive24 but, in this case, 

enabling tactic. Here we report its successful implementation in a concise synthesis of 1 
(Scheme 1).

Dimethylation of (R)-carvone was achieved in one25 or two26 steps, although the latter 

procedure was employed on 30g (200 mmol) scale. The magnesium enolate of 3 was formed 

by deprotonation with NaHMDS in the presence of anhydrous MgCl2; subsequent addition 

of methyl-2-oxobutanoate at −78 °C gave the aldol addition product 4 in 67% yield with 

excellent diastereoselectivity (>20:1) at C1 and inconsequential 3.3:1 diastereoselectivity at 

C9. Use of lithium, sodium, potassium, or zinc enolates gave diminished to no yield of 4. 

The reaction was quenched at −78 °C to avoid retro-aldol decomposition that occurs above 

−20 °C. This unusual aldol reaction occurs with high regio- and diastereoselectivity to form 

a quaternary carbon (C1) and a neopentyl alcohol (C9). Our working model posits an 

efficient relay of stereochemical information from the C4 stereocenter to C1 by avoidance of 

a 1,3-diaxial interaction between the axial C5 methyl group and methyl-2-oxobutanoate in 

the aldol addition transition state (Figure 2b). In contrast, use of trans-α-methyl-carvone (13, 

i.e. mono methylation) resulted in a 1:12 diastereomeric mixture favoring the opposite and 
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unproductive diastereomer (14). An extended enolate could not be formed with either (R)-

carvone or cis-α-methyl-carvone, and use of Corey’s hydrazone alkylation procedure1 gave 

no aldol addition product.

Alternative tactics that replaced one of the Me groups with Br, Cl, or CN groups were 

plagued by poor stereocontrol in formation of the C5 stereocenter and subsequent failure of 
the aldol addition through proton-transfer, elimination and aromatization pathways (Figure 

2c). Symmetrical substitution at C5 with silylhydroxymethylene (R3SiOCH2-),6 methyl 

ester, or nitrile groups required multiple steps for installation and the aldol addition still 

failed. Since the inclusion of an extra C5 methyl group enabled installation of all 15 carbon 

atoms of the picrotoxinin skeleton with the correct regio- and stereochemistry in just two 

steps and without need for C5 stereocontrol, we continued forward with a plan to excise the 

extra C5 methyl group at a late stage—a risky, but ultimately successful decision.

Neopentyl alcohol 4 was converted to 5 by a SOCl2-induced elimination.27 These conditions 

proved uniquely able to eliminate both diastereomers of the sterically congested C9 alcohol 

4. A vinylogous intramolecular 5-exo-trig aldol addition reaction yielded 2 in 90% yield 

upon treatment of 5 with LDA at 0 °C and warming to 23 °C. This reaction failed with the 

alkene derived from 14 due to competitive deprotonation and epimerization pathways.

Facile and scalable access to 2 allowed extensive interrogation of the remaining alkene 

oxidations. First, bromoetherification1,5,9 with NBS proved entirely selective for the 

isopropene group and delivered an 11:1 diastereomeric mixture of 6. This dual-purpose 

bromoetherification served to protect the Δ12,13 isopropenyl alkene and lock the 

conformation of 2 to promote lactonization at C10 and directed oxidation of the C5 methyl 

groups. Epoxidation of 6 initially suffered poor diastereocontrol under nucleophilic 

epoxidation conditions (e.g. alkali metalperoxides) and low conversion with electrophilic 

epoxidation reagents (e.g. DMDO, trifluoroperacetic acid). Although mCPBA alone was 

insufficient to react with 6, we found that use of KHCO3 with mCPBA in a biphasic mixture 

of CH2Cl2 and H2O at 23 °C afforded 7 with high diastereoselectivity in 84% yield. We had 

anticipated that dihydroxylation of 7 might be facile by analogy with Yoshikoshi’s OsO4/

pyridine oxidation of a similar substrate,4 but no more than 30% conversion could be 

obtained under these conditions (stoichiometric OsO4, pyridine). We eventually found that 

addition of citric acid to prevent off-pathway osmium sequestration28 enabled full 

conversion of 7 to 8. Steric congestion about the Δ2,3 alkene of 7, however, slowed 

conversion such that one equivalent of OsO4 still required 7 days to elicit an 81% yield.29 

This drawback was mitigated by excellent diastereoselectivity (>20:1) at C2 and C3 and 

spontaneous lactonization at C10. For comparison, the strong oxidant dimethyldioxirane 

reacted exclusively with the electron-deficient Δ8,9 alkene in 6 to provide 7, which did not 

react further.

Intermediate 8 set the stage to explore gem-dimethyl modification, including C–C bond 

cleavage. Geminal dimethyl groups predominate in terpenoids as a result of their 

biosynthesis from polyprenyl- (dimethylallyl) pyrophosphates.30 Modification of gem-

dimethyls, including their excision, can be effected with iron-oxo enzymes to produce 

biologically active scaffolds (Figure 3a).31 Similar demethylations have not been employed 
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in chemical synthesis since abiotic routes are not often constrained by biosynthetic building 

blocks, and retrosynthetic addition of an extra carbon-bound methyl group is seldom 

simplifying.32 In this example we found an exception to the rule.

Molecular modeling, which was later confirmed by analysis of the crystal structure of 8, 

indicated that the strain conferred upon the cyclohexane core by the two fused and one 

bridged pentacycles causes the C3 alcohol to tilt about 11° away from a parallel orientation 

to the C15 methyl group, with a dihedral angle (θ) of 31° (Figure 3b). This subtle shift in 

conformation places the C3 alcohol oxygen 2.920 Å (x-ray) away from the axial methyl 

group such that ether formation is slow due to torsional strain in the transition state (cf. ∠
−37.7°, θ0°, 1.365 Å (x-ray) for the C15 lactone C–O bond of PXN (1)). Consequently, it 

was possible to directly access the primary (ether 9 or iodide 16), secondary (acetal 17), or 

tertiary (lactone 18) oxidation states of the axial methyl group in 8 (Figure 3b). These 

oxidation states were accessible by generating IOAc33 with different reagents and 

temperatures, although acetal 17 was never formed as a major product (Figure 3b). Thus, use 

of AgOAc/I2 in methylene chloride at 23 °C under ambient light provided the ether 9 in 51% 

yield (Scheme 1), whereas the 1° iodide 16 was obtained at 0 °C in cyclohexane as the major 

product (Figure 3b). Notably, ketone 15 formed readily in the absence of iodine and was 

observed as a persistent byproduct. Treatment of 9 with TFDO at 0 °C generated hemiacetal 

9 as a 2.5:1 diastereomeric mixture, a distribution which may be attributed to the outward-

facing C–H bond being both less sterically hindered and experiencing better 

hyperconjugative donation from the C3 ether oxygen than its inward-facing counterpart. The 

same conditions for formation of 16 (AgOAc, I2, CH2Cl2, 23 °C) applied here led to Suárez 

fragmentation34 in 10 of the adjacent strong C–C bond to form 11 as a single stereoisomer. 

The tertiary iodide of 11 was removed with AIBN/Bu3SnH to form a single isomer of 12 
after cleavage of the formyl group in a basic work-up. A plausible explanation for this 

stereochemistry is that Bu3SnH is too large a hydrogen atom donor for hydrogen atom 

transfer (HAT) to occur at the concave face of C5. A 1,3-diaxial interaction between the C15 

and C14 methyl groups in the transition state for HAT at the concave face would further 

destabilize this pathway (Figure 3c). Finally, use of Pb(OAc)4/I2 in benzene with CaCO3 at 

23 °C under an aerobic atmosphere led directly to formation of the C15 lactone. Reduction 

with zinc cleaved the bromoether linkage of 12 to deliver (–)-picrotoxinin (1). Conversion to 

(–)-picrotin (19) occurred in one step and 84% yield by a Mukaiyama hydration,35 which 

had not been reported previously.2,4,6,7

Geminal dimethylation of carvone at C5 expedited forward entry to the carbocyclic core of 

PXN but revised our initial retrosynthesis, amounting to a ‘nonsense’ methylation transform 

(1 ⟹ 20 or 8, see Figure 4) in search of a forward solution. The complexity of 1 versus 20 
was not diminished by methylation since information content was added and no stereocenter 

was removed (Cm = 468 vs. 480 mcbits).36 Symmetrization of C5 in intermediate targets like 

8, however, greatly simplified entry into chemical space very close to 1. Interestingly, 5-

methyl-picrotoxinin (20) retained modest antagonism of the GABAA receptor (IC50 = 9 μM; 

vs. [3H] TBOB @ rat cerebral cortex) and slightly improved upon the aqueous stability of 1 
at pH 8, more than halving the pseudo-first order rate constant.37 Ongoing biological studies 
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intended for this manuscript that leveraged quick entry into picrotoxinin chemical space (8 

steps to 20) have been delayed by recent events.

In summary, we disclose a concise synthesis of (–)-picrotoxinin (1) via incorporation of a 

symmetrizing gem-dimethyl moiety that allows efficient annulation to form the [4.3.0]-

bicyclononane core. The key stereotetrad was accessed in only 4–5 steps from (R)-carvone 

and correlated to an overall short synthesis. The facile, stereoselective annulation to form 2 
benefitted from symmetrizing dimethylation, allowing stereochemical relay from the C4 β-

isopropene of carvone and obviating the need for stereocontrol at C5. High oxidation states 

in the starting materials were encoded by unsaturation and leveraged to access 1 in the 

shortest sequence to date. This route provides the first example, to our knowledge, of an 

oxidative C–C demethylation sequence applied in total synthesis. We aim to use this short 

entry into PXN chemical space to continue our probe of selectivity within the ligand-gated 

ion channel (LGIC) superfamily of receptors.
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Figure 1. 
Chemical background and synthetic plan.
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Figure 2. 
Importance of the extra methyl group in 2.
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Figure 3. 
Further details and synthesis of (–)-picrotin (19).
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Figure 4. 
5-Methyl-picrotoxinin (20) is equal in complexity, more stable and less antagonizing than 

picrotoxinin (1).
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Scheme 1. 
Synthesis of (–)-picrotoxinin (PXN, 1).
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