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Abstract

Per and polyfluoroalkyl substances (PFASs) are an important class of organic pollutants. Many 

diverse PFASs are used in commerce and most are not amenable to conventional targeted chemical 

analysis due to lack of reference standards. Therefore, methods for elucidating the chemical 

structure of previously unreported or unexpected PFASs in the environment rely extensively on 

high-resolution mass spectrometry (HRMS). High-throughput structure identification by HRMS is 

hindered by a lack of PFAS molecular databases and tandem mass spectral libraries. Here, we 

report a new approach for generating an environmentally relevant PFAS molecular database 

constructed from curated structure lists and biotic/abiotic in silico predicted transformation 

products. Further, we have generated a predicted tandem mass spectral library using computational 

mass spectrometry tools. Results demonstrate the utility of the generated database and approach 

for identifying PFASs in HRMS-enabled suspect- and nontarget screening studies.
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Per- and polyfluoroalkyl substances (PFASs) are high production volume synthetic organic 

chemicals widely used throughout commerce. PFASs are globally distributed in the 

environment where they enter through direct dispersal,1 discharge from manufacturing2 or 

waste treatment facilities,3,4 or through leaching5 or off-gassing6,7 from various consumer 

products where they are applied. Certain PFASs bioaccumulate in higher organisms8–11 and 

may be toxic at low levels (ng L−1 range) of exposure.12,13 Therefore, chemical analysis 

techniques for the identification of PFASs in support of environmental fate and effect studies 

are needed.

The diversity of PFASs used in commerce, the complexity of PFAS technical mixtures, 

limited availability of reference materials, sparse information on specific product 

applications, and ever-evolving PFAS product formulations coupled with environmental 

(bio)transformation of PFASs present unique analytical challenges to PFAS detection.14 

Only a small fraction of known PFASs have been measured via targeted chemical analysis, 

and many more PFASs likely occur in the environment than are currently routinely 

monitored.15,16 High-resolution mass spectrometry (HRMS) offers—at present—the only 

practical solution for identifying previously unreported or unexpected PFASs at 

environmentally relevant concentrations and has been widely used to identify PFASs through 

suspect screening and nontargeted analysis.17–22 However, current screening workflows are 

limited by relatively sparse annotated PFAS molecular databases and a general paucity of 

curated spectral libraries containing PFAS structures.

Here, we have addressed these critical needs through generation of a comprehensive PFAS 

chemical structure database with a corresponding in silico tandem mass spectrometry 

(MS/MS) spectral library intended for high-throughput annotation of PFAS structures in 

environmental samples. The objectives of this work were to (1) aggregate high-quality, 

curated chemical structure lists of known PFASs, (2) enumerate possible biotic and abiotic 

transformation products of PFAS using environmentally relevant reaction libraries, (3) 

predict MS/MS fragmentation spectra for both parent structures and any predicted 

transformation products using in silico computational mass spectrometry methods, and (4) 

assess the utility of the resultant structure database and spectral library for the HRMS 

structure annotation of PFASs. Figure 1 depicts an overview of the workflow employed for 

generating the comprehensive PFAS screening database. Using open-source 

cheminformatics and computational mass spectrometry tools, the resultant PFAS spectral 

library enables rapid and high-throughput structural annotation of PFASs in the environment 

using HRMS.

MATERIALS AND METHODS

Chemical Structure Handling and Standardization.

Chemical structure representations were managed using RDKit (v3.1).23 Before and after 

predicting transformation products, structure representations were standardized using the 

molecule validation and standardization (MolVS) software package to determine the charge, 

isotope, tautomer, and stereoisomer parents of each molecule.24 Standardized molecules 

were indexed by the 14-character connectivity and the proton layer of their respective hashed 

International Chemical Identifier (i.e., InChIKey-14, InChIKey skeleton). The InChIKey-14 
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served as the primary key for the resultant database such that the molecule table contained a 

non-redundant list of molecules, while linked tables, such as list membership, parent–

product relationships are retained (i.e., one-to-many relationship). A database schema 

depicting the resultant relational database including the associated tables and foreign keys 

can be found in Figure S1 of the Supporting Information.

Source Datasets.

Commercially and environmentally relevant PFASs totaling 6097 unique structures were 

retrieved from the United States Environmental Protection Agency (USEPA) Chemistry 

Dashboard.25 An additional 1170 PFASs from an in-house list of PFAS structures related to 

aqueous film-forming foams (AFFF) were combined with the EPA Dashboard Chemicals to 

bring the total input database to 7267 unique two-dimensional chemical structures.

Transformation Product Prediction.

Hydrolytic transformations were predicted using the USEPA Chemical Transformation 

Simulator (CTS) Abiotic Hydrolysis Reaction Library,26 which was transcribed into reaction 

SMARTS for batch prediction using RDKit.27 Biotransformations were predicted using 

enviPath28 aerobic biotransformation pathways implemented through the BioTransformer 

command-line tool.29

Computational Mass Spectrometry.

Even-electron, tandem mass spectrometry fragmentation spectra were predicted in both 

positive and negative ionization modes for all PFASs using the machine-learning-based 

Competitive Fragmentation Modeling (CFM) algorithm.30 A new CFM prediction model 

was trained using an in-house curated, nonredundant set of 5836 unique structure–spectrum 

pairs for positive ions and 1969 structure–spectrum pairs for negative ions. These training 

spectra were selected from high-resolution MS/MS library spectra in National Institute of 

Standards and Technology (NIST) 2017 and MassBank of North America to match typical 

data acquisition conditions within our laboratory (e.g., Orbitrap mass analyzer, 35–55 

normalized collision energies, higher-energy collisional dissociation (HDC) fragmentation). 

Results of spectral prediction were compared to available PFAS library spectra from an in-

house library of AFFF compounds, the NIST 2017 MS/MS library, Mass Bank,31 and 

Thermo Scientific mzCloud. The spectral similarity between experimental and predicted 

mass spectra was calculated as the dot-product similarity using the MSnbase: Base 

Functions and Classes for Mass Spectrometry and Proteomics R package.32

Data and Code Availability.

The database described herein may be accessed through the Duke University Research 

Repository under DOI 10.7924/r4c53n875 (https://doi.org/10.7924/r4c53n875). To facilitate 

batch spectral prediction for large numbers of molecules, collection and storage of the 

resultant spectra, and spectral similarity searching, we developed an open-source R-

extension called cfmR, which is available on Github at https://github.com/gjgetzinger/cfmR. 

Executable scripts for generating the database and spectral library and for replicating the 
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analysis described herein can also be found on Github at https://github.com/gjgetzinger/

PFAScreeneR.

RESULTS AND DISCUSSION

Hydrolysis.

Various commercial PFAS chemistries as well as associated byproducts or impurities contain 

hydrolytically labile moieties. For instance, fluorosulfonyl and acyl fluoride moieties are 

thought to form their corresponding sulfonic and carboxylic acid analogs in aqueous 

environments.19 Furthermore, hydrolysis likely represents the main abiotic transformation 

processes for most PFAS since few PFASs contain chromophores and are therefore not 

susceptible to direct photolysis by sunlight. Therefore, 22 hydrolysis reaction rules were 

applied in two steps to molecules with at least one hydrolyzable moiety. In the first and 

second hydrolysis steps, reactions predicted totaled 3391 and 3305 and gave 3355 and 1947 

unique parent–product pairs, respectively. Products containing a carbon-fluorine 

substructure were retained for further analysis.

Few literature reports of PFAS hydrolysis pathways are available. Therefore, we evaluated 

our hydrolysis predictions against CTS predictions since they incorporate empirically 

derived likelihood estimates.26 We randomly sampled up to 10 unique hydrolysis reactions 

from each applied reaction rule and manually predicted the hydrolysis products using the 

CTS online batch transformation tool. A total of 100 unique precursors were processed in 

batches by CTS giving 170 unique parent–product relationships, of which 138 matched our 

predictions. Where predicted reactions matched those of CTS, 63 were rated by CTS as 

likely, while 75 were rated as unlikely. This indicates that our approach to hydrolysis 

product prediction overestimates the formation of hydrolysis products. Therefore, products 

predicted should be considered possible without any guarantee that the enumerated reaction 

pathway is either thermodynamically or kinetically competent. We assess that the presence 

of “unlikely” hydrolysis products in our database may actually pose advantages for 

identification of novel PFAS transformation products in certain environmental or engineered 

systems, operating under atypical or higher-energy conditions.

Biotransformation.

Aerobic biotransformation products of PFASs were predicted from the input molecules and 

their resultant hydrolysis products, allowing for two successive biotransformation steps. 

Molecules subjected to biotransformation prediction totaled 10 031, and 73 773 

transformation products were predicted. Parent compounds yielding fluorinated products 

totaled 20 367 from 54 853 reactions with 53 401 unique parent–product combinations.

To evaluate biotransformation prediction performance for PFASs, we compared our 

predicted transformation to aerobic transformation pathways for 28 PFASs chosen based on 

the availability of published biotransformation pathways from laboratory or field studies.
33–45 When evaluating literature biotransformation pathways, we defined parent–product 

relationships based on the presence of a product anywhere in the reaction pathway, such that 

both intermediate and terminal products all share the same precursor compound. Predicted 
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biotransformation reactions where the parent and products matched relationships reported in 

the literature totaled 24 and represented 12 different biotransformation rules. These results 

indicate that—for the relatively few PFASs with extant biotransformation studies—the 

applied biotransformation rules may adequately predict environmentally relevant 

transformation pathways for PFASs.

PFAS Molecular Networks.

Parent–product relationships established by reaction predictions represent an important 

consideration when analyzing PFASs in the environment. For instance, many PFASs used in 

commerce do not possess physicochemical properties favoring environmental dispersal (e.g., 

hydrolytically unstable moieties, high molecular weight, low water solubility) but may be 

transformed during use or disposal to product PFASs with enhanced environmental mobility. 

Such is the case with compounds that are known to be precursors to commonly monitored 

PFASs (e.g., perfluorooctanoic acid, PFOA).46 Therefore, when previously unknown PFASs 

are (tentatively) identified in environmental samples, the co-occurrence of PFAS with a 

plausible (predicted or known) transformation pathway leading to the observed putative 

structure assignment may contribute to the weight of evidence for the structure annotation.

The PFAS molecular database described herein captures and maintains parent product 

relationships and provides a facile method for constructing PFAS molecular networks that 

can be used to aid PFAS identification, connections, and environmental fate studies. Figure 2 

depicts the molecular network for PFAS within four predicted reactions of PFOA, where 

nodes represent unique chemical structures (totaling 184) and edges denote predicted 

chemical reactions (totaling 451 unique parent–product–reaction type combinations). 

Representative structures depicted in Figure 2b highlight both the diversity of PFAS 

chemistry captured in the molecular database, the variety of reaction mechanisms applied, 

and the degree of connectivity among PFAS chemistries.

PFAS Molecular Properties.

The overlap in unique molecular structures (defined by InChIKey-14 match) between the 

input structure databases and predicted transformation products is depicted in Figure 3 as an 

up-set diagram. Overlap among datasets was relatively small compared to the overall size of 

each individual dataset, indicating that the chosen input molecules covered a diverse array of 

potential PFAS chemistries and that the predicted transformation products greatly expanded 

molecular diversity. Predicted biotransformation products represented the largest set within 

the final dataset, likely reflecting the diversity of enzymatic processes potentially acting on 

organic pollutants in the environment. Overlap among transformation products and input 

databases indicates that predicted products have been previously observed in the 

environment, either as bonafide transformation products or commercial PFASs in their own 

right. Therefore, as research on the fate of PFASs continues, overlap between predicted 

transformation products and resources such as the EPA’s Chemistry Dashboard will likely 

continue to grow.

The molecular properties of the combined database are shown in Figure 4. Hydrolysis and 

biotransformation reactions yielded lower-molecular-weight product distributions, consistent 
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with the fact that the applied transformation reactions did not include any condensation or 

conjugation reactions. Distributions in exact molecular weight ranged from approx. 50 to 

3200 Da centered at approx. 500 Da. The distribution in carbon counts trended with 

molecular weight, consistent with the fact that most PFASs contain relatively few 

nonfluorine heteroatoms relative to the number of carbons in each molecule. Fluorine counts 

ranged from 1 to 102 and all sublists had significantly more molecules with odd fluorine 

counts than even. Structures from the EPA dataset had markedly fewer hydrogen bond 

donors (HBD) and acceptors (HBA) on average compared to the other datasets. By contrast, 

the in-house AFFF dataset had HBD and HBA on par with hydrolysis products, likely 

reflecting the fact that AFFF compounds are designed for use in aqueous solution and 

therefore contain one or more polar functional groups to facilitate water solubility. Predicted 

biotransformation products had on average the highest number of HBD and HBA moieties 

per molecule, reflecting the aerobic biotransformation rules applied in BioTransformer. 

Given these molecular properties, most molecules present in the database should be 

amenable to conventional liquid chromatography (LC)-HRMS analysis. Molecules with 

molecular weight >1000 Da and no HBD or no HBA moieties would likely not be amenable 

to LC-HRMS but were preserved in the database so that any parent–product relationships 

could be retained in the underlying relational database.

Mass defect analysis is a common data filtering approach for isolating potential PFASs from 

complex mixtures analyzed by LC-HRMS.47 Here, we calculated the mass defect by 

subtracting the molecular weight rounded to zero decimal places (i.e., rounded nominal 

mass) from the exact molecular weight. Using this approach, PFASs typically give negative 

mass defects—due to their high fluorine counts—that provide a means for filtering out non-

PFASs. However, our analysis shows that such an approach would likely eliminate a large 

number of potential structure matches given that a significant portion of known or predicted 

structures in our database had positive mass defects. For instance, the mass defect 

distributions for compounds from the in-house AFFF database are bimodal, likely due to the 

large number of AFFF compounds that contain nitrogen, which results in more positive mass 

defects. Table 1 shows the distribution of mass defects for the various PFAS groups by 

nitrogen content.

Extended PFAS Suspect Screening Analysis.

In total, the final molecular database contained 17 047 unique molecular formulas from 39 

369 unique structures, greatly expanding the chemical space available for annotating 

nontarget PFASs by molecular formula or accurate mass look-up approaches. Using the 

constructed molecular database, we reanalyzed a mass list of suspected PFASs recently 

detected in surface water using LC-HRMS methods.19 Using the reported neutral molecular 

weights for detected compounds, 119 of 258 features had at least one database formula 

match with molecular weight within 10 ppm. Individual features had 1–4 unique molecular 

formulas within 10 ppm, giving a total of 164 molecular formulas matched. In the original 

analysis, McCord et al. (2019) reported 36 identifications at the molecular formula level, of 

which 19 had structure proposals. Reannotation of these HRMS analyses using the database 

described herein represents a more than fivefold increase in the number of possible PFAS 

structure annotations for that dataset. Specifically, database mass matches within the applied 
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tolerance gave possible structure matches performula ranging from 1 to 59 with an average 

of more than five possible unique structures per annotated molecular formula and a total of 

661 structure candidates for the entire dataset. This large increase in the number of structure 

candidates demonstrates the need for MS/MS analysis to differentiate among possible 

structure isomer/isobar annotations within a given query.

Unique structures in the constructed database totaled 39 369 and >43% of molecular 

formulas in the database had more than one associated structure. Therefore, database 

matching by molecular formula alone will often result in multiple annotations for a single 

detected feature. Furthermore, database matching by molecular formula or accurate mass 

alone is susceptible to false-positive identifications because measurements are often made 

with insuffcient mass accuracy to uniquely determine the molecular formula by the mass-to-

charge (m/z) ratio alone. To increase the confidence in structure assignment, analysis of 

MS/MS data is highly desirable. However, most compounds in our molecular database did 

not have available experimental MS/MS data within free or commercial spectral libraries. 

We addressed this shortcoming by constructing an in silico PFAS MS/MS spectral library to 

accompany our molecular database and provide a unique resource for structural annotation 

of PFAS from experimental HRMS/MS data.

Predicted MS/MS.

Predicted fragmentation spectra were generated for all input PFASs and any predicted 

transformation products using the CFM algorithm, which differs from most other in silico 
fragmentation approaches in that it predicts both the m/z and intensity of fragment ions 

using fragmentation rules trained by machine learning.30 Therefore, resultant predicted 

spectra can be searched using conventional spectral library searching techniques. Like other 

predictive fragmentation models, CFM is based on a training set of reference spectra. Where 

model training sets contain disproportionately high numbers of specific structural classes of 

interest, resultant models may exhibit bias in predictive performance toward those particular 

structural classes, to the detriment of general utility. Notably, in the present work, the 

presence of many PFAS in the training set would bias CFM performance toward PFAS. 

Therefore, we evaluated the presence of PFAS in the CFM training set and found that a total 

of eight reference spectra—out of a total of >7000 training spectra—contained a −CF2CF2− 

moiety, reflecting the paucity of PFAS MS/MS in curated libraries. This result indicates that 

the CFM model used here was not overly biased toward PFAS. The CFM algorithm was 

applied to structures (encoded as InChI strings) for each molecule in both positive and 

negative electrospray ionization modes. Prediction in positive ionization mode gave 39 081 

spectra, while negative ionization yielded 36 604 spectra. In both cases, the total number of 

spectra predicted did not match the number of input molecules, which arises when CFM 

does not detect an ionizable moiety or predict reactions.

The accuracy of spectral library matching based on predicted mass spectra depends on the 

fidelity with which the chosen algorithm predicts the intensity and mass position of ion 

species. At present, due to heavy reliance on training sets, in silico fragmentation tools 

invariably omit relevant fragmentation pathways or overpredict fragmentation. Predicted 

mass spectra are nonetheless useful for ranking putative structure identifications when 
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multiple possible structure annotations are possible or for adding to the weight of evidence 

for a proposed structure when only one proposed structure annotation is available. To 

demonstrate this utility, the PFAS database was queried by the exact neutral mass of the [M 

− H]− pseudo molecular ion of N-ethyl perfluoro-1-decane sulfonamido acetic acid (N-

EtFDSAA). The four resultant putative structure annotations were ranked according to their 

scaled dot-product similarity to the authentic N-EtFDSAA MS/MS spectrum (Figure 5), 

which resulted in top-rank for the true structure. Inspection of the predicted mass spectra in 

Figure 5 reveals that even though the predicted spectra for the true annotation vary 

significantly from the experimental spectrum, the presence of diagnostic fragment ions 

allows for the correct ranking of the true structure relative to the other postulated structures. 

This result indicates that the use of predicted MS/MS spectral matching is useful for ranking 

putative structure assignments in the nontargeted analysis of PFASs.

To evaluate the performance of the in silico spectral library searching approach, we 

compared predicted spectra for PFASs for which we had access to HRMS MS/MS spectra 

within spectral libraries (i.e., our test set), using dot-product similarity as a scoring metric. 

The test set contained 301 MS/MS spectra from 277 unique compounds acquired using 

atmospheric pressure ionization (i.e., electrospray or atmospheric pressure chemical 

ionization) on Orbitrap (N = 43) or time-of-flight instruments (N = 258). Negative ion 

spectra totaled 174, while positive ion spectra totaled 127. The test set pairwise structure 

similarity—as Tanimoto fingerprint similarity—ranged from 0.03 to 1.0 with an interquartile 

range of 0.27–0.57, indicating a high degree of structural diversity in the test set. 

Furthermore, the test set contained 85 PFAS from the OECD Global Database of PFASs, 

which represent manufactured PFAS (i.e., those present in technical mixtures and product 

formulations). Conversely, the 192 test set PFASs not contained in the OECD database 

represent structures for which experimental spectra were available but that may not be well-

characterized, intentionally manufactured PFASs. The large number of non-OECD PFASs 

result primarily from our in-house AFFF database, which contains various nonregistered 

PFASs identified as byproducts in commercial products or in forced-degradation studies 

(e.g., environmental biotransformation).

In assessing the annotation of test set spectra by predicted MS/MS, we assumed that ion-

phase fragmentation processes do not vary according to mass spectrometer design or 

manufacturer and therefore differences in instrument-type should not influence spectral 

matching. A similar assumption is applied when searching unknown spectra against 

commercial spectral libraries (e.g., NIST MS/MS) that contain tandem mass spectra 

acquired on instruments of varying design and performance. While the number of spectra 

was not evenly distributed among instrument types in our test set—the test set contained 43 

Orbitrap and 258 time-of-flight spectra—we found that the difference on the mean dot-

product similarities for correct annotations did not differ according to instrument-type 

(unpaired t-test, p > 0.01).

To understand the influence of various query strategies on library matching performance, the 

rank of the true structure was assessed when the set of possible structure matches contained 

structural isomers only (i.e., molecular formula look-up) or isobars (i.e., accurate molecular 

mass or m/z searches). Queries by accurate molecular mass simulate a situation where a 
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previous software step has been used to calculate the neutral molecular weight of the 

precursor molecule based on the detected m/z and charge, while m/z searches used the 

precursor ion m/z to calculate potential neutral masses based on possible adduct ion species. 

For both molecular weight and m/z searches, we evaluated the influence of using accurately 

measured values vs nominal mass database queries.

Figure 6 shows the results of in silico spectral library annotation when searching with 

MS/MS spectra of known PFASs (our test set) when considering multiple candidate 

selection strategies. Figure 6a shows the cumulative fraction of test set spectra by the rank of 

the correct structure annotation according to the implemented structure candidate selection 

method. Figure 6b shows the distribution of the scaled dot-product similarity for correct and 

incorrect annotations. Scaled dot-product spectral similarity was higher across various 

search strategies for true-positive annotations than for false-positive annotations within 

queries (p < 0.005, unpaired Mann–Whitney U test), indicating that correct structure 

annotations had predicted mass spectra that better matched the experimental mass spectra 

relative to other candidate molecules. Importantly, the number of candidate molecules varied 

among structure candidate selection methods, as shown in Figure 6c. Larger numbers of 

structure candidates in this case also increased structural diversity among candidate 

molecules and concurrently increased the chance that predicted MS/MS spectra could rule-

out candidates with predicted fragments inconsistent with the experimental spectrum.

Selecting candidate structures via molecular formula look-up gave the highest true-positive 

rate for the test set as indicated by the >65% of instances where the correct structure was 

top-ranked. In contrast, accurate and nominal precursor m/z searches provided the lowest 

true-positive rates for the test set. It is to be expected that more restrictive structure candidate 

selection strategies are advantageous for increasing the likelihood of correct annotation, if 

those strategies are based on rigorous and robust filtering methods (e.g., definitive molecular 

formula assignment via isotope fine structure assessment or fragment ion formula 

assignment).

Results of the test set analysis indicate that as the number of candidate molecules increased, 

the utility of predictive mass spectra to correctly discriminate true vs false structures 

annotations increased concurrently, as illustrated by separation of average scaled dot-product 

similarity values for correct vs incorrect annotations (Figure 6b) in different candidate 

selection strategies. In the case where molecular formula look-up was used to select 

candidate structures, >65% test set spectral annotations ranked the correct structure as the 

top result. More than 68% of molecular formula look-up queries returned >1 structural 

candidate and in 50% of those cases the correct structure was top-ranked. This result 

illustrates that in choosing among structural isomers using MS/MS spectral matching, 

predicted mass spectra may struggle to distinguish among highly structurally similar 

isomers, due to a lack of predicted diagnostic fragment ions. This represents the limits of 

achievable annotation success using conventional MS/MS with typical fragmentation modes 

(e.g., CID). More extensive multistage MSn or alternative fragmentation mode strategies will 

be required to overcome this limit.
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The challenges associated with ranking highly structurally similar candidate molecules by 

predicted MS/MS alone highlight the need for weight-of-evidence-based identification 

schemes that include experimental data (e.g., presence of homologues series) or 

environmental context (e.g., known suspected PFAS source material). Work is currently 

underway to investigate workflows for integrating the spectral matching approach described 

herein with PFAS occurrence data to enable holistic PFAS identification in environmental 

samples.

Overall, we found that CFM-predicted MS/MS spectra provided a useful tool for annotating 

experimental PFAS spectra with chemical structure and enabled a quantitative measure of 

the spectral match and a weight-of-evidence approach to structure assignment. The strategy 

employed here will provide a means for providing additional evidence for the occurrence of 

nontarget PFAS structures detected by HRMS.

CONCLUSIONS

In this study, we have demonstrated the construction and utility of a comprehensive PFAS 

structure database and an accompanying in silico MS/MS spectral library that includes both 

known PFAS and predicted PFAS transformation products. This resource will greatly 

enhance HRMS identification of previously unreported or unexpected PFASs in complex 

environmental media by providing a diverse and comprehensive molecular database of 

commercially relevant PFASs and their transformation products, along with a quantitative 

metric for ranking postulated structure annotations based on MS/MS data. Furthermore, the 

use of open-source cheminformatics tools, code availability, and automated data processing 

steps makes this approach both reproducible and easily extensible as new information on 

novel PFASs becomes available or in silico transformation and MS/MS prediction algorithm 

are improved.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Overview of workflow for generating a comprehensive PFAS structure and in silico MS/MS 

library for screening for the presence of PFASs in environmental media.
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Figure 2. 
Molecular network for structures within four predicted reactions of perfluorooctanoic acid 

(PFOA). Nodes represent unique chemical structures. Structures from PFAS molecular 

databases are depicted as green nodes, while those predicted by transformations are shown 

as purple nodes. Structures present in input molecular databases and predicted by in silico 
transformations are depicted in orange. Edges depict predicted parent–product relationships 

from either biotransformation (solid arrows) or hydrolysis (dashed arrow). (a) Molecular 

network of PFASs within four predicted reaction steps of PFOA. (b) Subset of the PFOA 

molecular network depicting representative chemical structures.
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Figure 3. 
Up-set diagram depicting the total number of unique structures (i.e., set size) and overlap 

between various input lists and predicted transformation products (i.e., intersection size). 

The total number of entries in each chemical structure list (i.e., set) is indicated by 

horizontal bars (i.e., set size) in the lower left. Vertical bars denote the intersection size 

between lists denoted with filled circles below the bar. For example, the biotransformation 

product structure list contained 29 338 structures not found in other lists, while 969 

structures are shared between the EPA and biotransformation product datasets.

Getzinger et al. Page 15

Anal Chem. Author manuscript; available in PMC 2021 March 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Molecular properties of PFASs from the in-house aqueous firefighting foam (AFFF) dataset, 

mass lists obtained from the USEPA Chemicals Dashboard, predicted hydrolysis products, 

and predicted biotransformation products.
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Figure 5. 
Results of neutral accurate mass database search and spectral similarity comparison for the 

negative ion mass spectrum of N-ethyl perfluoro-1-decane sulfonamido acetic acid. The top 

panels (red) depict the experimental mass spectrum. The botom panels (blue) show the 

predicted mass spectrum for each of the depicted structures. The scaled dot-product 

similarity is printed in each predicted mass spectrum. Spectral similarity searching returned 

the correct structure as the top-ranked result (i.e., true-positive identification).
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Figure 6. 
Results of searching 301 experimental MS/MS spectra against the constructed in silico 
MS/MS library by various search strategies. For each search strategy, the experimental 

spectra were compared to the subset of database molecules corresponding to the search 

strategy (e.g., isomers, isobars). (a) Fraction of test set spectra by the rank of the true 

structure by various search strategies. (b) Scaled dot-product similarities for correct and 

incorrect structure annotations by different search strategies. (c) Number of unique 

structures per query by different search strategies. Violin plots in panels (b) and (c) show the 

estimated kernel density of the data distribution, while the inlaid box and whisker plots show 

the median value, interquartile range, and extreme values for each distribution.
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Table 1.

Mass Defect by chemical List and Nitrogen Content

mass defect (mean ± std. dev.)

list N = 0 N > 0

hyd. products −0.0277 ± 0.0761 0.0376 ± 0.0915

in-house AFFF −0.0019 ± 0.0585 0.0772 ± 0.0263

EPA 0.0001 ± 0.0733 0.0567 ± 0.0745

biotrans. products 0.0018 ± 0.0718 0.0632 ± 0.0547
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