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Abstract

Background: Increasing evidence shows that cognition and gait speed are associated and are important measures of health among older adults. 
However, previous studies have used different methods to assess these 2 outcomes and lack sufficient sample size to examine heterogeneity 
among subgroups. This study examined how the relationship between global cognitive function and gait speed are influenced by age, gender, 
and race utilizing an integrated data analysis approach.
Method: Data on cognition (Montreal Cognitive Assessment [MoCA], Mini-Mental Status Examination [MMSE], and Modified Mini-Mental 
State Examination [3MSE]) and gait speed (range: 4–400 m) were acquired and harmonized from 25 research studies (n = 2802) of adults aged 
50+ from the Wake Forest Older American Independence Center. Multilevel regression models examined the relationship between predicted 
values of global cognitive function (MoCA) and gait speed (4-m walk), including heterogeneity by age, race, and gender.
Results: Global cognitive function and gait speed exhibited a consistent positive relationship among whites with increasing age, while this was 
less consistent for African Americans. That is, there was a low correlation between global cognitive function and gait speed among African 
Americans aged 50–59, a positive correlation in their 60s and 70s, then a negative correlation thereafter.
Conclusion: Global cognition and gait speed exhibited a curvilinear U-shaped relationship among whites; however, the association becomes 
inverse in African Americans. More research is needed to understand this racial divergence and could aid in identifying interventions to 
maintain cognitive and gait abilities across subgroups.
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Although emerging research in aging has suggested a direct re-
lationship between cognition and physical function, evidence is 
mixed. In an effort to clarify these findings, 2 meta-analyses have 
recently been published. The first, involving 12 published studies, 
reported a positive association between physical function and global 
cognition, although the effect size was only 0.12 (95% confidence 

interval [CI] = 0.09–0.15, p < .001), suggesting that individuals with 
faster gait performed better on measures of global cognition (1). In 
a second meta-analysis, Peel et  al. (2) compared the gait speed of 
patients with cognitive impairment, mild dementia, or moderate 
dementia to normal controls. They found that there were clinically 
meaningful, graded reductions in gait speed that ranged from 0.11 
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m/s in those with cognitive impairment, to 0.20 m/s in those with 
mild dementia, and to 0.41 m/s in those with moderate dementia.

Despite the advantages that these meta-analyses have provided 
through pooling of data across studies, they have significant limita-
tions. First, studies reviewed by Demnitz et al. (1) aggregated results 
from studies involving different populations that employed varied 
approaches to the assessment of global cognition and gait speed. Yet, 
it is well known that measures of both cognition and gait speed vary 
in their sensitivity to change based on the measure and the popu-
lation under investigation. And second, neither meta-analysis was 
able to examine potential heterogeneity in the associations related to 
age, gender, or race, even though individual studies within the meta-
analysis may have done so.

Applying integrative data analysis (IDA), the current study leverages 
the unique resources at the Wake Forest Older American Independence 
Center (OAIC) to harmonize measures of cognition and physical func-
tion across studies conducted within the OAIC. We then investigate 
the predictive association between cognitive and physical function ac-
counting for differences in key demographic characteristics.

Unlike meta-analysis, which combines summary statistics from 
different studies, IDA pools together raw data sets to form an inte-
grated database. Integrative data analysis refers to a set of strategies 
in which 2 or more independent data sets, with measures that cap-
ture similar domains but use different measurement instruments, are 
pooled or combined and then statistically analyze (3). Pooling raw 
data from multiple studies has advantages, as well as challenges (4–6). 
An obvious advantage of IDA is the creation of a larger sample size, 
increasing power. In what is described as a “crisis of reproducibility” 
of research findings in the behavioral sciences, investigators have ar-
gued that “empirical study of individual behavior is awash in small 
effect sizes and low statistical power that are naturally difficult to 
reproduce.” (7,8). The larger sample size from pooling studies offers 
more robust and reproducible results and improves accuracy for as-
sessing subgroups, such as differences by age group, gender, and race.

In aging research, the advantages of IDA go beyond power and 
accuracy. First, IDA allows the study of heterogeneity in older adults, 
which is important for designing targeted interventions for different 
subgroups. For example, if study A only contains whites and study 
B only African Americans (AA), IDA allows the study of race het-
erogeneity that is otherwise not possible from separate individual 
studies. Second, IDA allows broader assessment of a theoretical 
construct (eg, frailty or cognitive function) by creating commen-
surate measures across multiple studies through the application of 
modern psychometric methods. By placing similar measures, such 
as Montreal Cognitive Assessment (MoCA) in one study and Mini-
Mental Status Examination (MMSE) in another on a common scale, 
IDA permits direct comparison of results across contributing studies 
and the investigation of moderating and mediating variables. The 
same can be done with different measurements of gait speed which 
often vary between research studies often ranging from 4 to 400 m 
or vary by time limit. Third, IDA can be used to study changes over 
the life span by integrating cohorts with overlapping ages (9).

With these advantages in mind, the current study employs IDA 
to (a) investigate the relationship between global cognitive function 
and gait speed across 25 studies (n = 2802) collected on older adults 
(50 years of age and older) from the Wake Forest OIAC; (b) har-
monize different measurements of global cognitive function (MoCA, 
MMSE, and Modified Mini-Mental State Examination [3MSE]) and 
gait speed (ranging from 4 to 400 m) to compare them on the same 
scale; and (c) examine how these relationships are influenced by age, 
gender, and race.

Method

Data Source
Data were collected at the Wake Forest Claude D. Pepper OAIC. The 
Pepper OAIC program was established as centers of excellence in 
geriatrics research and research career development to increase sci-
entific knowledge leading to better ways to maintain or restore inde-
pendence in older persons. Each center has a center-specific theme in 
aging. At the Wake Forest Pepper OAIC, the theme is physical func-
tion and mobility in older adults. A total of 51 small and medium-
sized studies over a period of 15 years at Wake Forest OAIC were 
considered for inclusion into the current study. These data sets were 
made available to all OAIC investigators (and the public at large 
with restriction) through the Pepper OAIC data coordinating center, 
which is also housed at the Wake Forest School of Medicine.

Integrative Data Approach
To date, 51 research studies have been conducted through the Wake 
Forest OAIC, but not all of them collected both physical and cog-
nitive measures. Studies that did not collect either physical or cog-
nitive measurements were excluded from the current study. As a 
result, a total of 25 studies were included, with a total sample size of 
n = 2802. The average sample size is 116, and the range is 14–497. 
The full sample sizes of the studies and a brief description of the 
study aims are provided in Supplementary Material.

Measures
Cognitive and gait measures
Because different measures were used for assessing cognitive func-
tion, we decided to use an “anchoring measure” such that all other 
measures would be mapped to the anchoring measure. This measure 
harmonization targeted the 3 cognitive measures that existed within 
the data sets—the MoCA (10), the MMSE (11), and the 3MSE (12). 
MoCA was chosen to be the anchoring measure because it was 
the most prevalent measure across the included studies and dem-
onstrated some advantages, such as being more predictive of clin-
ical diagnosis of impairment, over other measures (13). We used 
validated cross-walk conversion tables for this purpose—that is, 
MMSE mapped to MoCA (14), and 3MSE mapped to MoCA (15). 
Cross-walk tables link one instrument to another instrument that 
both measure the same construct or conceptually similar constructs. 
Typically, cross-walk tables are derived from applying psychometric 
methods such as equipercentile equating (16) to empirical data. 
Consider harmonizing the MMSE and MoCA as an example. Briefly, 
the equipercentile method first ranks data points in A and B, respect-
ively, and then maps the value of MMSE at a given percentile point, 
say the 10th percentile, to the value of MoCA at the 10th percentile. 
When the scores are recorded as integer, equipercentile methods may 
produce decimals in the cross-walk table so smoothing and rounding 
are necessary (17). This information has been previously published 
(14,15); therefore, we used those established cross-walk tables to 
harmonize global cognition to represent a predicted MoCA value.

Measure harmonization was also needed for gait measure. The 
following measures were present across the studies: 4-m walk, 6-min 
walk, 20-m walk, 20-m fast walk, 400-m walk, and 400-m fast walk. 
The 4-m walk is a component in the Short Physical Performance 
Battery (SPPB) (18). Because 20-m fast walk was only used in one 
small study and the study did not measure SPPB, it was not included 
for harmonization. Although one could directly use gait speed calcu-
lated from different modes of gait measure as a common metric, that 
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may lead to bias because speed was derived from the different modes 
of measurement (19). Figure  1 shows the various distributions of 
gait speed by mode of measurement. It can be seen that there are 
substantial discrepancies in the distributions—including means and 
variances, between modes of gait measurement.

Consistent with the treatment of cognitive measures, a decision 
was made to apply the same equipercentile method to gait measure. 
To determine the anchoring measure, we considered prevalence of 
a measure and its overlap with other gait measures (ie, whether the 
2 gait measures were administered within the same study). Because 
the SPPB, which includes the 4-m habitual walk component, was 
administered in a high proportion of the studies and had overlap 
with other gait measures in at least one or more studies, the 4-m 
walk was selected as the anchoring measure. As far as we know, 
there are no published cross-walk tables for gait measures. Table 1 
shows the cross-walk table for gait measures, which is derived from 
studies that had overlapping gait measures in 4-m walk and another 
gait measure. Participants that completed the 4-m habitual walk 
were instructed to start and stop at designated tape markings on 

the ground and were asked to walk at their usual walking pace. The 
walk distance included a 1-m acceleration phase and 1-m deceler-
ation phase not included in the recorded time. The value of 4-m walk 
was obtained either from the observed value of the 4-m habitual 
walk if that was present, or set to the corresponding mapped value 
of 4-m walk in the cross-walk table if another gait measure was ob-
served. In the latter case, the mapped value was adjusted for gender, 
race, and age using results from regression models locally fitted to 
discretized values of gait measure. Equating was conducted using the 
R program kequate (17).

Factors for examining heterogeneity
The following factors were considered in examining heterogeneity in 
the association between cognitive and gait: race, age, gender, and body 
mass index (BMI). Besides the harmonization of the cognitive function 
and gait measure, other variables also needed to be aligned. For ex-
ample, race/ethnicity across different studies might not be uniformly 
defined. We defined 2 broad categories of race/ethnicity—white and 
AA, which could be successfully derived from all included studies. The 
other race/ethnicity categories only constituted an extremely small 
proportion (n = 161 in overall sample and n = 0 in the final sample). 
Because different studies had different designs (eg, intervention vs ob-
servational), different follow-up schedules, and different duration, we 
only used baseline data from all of the studies in the current IDA.

Statistical Analysis
The aim of the current IDA is to examine factors that potentially affect 
the association between cognition and gait. Analysis of data was con-
ducted as a 2-stage process. In the first stage, we used both descriptive 
statistics and visualization to explore the integrated data set. For ex-
ample, scatterplots were used to visualize relationship between cogni-
tive and gait measures. Multiple dimensions in the data were depicted 
using modern interactive visualization tools. Observations from the 
first stage and insight about trends and patterns were then used to in-
form the construction of statistical models in the second stage.

In the second stage, multilevel regression models were used to 
validate observed trends and test hypotheses. Data from an indi-
vidual study were considered clustered in the multilevel analysis. In 
other words, the first level was participants within a given study, 
and the second level was individual studies. The multilevel regres-
sion analysis thus took into account within-study clustering effect. 
The dependent variable was the anchoring measure of MoCA (as 
harmonized by IDA) and the primary quantities of interest were the 
coefficients in the independent variable of the anchoring measure of 
4-m walk (Gait) and the interaction terms of gait with other factors, 
which included race, gender, age, and BMI (kg/m2). For example, the 
following models (error terms not shown) were considered:
Model 1

MoCA = β0 + β1Gait, (1)

Model 2

MoCA = β0 + β1Gait + β2Age, (2)

Model 3

MoCA = β0 + β1Gait + β2Age + β3Gait × Age, (3)

and Model 4

MoCA =β0 + β1Gait+ β2Age+ β3Gait× Age

+ β4Gait× Race+ β5Gait× Age

× Race+ covariates. (4)

Figure 1. Distributions of gait speed from different modes of measurement. 
400 m F = 400-m fast walk. 

Table 1. Conversion Table for Gait Measures to Short Physical 
Performance Battery (SPPB) 4-m Walk

6 min SPPB 20 m SPPB 400 m SPPB 400 m F SPPB

1 2 6 3 5 4 7 5
2 2 7 3 6 5 8 6
3 3 8 4 7 6 9 7
4 3 9 5 8 7 10 8
5 4 10 5 9 8 11 9
6 5 11 6 10 9 12 10
7 5 12 6 11 10 13 11
8 6 13 7 12 11 14 11
9 7 14 8 13 12 15 12

10 8 15 8 14 13 16 13
11 9 16 9 15 14 17 14
12 9 17 9 16 15 NA NA
13 10 18 10 NA NA NA NA
14 11 19 10 NA NA NA NA
15 12 20 11 NA NA NA NA
16 12 21 12 NA NA NA NA
17 13 NA NA NA NA NA NA
18 14 NA NA NA NA NA NA
19 15 NA NA NA NA NA NA
20 16 NA NA NA NA NA NA
21 16 NA NA NA NA NA NA

Note: The unit is 0.1 m/s. For example, SPPB = 10 refers to the converted 
gait speed of 1 m/s. SPPB = 4-m walk in SPPB; 400 m F = 400-m fast walk; 
NA = no data are available.
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Other covariates including gender and BMI were included in the 
final model (Model 4). The variables MoCA, Gait, Age, and BMI 
were standardized such that the model parameters especially for 
moderation could be readily interpreted. In Model 1, the coefficient 
β 1 quantifies the association between cognitive (MoCA) and gait 
(4-m walk) measures. In Model 2, age is included in the model. When 
an interaction term between gait and age was added to the model 
(Model 3), the interaction term represents the additional (positive or 
negative) association between MoCA and gait for age, with the pres-
ence of other factors in the model. A significant coefficient for the 
interaction term β 3 therefore would signal measurable moderation 
effect, or age heterogeneity for the association between MoCA and 
4-m gait measure.

In Model 4, we found heterogeneity across multiple variables– in 
this case Race and Age, which was represented in the model by the 
presence of a third-order interaction term with gait. If the quantity 
β 5 is positive, it would mean that higher value of age (older) is asso-
ciated with higher correlation between MoCA and 4-m walk for the 
subgroup of AA compared to white.

Intraclass correlation (ICC) was used to indicate the strength of 
clustering within study. In all of the multilevel models, 2-sided tests 
at α = .05 were used. We used PROC MIXED in SAS v9.4 for multi-
level regression analysis. Interactive visualization was conducted in 
Tableau v10 (20).

Results

Table 2 shows the sample characteristics of the entire integrated sample. 
It is noted that the sample has an average MoCA score of 24.4 (SD 3.4; 
range 7–30). A cutoff score of MoCA score for mild cognitive impair-
ment (MCI) is 25 (21). In the current sample, 45% were below 25.

Figure 2A–D shows the scatterplots of predicted MoCA and 4-m 
walk (both standardized) by age group. For ease of interpretation, 
the aging categories are labeled 50s (<60 years old; minimum age in 
sample = 55.0), 60s (60–69), 70s (70–79), and 80s (80 and above). 
Regression lines for white and AA and 95% confidence limits are 
shown in orange (light) and blue (dark) colors, respectively. Body 
mass index, a potentially discriminating factor, is shown as small 
(BMI < 30) and large dots (BMI ≥ 30).

The figures show important differentiation in the associations of 
cognitive and gait measures across whites and AAs. For whites, the 
positive correlation between cognitive and gait measures is main-
tained across the 4 age groups, with slightly increasing trends as 
people age. For AAs, there is a low correlation under the age of 60 
(Figure 2A). At the age range 60–69, the correlation becomes posi-
tive, and it increases further for the age range 70–79 (Figure 2B and 
C). Figure  2D shows that this trend begins to reverse for the age 
range 80+, and the correlation turns negative.

Exploratory analysis using visualization thus suggested differen-
tiation between AAs and whites in terms of association between cog-
nition and gait. The result generated the following hypotheses about 
the association: (a) there is a general positive trend in association 
(with subtle differences exist across race and age groups); (b) there 
is a general increasing trend in the association as people age (subtle 
differences also exist across race); and (c) older AAs have a general 
decreasing association compared to white. These hypotheses were 
examined using a sequence of nested multilevel models represented 
by eqns (1)–(4).

Table  3 summarizes the results of the multilevel analysis. The 
association between cognition and gait is positive and significant  

(p < .001, Model 1) when no differentiation is made between sub-
groups represented by race, gender, age, and BMI. Age was also stat-
istically significant (p < .001) when it was included into the model 
(Model 2). Model 3 shows that age, besides having a negative asso-
ciation of its own, also moderates gait. The positive coefficient of the 
Gait × Age term indicates that older adults on average tend to show 
a higher correlation between cognition and gait measure.

We tested another intermediate model (full results not shown) 
that included gait (4-m walk), race, gender, and age into the model 
as well as all the second-order interaction terms of the latter 3 vari-
ables with gait. Race, gender, and age were significant. However, the 
second-order interaction between gait and gender and race were not 
significant. In the final model (Model 4), we included a third-order 
interaction term Gait × Age × Race and followed the statistical con-
vention of also including all second-order interaction terms between 

Table 2. Sample Characteristics of the Integrated Data Set by Race

 

White (N = 2239; 79.9%)
Black (N = 563; 
20.1%)

Mean (SD) Mean (SD)

Age 71.9 (6.7) 70.5 (6.2)
BMI 31.3 (5.2) 33.2 (5.4)
MoCA 24.7 (3.2) 22.8 (3.7)
4-m walk speed 1.0 (0.2) 0.9 (0.2)

N (%) N (%)

Gender   
 Female 1343 (60.0) 444 (78.9)
 Male 896 (40.0) 119 (21.4)
Age group   
 50–59 866 (38.7) 276 (49.0)
 60–69 1023 (45.7) 221 (39.3)
 70–79 276 (12.3) 46 (8.2)
 80 and above 74 (3.3) 20 (3.6)

Note: BMI = body mass index; MoCA = Montreal Cognitive Assessment.

Figure 2. Scatterplots of projected MoCA and SPPB 4-m gait speed for 
participants in the following age groups: (A) 50–59, (B) 60–69, (C) 70–79, and (D) 
80 or above. Orange = White, Blue = African American; small dot = BMI < 30, 
large dot = BMI > =30. Straight lines indicate linear regression and curve lines 
95% confidence limits.
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age and race with gait. Model 4 shows that the age-related associ-
ation between MoCA and gait is further moderated by race—AAs as 
a group tend to have a lower association as they age.

To validate the results in Model 4, we computed simple Pearson 
correlations between cognition and gait by race. Across the age 
groups of below 60, 60–69, 70–79, and 80 or above, the correl-
ations were 0.27, 0.07, 0.24, and 0.26 for white, and 0.01, 0.15, 
0.33, −0.09 for AA, respectively. The trends were distinct—white 
shows a curvilinear U shape while AA shows an inverted U shape. 
We note that while Model 4 offers evidence of differentiation be-
tween race, the model does not completely capture the 2 distinctly 
different U-shaped trends. Because of interpretability and estimation 
issues, we did not include quadratic terms in the final model.

For Model 4, ICC was 0.18, which implies a substantial level of 
within-study clustering effect.

Discussion

We applied IDA to derive a data set that combined data from 25 
small to medium-sized studies and harmonized measures of cogni-
tive function and gait speed among older adults. Compared to the 
analysis of a single data set, the IDA used a larger sample size and 
thus better statistical power to examine subgroup differences. In the 
current study, we delineated heterogeneity about the association be-
tween cognitive function and gait.

Our results show heterogeneity in the relationship between 
global cognitive function and gait speed by race and age once partici-
pants entered the seventh decade of their lives. Specifically, as shown 
by the regression lines in the figure, although there is a consistent 
(small) positive relationship between global cognitive function and 
gait speed for whites in the age range of 50–90, the pattern for AAs 
was markedly different: almost no correlation in their 50s, a posi-
tive correlation in their 60s that becomes more pronounced in their 
70s, and then a negative correlation in their 80s. This trend among 
AAs may be attributed to the earlier appearance of poorer cognitive 
function (in their 60s) in conjunction with low physical function (as 
measured by gait speed). In other words, compared to whites, there 
is a higher proportion of AAs in their 60s and 70s that have poorer 
global cognitive function in combination with compromised gait 
speed, a pattern that results in the 2 constructs being directly related 
to one another. The result appears to be consistent with the obser-
vation that mobility limitations drop off more precipitously among 
older AA individuals compared to whites (22) and that differential 
changes in gait may precede further decline in global cognition func-
tion (23,24).

AAs exhibited a positive relationship between gait speed and 
global cognition in the age range of 70–79. However, this pattern fell 
apart and trended in a negative direction in the age range of 80–89. 
While a definitive explanation for this conundrum must await data 
from a longitudinal study design, a plausible explanation is a sur-
vivor effect for AAs in the age range of 80–89. Specifically, cumula-
tive disadvantage theory postulates that a health gap exists between 
AA and whites due to an accumulation of negative health events and 
stress across the life span which increases health disparities particu-
larly for AAs. This gap is further widened with increasing age (25). 
Thus, AAs who survived into their 80s were more resilient than AAs 
in the age range of 70–79.

There are limitations in the interpretation of these findings. 
First, the sample size for AAs in their 80s was the smallest of all 
age groups and may not be representative of the true population. 
It is important to keep in mind that all participants were commu-
nity dwelling, ambulatory, and volunteered to participate in a re-
search study. Although the studies were not population-based, all 25 
included both white and AA participants (AA participation range 
2%–37.5% of study sample). Second, there could be a sampling bias 
given that older, sicker, and minority individuals are less likely to 
participate in a research study (26). And third, although education 
was not included into the reported final model, we conducted add-
itional analyses that included education. Our result showed that (a) 
education (1–5, 1 = no formal education, 2 = elementary school, 3 
= high school, 4 = college, 5 = post graduate; treated as continuous) 
and race were strongly associated (chi-squared test p < .0001), and 
(b) when education was included into the model, the effect is 0.26 
(p < .01) or approximately 1 point increase from the lowest to the 
highest education category. The Gait × Age × Race interaction term 
was no longer statistically significant (p = .14 vs p < .01); however, 
results for other factors remained unchanged.

In spite of these limitations, there are several noteworthy 
strengths. To our knowledge, we are the first group to harmonize 
cognitive and gait measures and to examine heterogeneity in the re-
lationship between these constructs as a function of race, gender, and 
age. Using the novel and robust approach of IDA we have sufficient 
power to describe subgroup analyses and most notably our results 
found differences between AA’s and whites.

Conclusion

There is a growing need for research on the role of racial health 
disparities particularly in understanding differences in mobility and 
cognitive function with age. More studies including diverse racial 

Table 3. Multilevel Analysis of Association Between Global Cognitive Function and 4-m Walk Gait Measure

Model 1 Model 2 Model 3 Model 4

Gait (4-m walk) 0.24*** 0.20*** 0.20*** 0.14***
Age  −0.13*** −0.12*** −0.16***
Gait × Age   0.06*** 0.074***
Gait × Race    0.028
Gait × Age × Race    −0.10**
Gender    0.10**
Race    −0.56***
BMI    0.03

Notes: Gait × Age represents the change in association between gait and cognition by age, and Gait × Age × Race represents the moderation effect of such change 
in association by race

**p < .01; ***p < .001.
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groups with are needed which could help inform researchers in 
developing targets to preserving function and independence among 
older adults.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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