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Abstract

Introduction—The treatment for glioblastoma (GBM) has remained unchanged for the past 

decade, with only minimal improvements in patient survival. As a result, novel treatments are 

needed to combat this devastating disease. Immunotherapies are treatments that stimulate the 

immune system to attack tumor cells and can be either local or systemically delivered. Viral 

treatments can lead to direct tumor cell death through their natural lifecycle or through the delivery 

of a suicide gene, with the potential to generate an anti-tumor immune response, making them 

interesting candidates for combinatorial treatment with immunotherapy.

Methods—We review the current literature surrounding the interactions between oncolytic 

viruses and the immune system as well as the use of oncolytic viruses combined with 

immunotherapies for the treatment of GBM.

Results—Viral therapies have exhibited preclinical efficacy as single-agents and are being 

investigated in that manner in clinical trials. Oncolytic viruses have significant interactions with 

the immune system, although this can also vary depending on the strain of virus. Combinatorial 

treatments using both oncolytic viruses and immunotherapies have demonstrated promising 

preclinical findings.

Conclusions—Studies combining viral and immunotherapeutic treatment modalities have 

provided exciting results thus far and hold great promise for patients with GBM. Additional 

studies assessing the clinical efficacy of these treatments as well as improved preclinical modeling 

systems, safety mechanisms, and the balance between treatment efficacy and immune-mediated 

viral clearance should be considered.
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Introduction

Glioblastoma (GBM) is the most common primary malignant brain tumor, with a highly 

aggressive nature and dismal prognosis. The current treatment for GBM has remained 

largely unchanged for over a decade and consists of surgical resection, radiation, and 

chemotherapy [1]. Despite treatment, most patients succumb to the disease within 15 months 

of diagnosis, highlighting the need for novel treatments [2]. Indeed, GBM is a uniquely 

challenging cancer to treat and develop new treatments for, as highlighted by the lack of 

effective novel treatments [3]. Immunotherapy, which harnesses the immune system to 

eradicate cancers, has seen success in other cancer types and is the focus of a number of 

current preclinical and clinical studies in GBM [4–6]. Immunotherapies can be locally or 

systemically administered, and can also be generally categorized based on mechanism of 

treatment into monoclonal antibodies targeting tumor antigens, tumor agnostic-treatments 

that work against a variety of cancer types such as checkpoint inhibitors, viral therapies, T-

cell therapies, and cancer vaccines [4]. While previously thought to be immune-privileged, 

studies in the past decade have highlighted the brain as accessible to the immune system, 

suggesting that immunotherapies may hold promise in treating CNS tumors, including GBM 

[7]. However, preceding investigations into the use of single-agent immunotherapies for 

GBM have been met with limited success [4, 5]

The failure of single-agent immunotherapies in GBM is likely in part due to the low 

immunogenicity of the tumor cells as well as the severe local and systemic immune 

suppression mediated by the cancer [4, 5]. Contributing to the low immunogenicity of the 

GBM is the downregulation of MHC I [9–11] and relatively low mutational burden (TMB) 

seen in most GBM tumors when compared to other cancers that respond well to 

immunotherapies [12]. Previous studies have shown a positive relationship between TMB 

and response to immunotherapies across cancer types [13]. However, even the more rare 

GBM with an elevated mutational burden does not follow this trend, highlighting the unique 

response of GBM to immunotherapy, relative to other malignancies [13]. GBM also causes 

significant local and systemic immune-suppression [14, 15]. While the detailed signaling 

pathways and mechanisms underlying the immune-suppression seen in GBM are outside the 

scope of this review, they include expression of immune-checkpoint molecules, TGF-B 

signaling, STAT3, and expression of additional immunosuppressive cytokines by the tumor 

[16]. In addition, GBM has a low number of tumor-infiltrating T cells, which can mediate 

tumor cell death, and severe exhaustion and dysfunction of the T cells that do infiltrate [8, 

17]. In fact, recent studies have highlighted the sequestration of T cells in the bone marrow 

in the setting of a GBM or other intra-cranial tumors as contributing to the systemic 

immune-suppression seen in afflicted patients [15]. Myeloid cells, including tumor-

associated macrophages (TAMs) and myeloid derived suppressor cells (MDSCs) similarly 

contribute to the immunosuppressive GBM tumor microenvironment in a number of ways 

and have also been associated with reduced survival [18], highlighting the multidimensional 

immune-suppression present in GBM [19]. These myeloid cells, and the mechanisms 

previously described, contribute to the designation of GBM as an immunogenically “cold” 

tumor in contrast to other cancers, such as melanoma, with abundant infiltrating immune 

cells and high tumor mutational burdens.
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Viral treatments used for cancer are commonly replication competent viruses that are either 

specific to tumor cells or lack the ability to spread outside of the immune suppressed tumor 

microenvironment [20]. They can lead to the death of infected cells through cell lysis as a 

part of their natural life cycle or through the delivery of genes, such as suicide genes, 

causing host cell death [20]. The resulting cell death can lead to the release of tumor 

associated antigens (TAAs), damage associated molecular patterns (DAMPs), and pathogen 

associated molecular patterns (PAMPs), which can activate the immune system and provide 

immunogenic targets [20, 21]. In addition, the oncolytic viral lifecycle, or certain suicide 

genes, can lead to immunogenic cell death, which can also stimulate the innate immune 

system leading to increased dendritic cell recruitment and antigen uptake and presentation, 

contributing to the generation of a robust anti-tumor immune response. Viral antigens, such 

as envelope proteins, can also further trigger an immune response, which may initially target 

viral epitopes, but is thought to undergo epitope focusing, eventually targeting tumor-

specific epitopes as the virus is cleared by the immune system [20–22]. These mechanisms 

contribute to the view of some oncolytic viruses as a form of tumor specific vaccination in 

which TAAs are released in conjunction with immune stimulation, although this is 

dependent on the type of viral therapy and is likely reduced if replication-defective vectors 

or more immunogenically silent viruses are used. In fact, the anti-tumor response seen in 

some viral treatments is reduced or abrogated in immune deficient models, [21, 23, 24] 

highlighting the importance of the immune system in promoting the efficacy of many viral 

therapies. These findings also highlight the potential benefit of combining locally 

administered viral therapies with immunotherapy. In this review, we discuss the use of viral 

treatments for the treatment of GBM and the potential benefits that may be seen when 

combining them with immunotherapies.

Viral therapies for glioblastoma: evidence of interplay with the immune 

system

Several studies have highlighted the role of the immune system in facilitating an anti-tumor 

immune response following viral treatment in multiple cancer types [21, 23]. As an example, 

in a mouse model of melanoma being treated by vesicular stomatitis virus (VSV), an early 

study by Diaz et al. demonstrated a significant reduction in survival benefit in mice treated 

with VSV and depleted of CD8 T cells when compared to immunocompetent mice, 

highlighting the role of the immune system in mediating an anti-tumor response following 

viral treatment [23]. In clinical trials, patients injected with herpes simplex virus (HSV) for 

the treatment of metastatic melanoma demonstrated responses in both lesions that had been 

directly injected with virus and remote lesions not injected with the virus, further 

highlighting the role of the immune system in the clinical response to viral treatments [25].

In GBM specifically, a number of viral therapies have been utilized in the preclinical and 

early clinical settings. Some of the more commonly used viruses include retroviruses, 

measles virus, adenovirus, poliovirus, and HSV, which each have a unique set of advantages 

and disadvantages associated with their use [26]. Following promising preclinical studies, 

some viral therapies have reached clinical trials, with mixed results. A complete list of viral 

clinical trials for GBM can be found in Table 1. In the following section, we describe a 
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select few viral therapies in later-stage clinical trials as well as specific evidence of each 

virus’ interaction with the immune system.

Retroviral replicating vectors (RRV):

Replicating retroviruses (RRVs) are somewhat unique amongst replicating viral therapies in 

that they don’t lead to lytic cell death as a result of their lifecycle. Rather, the viruses 

integrate into host cell genomes and divide in a non-lytic manner, allowing for stealthy viral 

spread and persistence within tumor cells. As a result, RRVs have been utilized to deliver 

prodrug activator (“suicide”) genes that then lead to cancer cell death when a prodrug is 

given. Cancer cells that escape prodrug conversion-mediated cytotoxicity then act as 

‘reservoirs’ of integrated retrovirus, which continues to be produced and re-infects cancer 

cells even as they recur, enabling efficacy of further prodrug treatment cycles. This is the 

concept behind Toca 511 (vocimagene amiretrorepvec), which delivers a yeast cytosine 

deaminase, which then converts the prodrug 5-fluorocytosine (5-FC) to the 

chemotherapeutic 5-fluorouracil (5-FU), leading to the death of infected cells [33]. 

Interestingly, preclinical investigations into Toca 511 demonstrated significant tumor growth 

in CD4 or CD4/CD8 depleted mice when rechallenged with tumor. This was in contrast to 

the lack of tumor cell growth seen in mice with just CD8 depletion, natural killer cell 

depletion, or no immune cell depletion at all, highlighting the value of the immune system in 

maintaining a memory of the tumor cells and rebuffing tumor rechallenge, or potentially 

recurrence in the clinical setting [34]. In addition, in a subcutaneous model of GBM, 

treatment with Toca 511 was shown to cause significant reductions in tumor infiltration of 

potentially immunosuppressive myeloid cells, including TAMs, MDSCs, and monocytes 

[35]. While a limitation of these findings is their discovery in a subcutaneous model of 

GBM, which has significant differences in immune cell infiltration and behavior relative to 

intracranial models, it was also demonstrated that T cells from these treated animals showed 

anti-tumor activity in vitro and when adoptively transferred to naïve animals bearing 

intracranial gliomas [36, 37]. The reduction of immunosuppressive cells, such as MDSCs, is 

also a promising finding with potential implications for the use of Toca511 in combination 

with immunotherapies that may otherwise be hampered by immunosuppressive myeloid cell 

populations.

As a result of the promising preclinical findings, Toca 511 was subsequently taken to clinical 

trials. Toca 511 was shown to be safe and provide a significant survival benefit in a phase 1 

trial for recurrent high-grade glioma [38]. While a subsequent Phase III trial failed to meet 

its endpoints overall, likely due to lack of adequate prodrug cycles administered in the 

majority of patients, subsequent subgroup analysis revealed significant survival benefit in 

patients with 2 or more recurrences [39]. Further clinical trials of Toca 511 (now DB107) in 

specific patient populations that may benefit from this treatment are underway.

Poliovirus

Another viral therapy that has recently been studied in clinical trials is the modified 

poliovirus, known as PVSRIPO. PVSRIPO is genetically modified through the replacement 

of the native internal ribosome entry site (IRES) with that from rhinovirus, to reduce the 

neurovirulence of the virus and prevent viral replication in neurons. Virus particles infect 
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cells expressing the poliovirus receptor (CD155), which is highly expressed on many solid 

tumors, including GBM cells, contributing to the specificity of the virus [40]. Preclinical 

studies of the virus were promising with significantly improved survival in treated mice 

using a subcutaneous GBM model [41]. Interestingly, the virus was also shown to 

sublethally infect antigen presenting cells (APCs) including macrophages and dendritic 

cells, leading to their activation, which then helped to drive an antitumor immune response. 

Similar to some of the preclinical immune-system findings in Toca511, the mechanisms of 

APC activation described in PVSRIPO should be interpreted with the caveat that this 

occurred in a subcutaneous model. Nevertheless, the results were promising and led to 

PVSRIPO being taken to clinical trials.

A phase I clinical trial has demonstrated the ability of the PVSRIPO to significantly extend 

patient survival, with 21% survival at 36 months in treated patients [40]. The safety of the 

virus was also demonstrated, although 69% of patients had a grade 1 or 2 adverse event 

attributed to the treatment [40]. PVSRIPO is now being evaluated in a multicenter Phase II 

trial for adult GBM, and in a Phase Ib trial for pediatric recurrent high-grade glioma. (Table 

1).

Oncolytic adenovirus

Replicating oncolytic and replication-deficient adenoviruses have also been explored in the 

treatment of GBM. The most notable example of a replicating oncolytic adenovirus is 

Delta-24-RGD (now designated DNX-2401 (Tasadenoturev)), which carries specific 

mutations that confer tumor selectivity. These mutations include insertion of an ανβ3 / 

ανβ5 RGD sequence of the viral fiber to target redirect the virus to recognize surface 

integrins and enhance virus entry into tumor cells as well as a 24-bp deletion in the viral 

E1A gene to preclude viral replication in healthy cells that express a functional 

retinoblastoma protein but allow for viral replication in tumor cells with down-regulated 

retinoblastoma protein [32]. Preclinical studies have demonstrated that this virus can elicit 

anti-tumor immunity; mice injected with Delta-24-RGD had increased evidence of Th1 

immunity, increased NK cells, and increased CD4 + lymphocytes in the tumor following 

virus injection. Treatment with the virus was also implicated in increased presentation of 

TAAs [42, 43]. A subsequent phase I clinical trial was promising, demonstrating the safety 

of the virus as well as a significant survival benefit and 20% of patients surviving for over 

three years [32, 42, 43]. Replication-deficient adenoviruses have also been used as a vehicle 

to carry suicide genes, most frequently thymidine kinase (TK), [27, 44, 45] directly to the 

GBM tumor mass. The killing of cells using TK from adenoviruses has been shown to 

increase costimulatory molecules on antigen presenting cells as well as infiltration of T cells 

and macrophages [27, 44, 45]. In addition, therapeutic responses seen have been higher in 

immune competent animals relative to immunodeficient models, emphasizing the role of the 

immune system in the response seen to these vectors [46].

As a result of the promising preclinical studies utilizing non-replicating adenoviruses 

carrying TK, subsequent clinical trials were initiated (Table 1). A phase I trial of a non-

replicating adenovirus carrying TK were promising, demonstrating 25% survival at three 

years in newly diagnosed glioma [27]. Interestingly, significant CD3 + T cell infiltration was 
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seen in 4/4 patient tumors analyzed following treatment, potentially suggesting some level of 

an immune response in these patients. Additional analysis of a single patient tumor revealed 

a large number of these CD3 + T cells to also be CD8 + , again potentially indicating 

cytotoxic T cells infiltrating as a response to the viral treatment. Significant increases in 

macrophage infiltration were also noted, further highlighting the immune response to the 

viral treatment and similarly corresponding to preclinical findings [27]. Two subsequent 

phase II clinical trials were completed, again demonstrating a survival benefit in patients 

with high grade glioma treated with an adenovirus carrying TK [47, 48].

Combining viral therapies with immunotherapy

As discussed in proceeding sections, viral therapies interact with the immune system in a 

number of ways, including the release of TAAs through tumor cell death, stimulation of the 

immune system through subsequent inflammatory pathways or direct infection of immune 

cells, and depletion of myeloid cells when specific suicide genes are utilized. Previous 

studies have demonstrated reduced efficacy of viral therapies in immunodeficient models, 

emphasizing the role of the immune system in viral treatment responses. Thus, combining 

oncolytic viruses with immunotherapies that increase the anti-tumor response of the immune 

system and potentially reduce tumor-mediated immune suppression is a subject of active 

investigation.

Reports of viral therapies combined with systemic immunotherapy have been successful in 

other cancers. In the B16 melanoma model, combination therapy with Newcastle disease 

virus (NDV) and checkpoint inhibition with CTLA-4 blockade led to the resolution of local 

and distant metastasis despite the resistance of tumor cells to NDV mediated lysis. This 

result was thought to be related to increased tumor T cell infiltration as a result of the viral 

infection, which subsequently increased tumor susceptibility to checkpoint inhibition [49]. 

Similarly, treatment with an oncolytic adenovirus has been shown to overcome PD-1 

resistance in a mouse model of lung cancer by increasing the number of neoepitopes 

recognized by activated T cells [50]. The ability to increase the number of neoepitopes 

recognized by activated T cells may have implications for the treatment of GBM given the 

lower tumor mutational burden and limited number of TAAs available for the immune 

system to target.

As a result of these successes in other cancer types, the combination of viral therapies with 

systemic immunotherapies has also been investigated in GBM. Hardcastle et al. 

demonstrated an improved anti-tumor response in an orthotopic GL261 mouse model treated 

with oncolytic measles virus and anti-PD-1 compared to either anti-PD-1 or measles virus 

treatment alone [51]. Similar results were demonstrated when using VSV expressing TAAs 

in combination anti-PD-1 treatment [52] as well as in similar models using reovirus [53]. 

While these results are promising and recapitulate those seen in other cancers, they should 

be interpreted with caution considering the use of the GL261 model, which is overall 

significantly more immunogenic than human GBM and other mouse models, such as SB28 

or Tu2449 [54, 55]. Interestingly, a study by Passaro et al. took a different approach to their 

combinatorial therapy; instead of delivering exogenous anti-PD-1 treatment, they designed 

an oncolytic HSV to express to express a single-chain fragment variable antibody against 
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PD-1, leading to checkpoint inhibition in addition to tumor cell death via the virus’ oncolytic 

nature [56]. Using two different syngeneic mouse models, CT-2A and GL261, they 

demonstrated that mice treated with the HSV expressing PD-1 had a significant survival 

benefit relative to control mice, with some exhibiting long-term responses and resistance to 

rechallenge. However, this survival benefit was greater in GL261 tumors and there was no 

difference between the HSV expressing PD-1 and virus that did not express PD-1 [56]. In 

addition, there was a reduced therapeutic benefit of either virus in the CT-2A model, which 

is less immunogenic than GL261, highlighting the importance of model selection and the 

poor ability of GL261 to recapitulate the low immunogenicity of human GBM [56].

As seen in the aforementioned study by Passaro et al., an alternative approach to combining 

systemic immunotherapies with viral therapeutic modalities is by using the virus itself to 

deliver immunomodulatory genes, allowing the immune response to the virus and tumor cell 

death to be combined with the immune stimulating effects of the immunomodulatory gene. 

In the clinical setting, Talimogene laherparepvec (a herpes virus encoding for human 

granulocyte–macrophage colony stimulating factor) for the treatment of melanoma has also 

seen success in phase III trials, further demonstrating the potential of such treatments [57]. 

A similar approach has also been utilized in GBM. King et al. demonstrated the ability of 

two adenoviruses, one carrying TK, (leading to tumor cell death and the release of TAAs 

following prodrug administration) and one carrying FLT3L (which recruits dendritic cells to 

the tumor) to result in the long-term survival of rats with multifocal GBM [58]. In addition, 

Barret et al. used the GL261 model to evaluate the use of a replication incompetent 

adenovirus to deliver IL-12, which activates NK and T cells, to tumor cells in a regulatable 

manner that could be turned on or off using an activator (veledimex) [59]. Impressively, 65% 

of treated animals had a long term survival benefit, although again, this was in the GL261 

model. These promising results prompted a subsequent phase I clinical trial. Using the same 

mechanism of regulation as the preceding preclinical trial, 31 patients were administered the 

adenovirus in their resection cavities following surgery with veledimex also given at varying 

doses, as tolerated. Interestingly, a patient requiring reresection of their tumor demonstrated 

increases in tumor infiltrating T cells, including CD3 + and CD3 + CD8 + T cells. A trend 

towards increased survival was also seen in patients who cumulatively received less than or 

equal to 20 mg of dexamethasone, suggesting the ability of the steroid to dampen potentially 

beneficial anti-tumor immune responses [60]. This system is currently being evaluated in a 

multicenter phase II study (Table 2). Similarly, HSV has been used to deliver IL-12 to the 

tumor microenvironment of 4C8 tumors, with an increase in survival and CD4 + , CD8 + , 

and NK cell tumor infiltration in treated mice when compared to controls [61]. Like it’s 

adenovirus counterpart, an HSV vector delivering IL-12 (M032) is now also in a clinical 

trial, with results pending (Table 2).

Replication competent oncolytic adenoviruses have also been used to deliver 

immunomodulatory genes. Indeed, the oncolytic replication competent adenovirus Delta-24-

RGD was used to deliver OX40L, an immune co-stimulator, to the GL261 mouse model of 

GBM. OX40L delivery resulted in a significant increase in survival relative to the 

unmodified Delta-24-RGD virus, demonstrating the benefit of combining an immunotherapy 

with the intrinsic immune-stimulating nature of an oncolytic virus [64]. A similar result was 

also demonstrated by the same group when they used the Delta-24-RDG virus to deliver 
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another co-stimulatory ligand, GITRL (glucocorticoid-induced TNFR family-related gene) 

[65]. Compared to combining viral therapies with systemic immunotherapy, the advantage 

of local delivery of immunotherapy is avoiding the toxicity of systemic immunotherapy, 

while the disadvantage is that both therapies are localized, creating a potential risk for 

progression outside of the region of localized therapy.

Additional clinical trials involving the combination of viral therapies with immunotherapies 

can be found in Table 2. A schematic highlighting the interactions between oncolytic viral 

therapy and the immune system can be found in Fig. 1.

Future directions

Using viral therapies in combination with immunotherapies for the treatment of GBM is an 

interesting treatment strategy with promising results to this point. Future treatments might 

combine viral therapies with immunotherapies that target multiple aspects of the immune 

system, such as T cell and myeloid compartments, in order to reverse the multidimensional 

immune suppression seen in GBM. Novel virus delivery mechanisms with increased payload 

abilities, tumor specificity, and safety will also continue to be explored and improved.

This review also highlights the challenges associated with testing and identifying effective 

viral treatments in the preclinical setting, highlighting the need for improved preclinical 

models in which to evaluate GBM viral and immunotherapies. As seen in multiple 

preclinical studies discussed in this review, the syngeneic GL261 model is commonly used 

to study viral treatments. However, a number of issues exist with the model. Primary 

amongst them is its high immunogenicity; GL261 has a much higher tumor mutational 

burden, MHC class I expression, and T cell infiltration than human GBM. The significant 

difference between the immunogenicity of GL261 and human GBM has likely contributed to 

the success of immunotherapies such as checkpoint inhibitors in GL261, but their 

subsequent failure in clinical trials [5, 54]. As a result, murine models induced by 

manipulation of tumor suppressor gene or oncogene expression, rather than induction 

through exposure to carcinogens, such as the SB28 model may be more biomimetic models 

of human GBM for studying immunotherapies [54]. Indeed, the immunogenicity of SB28 is 

more similar to that of human GBM as it has lower T cell infiltration, MHC Class I 

expression, and tumor mutational load than GL261. In fact, SB28 has 108 non-synonymous 

mutations, compared to 4978 in GL261, highlighting the reduced number of potential 

neoantigens in SB28 tumors [54]. In addition, murine models are frequently generated from 

cell lines and fail to replicate the intra-tumoral heterogeneity and other histologic/genetic 

characteristics seen in human GBM. As a result, a virus may replicate well through a murine 

model, but not in human GBM. The increased utilization of patient derived xenograft (PDX) 

models, which can more accurately recapitulate human GBM characteristics, presents an 

opportunity for investigators to model virus replication kinetics and/or transgene expression 

in a more clinically relevant tumor environment [66]. However, most PDX models also lack 

a functional immune system which similarly can influence viral replication and efficacy. 

While humanized PDX models that aim to recapitulate the human GBM tumor-immune 

system interface in a mouse model exist, they are technically challenging to create and 

expensive. Thus, careful consideration should be given to model selection with testing a 
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viral vector in multiple model types likely providing the best insight into how a viral therapy 

will perform in human GBM.

Another critical consideration is the potential for concomitantly delivered immunotherapies 

to increase viral clearance, reducing the efficacy of the viral therapy. Anti-viral immune 

responses are largely mediated by type I interferons (IFNs), and additional components of 

the innate immune system, which can be downregulated in GBM, although this remains 

controversial [67, 68]. While some immunogenically silent viruses, such as replicating 

retroviruses [69] are adept at evading these anti-viral immune responses, others may be more 

immunogenic and susceptible to clearance by the immune system. As a result, the balance 

between stimulating the immune system against tumor cells, while still allowing for viral 

replication through the tumor is one that should be carefully considered and explored in 

future experiments. This may also highlight advantages and disadvantages between different 

viral treatments. For example, when attempting to deliver a therapeutic payload it may be 

beneficial to use an immunogenically silent virus that will be able to spread further through 

the tumor before clearance by the immune system rather than an immunogenic oncolytic 

virus. Nevertheless, combination treatments with viral treatments and immunotherapies will 

undoubtedly continue to see use in the treatment of GBM and are an exciting area of future 

research.
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Fig. 1. 
Schematic highlighting key interactions between oncolytic viral therapies and the immune 

system
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