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Abstract

Schizophrenia is a chronic psychiatric disorder generally preceded by a so-called prodromal phase, 

which is characterized by attenuated psychotic symptoms. Advances in clinical research have 

enabled prospective identification of those individuals who are at clinical high risk (CHR) for 

psychosis, with the power to predict psychosis onset within the near future. Changes in several 

brain neurochemical systems and molecular mechanisms are implicated in the pathophysiology of 

schizophrenia and the psychosis spectrum, including the dopaminergic, γ-aminobutyric acid 

(GABA)-ergic, glutamatergic, endocannabinoid, and immunologic (i.e. glial activation) system 

and other promising future directions such as synaptic density, which are possible to quantify in 
vivo using positron emission tomography (PET). This paper aims to review in vivo PET studies in 

the mentioned systems in the early course of psychosis (i.e. CHR and first-episode psychosis 

(FEP)). The results of reviewed studies are promising; however, the current understanding of the 

underlying pathology of psychosis is still limited. Importantly, promising efforts involve the 

development of novel PET radiotracers targeting systems with growing interest in schizophrenia, 

like the nociceptive system and synaptic density.
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Introduction

Schizophrenia is a chronic and debilitating brain disorder characterized by positive (i.e. 

delusions and hallucinations) and negative (i.e. affective flattening, avolition, alogia, anergia, 

and anhedonia) symptoms, as well as cognitive deficits (Barron, Hafizi, & Mizrahi, 2017). 

The diagnosis of schizophrenia is generally preceded by a so-called prodromal state (also 
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known as high-risk state) (Fusar-Poli, Borgwardt, et al., 2013) which is characterized by 

negative symptoms and non-specific behavioural and emotional changes with a reduction in 

the level of functioning. These changes are usually accompanied by attenuated psychotic 

symptoms (Yung & McGorry, 1996).

Reliable and valid tools are now available to detect help-seeking individuals at high risk for 

developing psychosis. Based on this, several operational definitions have been proposed; 

ultra-high risk (UHR), clinical high risk (CHR), prodromal, and at risk mental state (ARMS) 

(Schultze-Lutter, Schimmelmann, Ruhrmann, & Michel, 2013). These definitions are 

validated and extensively used around the world (Fusar-Poli, Borgwardt, et al., 2013), 

enabling the identification of individuals who are at high risk for psychosis with clear and 

compelling power to predict psychosis onset within the near future (1–3 years) (Addington 

& Heinssen, 2012). People diagnosed as high risk for psychosis have a high rate of 

conversion to psychosis, 26% over a mean follow-up period of 2.35 years (across 21 studies) 

(Fusar-Poli, Bechdolf, et al., 2013), and even those who do not convert were reported to have 

persistent attenuated psychotic symptoms and poorer social role-functioning, even 2 years 

following the high-risk diagnosis (Addington et al., 2011). Several factors have been shown 

to have predictive value for conversion to psychosis, including neuroimaging findings such 

as structural changes like greater reduction in grey matter volume (Pantelis et al., 2003) and 

dopamine synthesis capacity (Howes et al., 2011), as well as clinical presentation, such as 

unusual thought content and suspiciousness and greater decline in social functioning 

(Cannon et al., 2016).

Several neurochemical systems and molecular mechanisms are implicated in the 

pathophysiology of psychosis including the dopaminergic, γ-aminobutyric acid (GABA)-

ergic, and glutamatergic system (Salavati et al., 2014), as well as the endocannabinoid 

system (Saito, Ballinger, Pletnikov, Wong, & Kamiya, 2013), microglial activation (Barron, 

Hafizi, Andreazza, & Mizrahi, 2017), and synaptic density (Egbujo, Sinclair, & Hahn, 

2016). In vivo quantification of brain proteins (e.g. receptors, transporters, and enzymes) is 

possible using positron emission tomography (PET) (Jones, Rabiner, & PET Research 

Advisory Company, 2012).

In this review, we focused on PET studies in the early course of the disease such as first-

episode psychosis (FEP) and individuals at high risk for psychosis that investigated the 

above-mentioned neurochemical systems and molecular mechanisms.

Methodology

The search for this review was conducted using the Medline database in August 2017, with 

no time span specified for date of publication. We only included in vivo studies using human 

subjects and PET imaging. This review was further confined to include only articles which 

studied (1) the high risk for psychosis state (including CHR, UHR, and ARMS (Addington 

et al., 2007; Mizrahi et al., 2014)) as well as (2) patients with FEP (first-episode psychosis 

with duration of illness less than 5 years). For consistency, the high risk for psychosis state 

was referred to as CHR in this review.
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Exclusively, PET literature was reviewed, with a focus on schizophrenia relevant molecular 

targets as follows: (1) frontocortical dopaminergic; (2) GABAergic; (3) glutamatergic 

system; (4) microglial activation; and (5) the endocannabinoid system in FEP and CHR. 

While we acknowledge that other molecular targets may be important for the development 

of psychosis, we decided to focus on those which were well researched (Cannon, 2015) and 

could potentially serve as biomarkers.

PET studies in early psychosis (FEP and CHR)

Dopamine

The striatal hyperdopaminergic state is one of the earliest hypotheses of schizophrenia, 

studied repeatedly and reviewed frequently (e.g. Abi-Dargham, 2014; Howes, McCutcheon, 

& Stone, 2015; Seeman & Seeman, 2014). Very recently, the existing PET studies in chronic 

schizophrenia, FEP, and CHR were reviewed, discussing dopamine synthesis capacity, 

endogenous dopamine, dopamine release, vesicular monoamine transporter-2 (VMAT2) 

density, and dopamine receptor density (Howes, McCutcheon, Owen, & Murray, 2017; 

Weinstein et al., 2017). However, dopamine in cortical regions is rather poorly investigated, 

although a frontocortical dopamine deficiency is assumed (Davis & Kahn, 1991). The lack 

of data is partly due to the long absence of appropriate PET radiotracers. Although 

radiotracers like [11C]raclopride and [11C]-(+)-PHNO are useful to study dopamine 

transmission in mostly striatal areas, they cannot be used to quantify the low dopamine D2/3 

receptors density present in cortical regions. The radiotracers [11C]FLB 457 and Fallypride 

(C-11 or F-18) have a higher D2/3 receptor affinity and provide a stronger signal in cortical 

brain regions, and, in this regard, [11C]FLB 457 was found to be superior as it offers a better 

resolution with a test–retest variability of ≤15% (Narendran et al., 2009). Thus, in this 

review, only PET studies which investigated frontocortical dopamine D2/3 receptor binding, 

using [11C]FLB 457 or Fallypride (C-11 or F-18), were included.

Dopamine D2/3 receptor density can be estimated by measuring the non-displaceable 

binding potential (BPND) of the radiotracer. Various studies were conducted measuring D2/3 

receptor density in the frontal cortex in patients with schizophrenia (Kessler et al., 2009; 

Lehrer et al., 2010; Slifstein et al., 2015; Suhara et al., 2002; Talvik, Nordstrom, Olsson, 

Halldin, & Farde, 2003; Vyas et al., 2017; Yasuno et al., 2005), but only in two studies 

exclusively patients with FEP were scanned which were included in this review (Table 1). 

Talvik et al. (2003) included eight healthy controls and nine drug-naïve FEP and Slifstein et 

al. (2015) scanned 21 healthy controls and 20 unmedicated FEP, with six patients being 

antipsychotic-naïve. Both studies demonstrated no difference in receptor density in 

frontocortical regions in patients with FEP compared to healthy controls using [11C]FLB 

457 PET. To date, no studies in CHR were conducted, neither with [11C]FLB 457 nor 

Fallypride (C-11 or F-18).

Dopamine transmission can be studied using paradigms, which combine the assessment of 

dopamine D2/3 receptor binding with a challenge. In those paradigms, the tracer’s BPND is 

first assessed under a baseline/control condition and again following a challenge of the 

system, and the percentage change in binding (displacement or depletion) is calculated 

(ΔBPND).These paradigms are based on the idea that the challenge either increases or 
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decreases the concentration of endogenous dopamine, and that the tracer and 

neurotransmitter compete for the same D2/3 receptor binding site (Laruelle, 2000). Only the 

displacement paradigm was validated in a pre-clinical study in the frontal cortex using 

[11C]FLB 457 PET and simultaneous microdialysis in non-human primates where dopamine 

levels and ΔBPND showed a dose response (Narendran et al., 2014).

To date, there is only one published study measuring dopamine release in FEP (Slifstein et 

al., 2015) (Table 1). Slifstein et al. (2015) scanned their participants using an oral 

amphetamine challenge of 0.5 mg/kg which followed the baseline scan performed 3 h 

earlier. This study supports the frontocortical dopamine deficiency hypothesis by showing a 

reduction of ΔBPND in patients with FEP compared to matched healthy controls in 

frontocortical areas (especially the dorsolateral prefrontal cortex (PFC)). Only our group has 

studied frontocortical dopamine release in CHR in response to a stress behavioural challenge 

(Schifani et al., submitted). We detected no differences between CHR (n = 14) and healthy 

controls (n = 12) in medial PFC or dorsolateral PFC.

Neuroinflammation/microglia activation

Several lines of evidence point to a critical role of immune abnormalities such as microglial 

activation in the pathophysiology of psychosis (Barron, Hafizi, Andreazza, et al., 2017). 

Using PET with radioligands that target the 18 kDa translocator protein, TSPO, is currently 

the best method to quantify microglial activation in vivo. The first radioligand developed for 

PET imaging of TSPO was [11C]PK11195, also known as the first-generation TSPO 

radioligand. Using [11C]PK11195, Van Berckel et al. (2008) observed significantly higher 

binding in total grey matter of medicated patients with FEP as compared to healthy controls 

(Table 2). However, the same group in their more recent study (Van Der Doef et al., 2016) 

with a larger sample, as well as a very recent study from Di Biase et al. (2017), reported no 

significant differences in binding of [11C]PK11195 in FEP in comparison to healthy 

controls.

Due to the methodological limitations of the first-generation TSPO radioligand, such as low 

penetration into the brain and low specific binding, the second-generation radioligands such 

as [11C]DPA-713, [11C]PBR28, and [18F]FEPPA were developed, which have a higher 

affinity to TSPO. A common feature of these radioligands is that their binding to TSPO is 

affected by a single gene polymorphism in the TSPO gene (rs6971), and, based on this 

polymorphism, people can be categorized as high-affinity binders (HAB), mixed-affinity 

binders (MAB), or low-affinity binders (LAB) (Mizrahi et al., 2012; Owen et al., 2012). 

Using the gold standard outcome measure for the second-generation TSPO radioligands, 

total volume of distribution (VT), two studies reported no significant difference in microglial 

activation between FEP and matched healthy controls (Coughlin et al., 2016; Hafizi et al., 

2016). However, a more recent study reported significantly lower binding of [11C]PBR28 in 

drug-naïve patients with FEP as compared to matched healthy controls (Collste et al., 2017).

To date, three studies investigated microglial activation in the CHR population and reported 

no significant differences between CHR and matched healthy controls when comparing VT 

(Bloomfield et al., 2015; Hafizi et al., in press) or BPND (Di Biase et al., 2017).
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Taken together, the extent and exact nature of the relationship between microglial activation 

and pathophysiology of psychosis is not yet fully understood. Several reasons have been 

suggested to contribute to this lack of group effect on microglial activation. First, TSPO is 

not specific for microglial activation and is also expressed by astrocytes and neurons (Notter 

et al., in press). Second, using TSPO, it is not possible to differentiate between pro-

inflammatory (M1) and anti-inflammatory (M2) states of microglia. Moreover, recent 

studies suggest that TSPO may be down-regulated in activated microglia (Owen et al., 

2017).

Glutamate and GABA

GABA/glutamate imbalance has been implicated in the pathophysiology of schizophrenia, 

suggesting that hypofunction of the N-methyl-D-aspartate (NMDA) receptor causes 

hypoactivity of GABAergic interneurons. Hypoactivity of these interneurons results in 

disinhibition of glutamatergic pyramidal neurons, leading to glutamate excitotoxicity (Lewis 

& Moghaddam, 2006; Lisman et al., 2008). Investigating these neurotransmitter systems in 
vivo with PET imaging has been challenging due to difficulties in the development of 

reliable radiotracers.

Glutamate is the primary excitatory neurotransmitter in the central nervous system. Both 

ionotropic glutamate receptors, in particular NMDA receptors, and metabotropic glutamate 

receptors (mGluRs) play an important role in modulating glutamatergic neurotransmission 

in the brain (Meldrum, 2000). NMDA receptor and mGluR5 are functionally linked and co-

localized in many brain regions implicated in schizophrenia, such as the hippocampus and 

striatum. Studies have shown that mGluR5 activation leads to the potentiation of NMDA 

receptor-mediated currents (Matosin & Newell, 2013). Thus, based on the NMDA 

hypofunction hypothesis of schizophrenia, positive modulation of mGluR5 may provide a 

therapeutic target to restore NMDA receptor function.

[11C]ABP688 is a glutamatergic radioligand that binds to an allosteric site on mGluR5. In 

humans, [11C]ABP688 showed high brain uptake and its regional distribution was consistent 

with known mGluR5 sites (Ametamey et al., 2007). [11C]ABP688 has been used to image 

mGluR5 in a sample of treated schizophrenia patients, reporting no significant differences in 

mGluR5 distribution volume ratio (DVR) between patients and healthy controls (Akkus et 

al., 2017); however, no studies exist in FEP or CHR. Importantly, studies have reported high 

intrasubject variability across [11C]ABP688 on same day test–re-test scans, suggesting 

difficulties in using this radioligand to assess group differences (DeLorenzo et al., 2017).

Several radioligands have been synthesized for the in vivo imaging of NMDA receptors in 

the brain. However, most of these ligands are limited by their fast metabolism and high non-

specific binding, or have not yet been fully characterized in humans. To date, no PET studies 

exist which have imaged the NMDA receptor in FEP or CHR, but recent developments may 

provide the possibility of directly investigating this system in humans (Klein et al., 2017).

GABA is an amino acid neurotransmitter involved primarily in inhibitory synaptic 

transmission and acts through two main receptors, GABAA and GABAB. The most widely 

used radioligand for GABA receptors is [11C]flumazenil, an antagonist with high affinity 
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and selectivity to the benzodiazepine site of the GABAA receptor (Maziere et al., 1983). 

[18F]fluoroflumazenil, a fluoridated derivative of [11C]flumazenil, has been developed to 

overcome the short half-life of carbon-11 ligands. Evaluation of this ligand in humans 

suggests a high affinity for GABAA receptors and comparable biodistribution to 

[11C]flumazenil (Mitterhauser et al., 2004). Only one study has investigated GABA 

neurotransmission in CHR individuals using [18F]fluoroflumazenil PET. This study reported 

reduced [18F]fluoroflumazenil BPND in CHR relative to healthy controls (Kang et al., 2013). 

However, the pons was used as a reference region in this study, which is (1) known to be 

subject to partial volume effects due to its small volume and (2) not completely devoid of 

GABAA receptors, challenging the assumption of a true reference region.

It is important to mention that GABAA receptor sub-types have distinct cellular and regional 

distributions, suggesting that they may mediate different functions in the brain (Sieghart & 

Sperk, 2002). However, [11C]flumazenil and [18F]fluoroflumazenil cannot distinguish 

between GABAA receptor sub-types, which limits the interpretability of the results.

[11C]Ro15-4513 is a radioligand that binds mostly to the GABAA α1/α5 benzodiazepine 

receptor, with a 10-fold higher affinity at α5 than α1 receptor subtypes. Quantification 

studies reported a high affinity and selectivity of [11C]Ro15-4513 to the α5 sub-unit in 

humans (i.e. 60–70% of the specific binding); however, binding kinetics were better 

modelled by alternative quantification methods (i.e. voxel-wise based analyses and 

simplified tissue reference model) rather than the standard plasma input model (Asai et al., 

2009; Myers, Comley, & Gunn, 2017). A study by Asai et al. (2008) reported no significant 

differences in [11C]Ro15-4513 binding potential between schizophrenia patients and healthy 

controls; however, this remains to be explored in early psychosis.

Endocannabinoid system

There is strong agreement across epidemiological studies linking cannabis with increased 

risk of developing schizophrenia (Arseneault et al., 2002; Moore et al., 2007). Moreover, 

cannabis may reduce the age of onset of psychosis (Di Forti et al., 2014), supporting the 

involvement of the endocannabinoid system early in the development of psychotic disorders.

The majority of the known psychoactive effects of cannabis act through the cannabinoid 

CB1 receptor (Huestis et al., 2007) which is expressed densely throughout the brain but is 

particularly enriched in the cortex, cerebellum, basal ganglia, midbrain, and limbic nuclei 

(McPartland, Glass, & Pertwee, 2007). In contrast, the CB2 receptor is weakly expressed in 

the brain, and its functions in humans are poorly understood. The endogenous cannabinoid 

(endocannabinoid) ligands N-arachidonoylethanolamine (anandamide) and 2-

arachidonoylglycerol (2-AG) activate presynaptic CB1 receptors, leading to a reduction of 

neurotransmitter release from synaptic terminals (Katona & Freund, 2008). 

Endocannabinoids are produced by N-acylphosphatidylethanolamine phospholipase D 

(NAPE-PLD) or diacylglycerol lipase (DAGL), the biosynthetic enzymes for anandamide 

and 2-AG, respectively, and brain levels of endocannabinoids are believed to be determined 

primarily by fatty acid amide hydrolase (FAAH), which degrades anandamide and 

monoacylglycerol lipase (MAGL) and ab-hydrolysing domain-6 and −12 (ABHD-6 and 

−12) which degrade 2-AG (Katona & Freund, 2008). Of these primary components of the 
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endocannabinoid system, to date, only the CB1 receptor and FAAH can be targeted with 

PET in humans. For CB1 receptors, three radiotracers have been extensively used for PET 

imaging in humans, [11C]OMAR (Normandin et al., 2015), [18F]MK-9470 (Sanabria-

Bohorquez et al., 2010), and [11C]MePPEP (Terry et al., 2009), while novel radiotracers 

remain under development.

Three PET studies have investigated the CB1 receptor in schizophrenia (Ceccarini et al., 

2013; Ranganathan et al., 2016; Wong et al., 2010), and two of these included sub-groups of 

anti-psychotic-naïve or FEP patients (Table 3). Ceccarini et al. (2013) used [18F]MK-9470 

PET with a mixed schizophrenia sample that comprised anti-psychotic-free patients with 

schizophrenia (9.4 ± 4 months since last antipsychotic exposure) and antipsychotic-naïve 

patients with FEP, with mean duration of illness of 5 (± 11) and <1 years, respectively. 

Ranganathan et al. (2016) used [11C]OMAR PET with an unmedicated schizophrenia sub-

group that primarily comprised schizophrenia patients that had been antipsychotic-free for 

27 ± 24 months. Ranganathan et al. (2016) did not report duration of illness. These studies 

reported elevated (Ceccarini et al., 2013) and decreased (Ranganathan et al., 2016) CB1 

receptors in schizophrenia relative to healthy controls, and sub-group analysis in both studies 

reported greater magnitude of changes in FEP and anti-psychotic-naïve/unmedicated 

schizophrenia patients relative to medicated patients. Neither of these PET studies included 

genotyping of the CNR1 rs2023239 variant that affects CB1 receptor binding. Carriers of the 

rs2023239 minor allele have as much as ~30% higher binding relative to those homozygous 

for the wild-type allele (Hirvonen et al., 2013). The reason for the conflicting directions of 

the change in CB1 receptor availability is unclear as the studies used different ligands 

([18F]MK9470 vs [11C]OMAR), different methods of quantification, and different outcome 

measures (modified standardized uptake values (SUV) vs VT).

[18F]MK-9470 has high affinity to the CB1 receptor, but exhibits very slow in vivo kinetics, 

posing considerable challenges for its quantification (Sanabria-Bohorquez et al., 2010). 

Relative to [18F]MK-9470, [11C]OMAR has lower affinity for CB1 receptors and exhibits 

faster kinetics, aiding modelling, and reducing the scan time required for quantification. In 

addition, [11C]OMAR binding (VT) has superior test–re-test reliability and lower 

betweensubject variability (Normandin et al., 2015).

Future directions for PET studies in early psychosis

Endocannabinoid system

Aside from the CB1 receptor, no other major component of the endocannabinoid system has 

been imaged in vivo in schizophrenia. However, with recent developments, FAAH can now 

be imaged using [11C]CURB, a C-11 labelled form of the highly selective and specific 

FAAH inhibitor URB694, that has been validated in humans (Clapper et al., 2009; Rusjan et 

al., 2013; Wilson et al., 2011). A study demonstrated that more than 95% of [11C]CURB 

binding can be blocked following pre-treatment with the highly selective FAAH inhibitor 

PF-04457845 (Boileau, Rusjan, et al., 2015). [11C]CURB PET imaging also demonstrated 

sensitivity to physiologically relevant changes in FAAH availability by detecting reductions 

of [11C]CURB binding in carriers of the rs324420 A-allele, a single nucleotide 

polymorphism that results in lower levels of FAAH protein (Boileau, Tyndale, et al., 2015; 
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Chiang, Gerber, Sipe, & Cravatt, 2004). In light of strong evidence supporting the 

hypothesis that the endocannabinoid system is altered in psychosis, [11C]CURB imaging of 

FEP and CHR individuals is warranted.

Beyond CB1 and FAAH, there is great interest in expanding the repertoire of 

endocannabinoid PET ligands to interrogate the endocannabinoid system in schizophrenia 

with notably active development of ligands for MAGL (e.g. Ahamed et al., 2017; Hicks et 

al., 2014; Wang, Placzek, Van de Bittner, Schroeder, & Hooker, 2016) and the CB2 receptor 

(e.g. Moldovan et al., 2016; Saccomanni et al., 2015). One of the CB2 ligands has been 

tested in humans, although its specificity for the CB2 receptor in vivo remains to be 

demonstrated (Ahmad et al., 2016).

Synaptic density

Post-mortem studies have repeatedly detected reduced synaptic density in the PFC and 

hippocampus in schizophrenia (Egbujo et al., 2016). This is believed to result from 

exaggerated synaptic pruning during puberty, proposed as a likely mechanism of disease 

onset (Selemon & Zecevic, 2015). Density of vesicular proteins is commonly used as a 

marker for synaptic density due to the ubiquitous distribution of synaptic vesicles in the 

brain, their restricted cellular localization in synaptic boutons, and their high phylogenetic 

conservation across vertebrates. In patients with schizophrenia, the expression of those 

proteins (e.g. synaptophysin) in the cerebral cortex was repeatedly found to be decreased 

(Eastwood, Burnet, & Harrison, 1995; Glantz & Lewis, 1997). Another very abundant 

vesicular protein is SV2A. Its distribution is homogenous (Bajjalieh, Frantz, Weimann, 

McConnell, & Scheller, 1994) and well-correlated with the cellular and regional distribution 

of synaptophysin, the gold standard marker to assess synaptic density (Finnema et al., 2016). 

Thus, SV2A represents an interesting marker to assess synaptic density (Finnema et al., 

2016).

Two PET tracers have recently been developed (Mercier et al., 2014) and studied in humans, 

[18F]UCB-H (Bretin et al., 2015) and [11C]UCB-J (Finnema et al., 2016). Using rats and 

non-human primates, two studies reported high uptake and fast kinetics for [11C]UCB-J in 

the brain, as well as high-affinity, saturable, and specific binding to SV2A (assessed with a 

displacement study using levetiracetam) (Finnema et al., 2016; Nabulsi et al., 2016). 

Moreover, [11C]UCB-J’s in vivo PET binding estimates (VT) were very well correlated with 

in vitro SV2A densities in brain tissue (Finnema et al., 2016). Also in the human brain, 

[11C]UCB-J has exceptional imaging qualities, including rapid brain uptake, rapid 

metabolism, and high-affinity and specific binding to SV2A. Furthermore, [11C]UCB-J has a 

high and reliably measurable free fraction in plasma, suitable regional time activity curves 

with high radioactivity concentration in all grey matter regions, and very low uptake in white 

matter regions, and a very good inter-subject variability (CV = 12% ± 2% (mean ± SD)). A 

first evaluation in a patient population with temporal lobe epilepsy indicated a significant 

reduction of [11C]UCB-J binding co-localized with the mesial temporal lobe sclerosis, 

confirming that [11C]UCB-J PET is sensitive to synaptic loss (Finnema et al., 2016). In 

comparison, [18F]UCB-H also displayed good kinetics in rodents (Bretin et al., 2013; 

Warnock et al., 2014) and non-human primates (Zheng et al., 2014), as well as acceptable 
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dosimetry in humans (Bretin et al., 2015), but there are no human imaging studies yet 

reported.

To date, no study has investigated SV2A with [11C]UCB-J PET in humans in order to 

investigate the longstanding hypothesis of synaptic over-pruning in schizophrenia.

Nociceptin receptor system

The nociceptin/orphanin FQ peptide receptor (NOPr) system presents another novel 

approach to investigate schizophrenia, as there is a relatively large body of pre-clinical and 

in vitro evidence aligning this system with hallmark features of the disorder. The NOPr 

system plays a role in dopamine (Marti et al., 2004) and glutamate (Nicol, Lambert, 

Rowbotham, Smart, & McKnight, 1996) regulation, hypothalamic-pituitaryadrenal axis 

regulation (Leggett, Harbuz, Jessop, & Fulford, 2006), cognition (Higgins et al., 2002), and 

reward modulation (Rutten, De Vry, Bruckmann, & Tzschentke, 2010) (collectively 

reviewed by Khan et al., submitted), all of which are significantly altered in schizophrenia 

(Barch & Ceaser, 2012; Howes et al., 2015; Strauss, Waltz, & Gold, 2014; Walker, Mittal, & 

Tessner, 2008). Evidence for the implication of this system in the pathogenesis of psychosis 

is still limited. Yet, one pre-clinical study has demonstrated that the selective NOPr agonist 

Ro64-6198 disrupts pre-pulse inhibition (PPI) (Ces et al., 2012), a pre-attentive sensory 

filtering mechanism shown to be deficient in patients with schizophrenia (Braff, 2010; Braff, 

Geyer, & Swerdlow, 2001). Furthermore, dopamine D2 receptor antagonism was shown to 

restore the Ro64-6198-disrupted PPI (Ces et al., 2012). Fortunately, the development and 

validation of the novel PET tracer [11C]NOP-1A (Lohith et al., 2012) now makes it possible 

to investigate this system directly in clinical populations.

Conclusion

The increased availability of PET/MRI scanners and radiotracers for unique targets allow 

PET to be used in various fields of research including neuropsychiatry. The possible areas of 

quantitative PET application are manifold, including the discovery of disease 

pathophysiology, diagnosis, drug discovery, disease monitoring, and treatment response, 

which makes it a unique tool in brain research.

This paper reviewed PET studies in early psychosis (FEP and CHR) concentrating on 

relevant implicated neurochemical systems and molecular mechanisms such as frontocortical 

dopaminergic, GABAergic, glutamatergic, endocannabinoid, and immunologic (i.e. glial 

activation) systems. Initial results with these systems do indicate their potential implication 

in schizophrenia. Furthermore, promising efforts are being made in the development of PET 

tracers in novel systems with growing interest in schizophrenia such as the nociceptive 

system, synaptic density, and even cyclooxygenase (COX)-2 (Kim et al., 2017).
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