
Cross-species data integration to prioritize causal genes in lipid 
metabolism

James A. Votava1, Brian W. Parks1

1Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA

Abstract

Purpose of Review—More than one hundred loci have been identified from human genome-

wide association studies (GWAS) for blood lipids. Despite the success of GWAS in identifying 

loci, subsequent prioritization of causal genes related to these loci remains a challenge. To address 

this challenge, recent work suggests that candidate causal genes within loci can be prioritized 

through cross-species integration using genome-wide data from the mouse.

Recent Findings—Mouse model systems provide unparalleled access to primary tissues, like 

the liver, that are not readily available for human studies. Given the key role the liver plays in 

controlling blood lipid levels and the wealth of liver genome-wide transcript and protein data 

available in the mouse, these data can be leveraged. Using co-expression network analysis 

approaches with mouse genome-wide data, coupled with cross-species analysis of human lipid 

GWAS, causal genes within lipid loci can be prioritized. Prioritization through both mouse and 

human along with biochemical validation provide a systematic and valuable method to discover 

lipid metabolism genes.

Summary—The prioritization of causal lipid genes within GWAS loci is a challenging process 

requiring a multidisciplinary approach. Integration of data types across species, like the mouse, 

can aid in causal gene prioritization.
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INTRODUCTION

Genome-wide association studies (GWAS) have revolutionized our understanding of the 

relationship between genotype and phenotype [1]. For more than a decade, GWAS has been 

utilized with great success to identify loci associated with a variety of complex traits, 

ranging from height and body mass index (BMI) to blood levels of low-density lipoprotein 

cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C) and triglycerides (TG) 

[2–4]. Given the ever-increasing number of human biobanks along with expansion of genetic 

data, the utilization of GWAS is certainly going to increase. While the success of using 
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GWAS to identify loci for complex traits has been immense, another challenge has emerged; 

translating these loci into biological function through the identification and validation of the 

underlying causal genes. As the scientific community enters this post-GWAS era it has 

become clear that we should focus on the translation of GWAS data into biological 

discovery [5].

As a result of the ease in analyzing human blood levels of total cholesterol (TC), LDL-C, 

HDL-C, TG in large human populations, GWAS has been very successful at understanding 

the genetics of blood lipid levels, which are key contributors to cardiovascular disease [6]. In 

this regard, numerous GWAS have been conducted in populations exceeding 100,000 

individuals as well as in ethnically diverse populations that have identified hundreds of loci 

associated with individual blood lipid traits [3,7–10]. With these tremendous resources 

available for human blood lipid traits, a key goal is to prioritize the causal genes that 

contribute to these loci and understand the biological pathways through which they operate. 

In this review, we outline current approaches in prioritizing causal genes within loci and 

present a cross-species integration approach to aid in the discovery of causal genes within 

lipid loci.

PRIORITIZING CAUSAL GENES WITHIN LIPID LOCI

It is clear that existing and emerging human lipid GWAS datasets represent a significant 

resource for discovering new genes and biological pathways that can influence lipid 

metabolism. Despite the success of human GWAS in identifying loci associated with human 

blood lipid levels of TC, LDL-C, HDL-C, and TG, prioritizing causal genes and 

understanding the biological pathway through which these genes operate is limited to only a 

handful of examples [11–13]. The lack of success is likely due to a number of confounding 

and complicating factors. First, associated loci range in size from kilobases (kb) to 

megabases (mb) and can contain anywhere from one to more than a dozen genes within the 

locus. Second, recent studies have demonstrated causal genes may not need be located 

directly within the linkage disequilibrium (LD) of the locus and may be found outside the 

locus [14,15]. The best example of this is the FTO locus associated with human BMI and the 

identified and validated causal gene IRX3 (Iroquois Homeobox 3) being located outside the 

locus [14,16]. Therefore, due to both locus size and possible causal genes outside the 

associated locus itself, causal gene prioritization requires identifying possible candidate 

genes by systematic means.

Early on in the study of human lipid GWAS loci, prioritization and validation of causal 

genes within a locus region was often performed through a single candidate gene at a time 

approach. Validation of the candidate causal gene was achieved through generation of a 

knockout mouse and determining the gene’s influence on lipid metabolism [11]. This one at 

a time approach was time-consuming and, in some cases, led to negative results. To 

circumvent this laborious approach, current approaches most often rely on prioritizing causal 

genes through the integration of expression quantitative trait loci (eQTL). In this approach, 

genome-wide gene expression is assessed (either by microarray or RNA sequencing 

technologies) in a specific tissue to determine if genetics can influence the expression of a 

gene. If a gene is differentially expressed as a function of genetic variants within or close to 
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the gene body, the gene is said to have a cis eQTL [17]. Identifying genes within or near a 

locus that show significant cis eQTL have greatly improved our ability to prioritize causal 

genes. For instance, the prioritization and identification of Sortilin1 (SORT1) at the 

chromosome 1p13 locus, which is associated with LDL-C levels and myocardial infarction, 

was done through integration of liver eQTL data [12]. Ultimately, this integration of liver 

eQTL data led to the validation of SORT1 as a modifier of lipid metabolism through a 

specific single nucleotide polymorphism (SNP) that altered binding of the transcription 

factor C/EBP, and thereby altered expression of SORT1. Another successful example of 

integrating liver eQTLs is the identification and validation of the Tetratricopeptide repeat 

domain protein 39B (TTC39B) gene that is associated with HDL-C [13]. The approach of 

integrating human liver eQTL data for causal gene prioritization is the current standard for 

identifying candidate causal genes within and near human GWAS lipid loci (Figure 1).

Integrating human liver eQTL datasets as a method to prioritize causal genes within lipid 

loci has accelerated gene discovery, however, there are drawbacks to exclusively relying on 

this method. First, this method relies on identifying a liver cis eQTL for a specific gene 

within or near the locus and discards all other genes. While the availability of liver eQTL 

datasets has increased in recent years, the size of these datasets is still small in comparison 

to other readily accessible tissues, such as skin or adipose. The smaller sample size of liver 

eQTL datasets limits the statistical power to identify significant cis eQTL genes [17–19]. 

Another issue with relying on liver cis eQTL prioritization is that human livers are collected 

under diverse conditions from during surgical procedures to post-mortem collection. This 

variability in collection certainly can have implications for quality of downstream gene 

expression analysis. Therefore, the lack of a significant liver cis eQTL should not be the 

exclusive way through which prioritization of a causal genes is achieved. In this review we 

highlight recent work that utilizes mouse liver genome-wide data, to aid in the prioritization 

of causal genes within human lipid GWAS loci for biological discovery [20]. Ultimately, the 

goal of this work is to serve as an additional tool to speed up translation of human lipid loci 

to causal gene prioritization and validation.

MOUSE LIVER DATASETS AND CO-EXPRESSION ANALYSIS

The liver is central to metabolism as it has a critical role in the sensing and proper response 

to nutrient status. Due to this central role in metabolism, it is a major regulator of systemic 

lipid metabolism and blood lipid levels [21] [22]. In the fed state, the liver utilizes excess 

nutrients in the de novo synthesis of cholesterol and fatty acids for export to extrahepatic 

tissues [21]. The liver also has a key role in the sensing of serum lipid levels and modulating 

hepatic lipid metabolism in response [22]. These synthesis and sensory pathways are 

primarily regulated by the transcription factors Sterol Regulatory Element Binding Protein 1 

(SREBP1) and Sterol regulatory element binding protein 2 (SREBP2) [21]. Dysregulation of 

either the lipid biosynthetic or sensory pathways can lead to altered blood lipids, primarily 

LDL-C and TG, that contribute to cardiovascular disease [6,23,24]. Uncoincidentally, 

modulation of the biosynthetic and sensory pathways in the liver has been of primary 

importance while developing pharmaceuticals that can lower blood TG and LDL-C levels 

[25]. Given the central role the liver plays in regulating blood lipid levels of LDL-C and TG 

it is likely that many of the causal genes within human lipid GWAS loci operate through the 
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liver. With the limitations of gathering and performing gene expression studies in human 

liver samples, an alternative approach is to utilize the rich resources of genome-wide gene 

expression and protein data publicly available in the mouse.

The use of model organisms, such as the mouse, allow for collection of high-quality liver 

genome-wide data with relative ease in comparison to humans. Furthermore, the ability to 

perform tightly controlled experiments under uniform environmental conditions make the 

mouse an ideal model to use in studies to understand the liver. Another advantage of the 

mouse is the development of genetic reference populations, such as the hybrid mouse 

diversity panel (HMDP) and the diversity outbred (DO) population, which demonstrate 

genetic variation similar to that found in human populations [26–28]. These mouse genetic 

reference populations serve as an ideal platform to understand how genetic variation can 

influence complex traits and provide access to genome-wide liver transcript and protein data. 

Upon publication, these genome-wide transcript and protein datasets are publicly deposited 

and available for researchers across the world to take advantage of. Unfortunately, while this 

data is deposited and available for all, these rich datasets are more often than not never used 

or looked at again.

One way to utilize genome-wide transcript and protein data in the mouse is to perform 

module-based network analyses. These analyses provide a powerful statistical tool to 

identify genes that share similar co-expression patterns in complex datasets. Given the 

richness of publicly available data from mouse genetic reference populations, module-based 

networks are ideal for identifying modules (co-expressed groups) of genes that enrich in 

specific biological processes [26–29]. One widely used method to perform module-based 

network analysis is weighted gene co-expression network analysis (WGCNA) [30]. The 

WGCNA method generates modules based on co-expression patterns found within the 

inputted dataset. After modules are generated, the modules can then be enriched for specific 

biological processes using gene ontology (GO) [31,32]. Once a module has been assigned a 

specific biological function, one is able to develop hypotheses for potential novel functions 

of genes identified within the module. Ultimately, this approach allows for unbiased analysis 

of genome-wide transcript and protein data and creation of modules that can be used for 

downstream analysis.

CROSS-SPECIES PRIORITIZATION OF CAUSAL LIPID GENES

Given the wealth of publicly available human lipid GWAS data and mouse liver genome-

wide data available, recent work sought to integrate these datasets together and develop a 

systematic approach to prioritize causal lipid genes within human lipid loci [20]. In this 

report, the authors began by taking advantage of the power of WGCNA to generate modules 

of co-expressed genes from complex datasets. Applying WGCNA to 12 distinct genome-

wide liver datasets (transcript and protein) from multiple mouse genetic reference 

populations they were able to identify a module of genes significantly enriched for the GO 

term “cholesterol biosynthetic process” in 11 out of the 12 datasets. Of note, one 

contributing factor to the high reproducibility of this cholesterol enriched module is likely 

related to the transcriptional regulation of lipid and cholesterol metabolism genes. In the 

liver, lipid and cholesterol related genes are regulated by the common transcription factors, 
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SREBP1 and SREBP2 [21]. Within the cholesterol enriched module many of the genes are 

known to play a role in cholesterol metabolism, however, many have no known role. To 

systematically prioritize genes, replication was used across the 11 datasets and allowed for 

2,435 genes to be prioritized down to 112 genes, which showed strong replication across the 

modules enriched for the GO term “cholesterol biosynthetic process”.

After prioritization of genes from the mouse liver datasets, genes were then cross-referenced 

against human lipid GWAS data for TC, LDL-C, HDL-C, and TG [3]. After cross-

referencing the 112 replicated genes, 48 genes were identified to have a SNP within or near 

the gene associated below a 5% false discovery rate (FDR). Of note, given the multiple 

datasets through which candidate genes are filtered in the mouse liver network data, there is 

a high probability that these genes would likely contribute to cholesterol or lipid 

metabolism. As a result, the stringent threshold employed in standard human GWAS of 

5x10−8 was lowered to a 5% false discovery rate (FDR) threshold. Other studies have also 

lowered the 5x10−8 threshold when integrating data from multiple sources [33,34]. Out of 

the 48 genes identified to have associations with human lipid blood lipid traits, 25 genes 

were prioritized which have no known prior role in lipid or cholesterol metabolism. These 

25 genes represent candidate causal genes within human lipid loci that have not yet been 

investigated in scientific research [20]. Taken together, this systematic method of combining 

human lipid GWAS data with mouse liver genome-wide data provides a valuable method for 

prioritizing candidate causal genes within human GWAS data (Figure 2). To highlight the 

power of this cross-species analysis between mouse and human data, Li et. al., 
systematically identified and validated Sestrin1 (SESN1) as a gene associated with TC in 

humans. Through functional testing and human lipid GWAS replication in independent 

datasets, SESN1 was found to be the only gene out of the 25 prioritized to pass all 

replication criteria. Validation of Sesn1 in multiple mouse models demonstrated that it 

regulates blood cholesterol levels. Further biological testing indicated that Sesn1 operated in 

a liver-specific manner and is necessary for feedback regulation of cholesterol biosynthesis. 

This approach emphasizes the usefulness of cross-species analysis for prioritizing causal 

genes within lipid loci and validating the biological pathway through which they operate.

CONCLUSION

Prioritization and identification of causal genes within human lipid GWAS loci has lagged 

due to the complex nature of the majority of lipid loci. This demonstrates that unique 

approaches to aid in prioritizing causal genes within lipid loci are necessary. The most 

common method of causal gene prioritization involves human liver eQTL datasets to 

identify significant cis eQTL genes within a locus followed by validation studies (Figure 1). 

Here we overviewed a method for prioritizing causal genes within lipid loci through the 

cross-species integration with mouse genome-wide liver network data (Figure 2). This 

approach has the advantage of prioritizing genes relevant to lipid and cholesterol metabolism 

in the mouse first and then cross-referencing them against lipid loci. This approach was 

successfully utilized to identify and validate Sesn1 as a regulator of cholesterol biosynthesis 

while also prioritizing numerous other candidate genes for follow up study [20]. Similar 

approaches have been used by other labs to identify novel modifiers of bone density or 

schizophrenia risk suggesting that cross-species analysis can be used in other tissues and 
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biological systems [35–37]. It is clear that there is still plenty of biological wealth to be 

mined from publicly available human GWAS and mouse genome-wide data and novel 

methods such as the one outlined here will allow us to begin to harness these resources.
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Key Points

• Human lipid GWAS has been very successful at identifying genetic loci 

associated with blood lipids, which are a key contributing factor to the 

development of cardiovascular disease.

• Current methodologies for identifying the causal genes at human lipid GWAS 

loci have been slow and many of the loci remain uncharacterized.

• Publicly available liver genome wide transcriptomic and proteomic data from 

the mouse can be harnessed and integrated with human lipid GWAS to 

identify new genes that regulate lipid metabolism.

• This method has been used to identify and subsequently validate the role of 

Sestrin1 (SESN1) in feedback regulation of hepatic cholesterol biosynthesis.
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Figure 1: Commonly used method for prioritization of human lipid GWAS data for biological 
discovery.
Schematic of the current model for prioritizing human lipid GWAS data which involves the 

identification of a human liver cis eQTL for a gene within a locus of interest.
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Figure 2: Cross-species method of prioritization of human GWAS data for biological discovery.
Schematic of a method for prioritizing human lipid GWAS data using mouse liver networks 

to identify genes involved in lipid metabolism which can be cross-referenced to human lipid 

gwas data to identify novel genes involved in regulating human lipid metabolism.
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