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Abstract

Introduction—Plasma-based circulating tumor DNA (ctDNA) is an established biomarker for 

molecular profiling with emerging applications in disease monitoring in multiple tumor types, 

including non-small cell lung cancer (NSCLC). However, determinants of ctDNA shedding and 

correlation with tumor burden are incompletely understood, particularly in advanced-stage disease.

Methods—We retrospectively analyzed ctDNA-based and tissue-based genomic data and 

imaging from 144 patients with NSCLC. Tumor burden was quantified with CT and brain MRI for 

the overall cohort, and 18F-FDG PET/CT in a subset of patients.

Results—There was a moderate but statistically significant correlation between ctDNA variant 

allele frequency (VAF) and multiple imaging measures of tumor burden such as CT volume (rho = 

0.34, p ≤ 0.0001) and metabolic tumor volume (rho = 0.36, p = 0.003). This correlation was 

strongest in KRAS mutant tumors (rho = 0.56, p ≤ 0.001), followed by TP53 mutants (rho = 0.43, 

p ≤ 0.0001), and weakest in EGFR mutated (EGFR+) tumors (rho = 0.24, p = 0.077). EGFR+ 

tumors with EGFR copy number gain (CNG) had significantly higher VAF than EGFR+ without 

CNG (p ≤ 0.00001). In multivariable analysis, TP53 and EGFR mutations, visceral metastasis, and 

tumor burden, were independent predictors of increased ctDNA shedding.
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Conclusions—Levels of detectable ctDNA were impacted not only by tumor burden, but also by 

tumor genotype. The genotype-specific differences observed may be due to variations in DNA 

shedding and/or cellular turnover. These findings have implications for the emerging use of ctDNA 

in NSCLC disease monitoring and early detection.
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INTRODUCTION

Plasma-based circulating tumor DNA (ctDNA) is a highly specific non-invasive biomarker 

that is increasingly used in multiple solid tumor types for molecular profiling1, 2 It is also 

emerging as a promising marker for disease monitoring 3–8 and predicting response to 

systemic therapy 9–11. Specifically in non-small cell lung cancer (NSCLC), targeted next-

generation sequencing of ctDNA is clinically used as a “liquid biopsy” to identify EGFR, 
ALK, ROS1, BRAF, MET, RET, ERBB2, and other oncogenic targets for therapy in 

advanced-stage disease 12, 13. Early changes in ctDNA levels of advanced NSCLC patients 

treated with immunotherapy and targeted therapy have also been shown to be prognostic 
9–11, 14 Additionally, ctDNA-derived tumor mutation burden (TMB) has shown promise as a 

predictive biomarker for immunotherapy response 15–18. In early-stage NSCLC, ultra-

sensitive ctDNA assays have enabled on-going development of ctDNA as a biomarker by 

our group and others for detection of molecular residual disease (MRD) after resection 
3, 4, 19 and for prediction of pathologic response to neoadjuvant immune checkpoint 

blockade 10.

Despite these advances, our understanding of critical features relating to ctDNA dynamics, 

such as determinants of shedding and correlation with tumor burden, remains incomplete. 

Tumor characteristics that may impact ctDNA levels include size / tumor burden, tumor 

type, histology, anatomic location, and metabolic activity 1, 20. The relative contribution of 

each of these factors and associated characteristics such as genomic subtypes are not well 

defined. In early-stage lung cancer, plasma ctDNA concentration (as measured by the variant 

allele frequency, VAF) has been shown to correlate with radiographic tumor volume 3, 4, 

high Ki67, and presence of lymphovascular invasion 3, using highly customized ctDNA 

assays. However, there are conflicting data regarding histology as a predictor of ctDNA 

levels 3, 21. Furthermore, a quantitative correlation between ctDNA VAF with tumor burden 

in advanced NSCLC has not been described.

In this study, we sought to comprehensively characterize clinicopathologic, anatomical and 

functional imaging, and genomic correlates of ctDNA shedding in advanced NSCLC.

MATERIALS AND METHODS

Patients

We reviewed genomic profiling results of advanced NSCLC patients that underwent clinical 

ctDNA testing at M.D. Anderson Cancer Center between November 2015 and July 2017. 
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144 consecutive cases with evaluable imaging were selected, prioritizing EGFR and KRAS 
mutant cases to ensure sufficient representation for statistical comparisons of these major 

genomic subtypes. ctDNA testing was obtained generally prior to initiating treatment for 

newly diagnosed patients or upon disease progression for patients undergoing treatment. 

Each patient in the study cohort only had a single ctDNA testing time point included in this 

analysis. This study was conducted in accordance with the institutional review board at The 

University of Texas M.D. Anderson Cancer Center (PA13-0589 and PA16-0061).

Cell-free circulating tumor DNA assay

ctDNA sequencing was performed with Guardant360 (Guardant Health; Redwood City, 

CA), a proprietary ctDNA NGS assay that detects single nucleotide variants (SNV) in 70-73 

genes as well as select copy number amplifications, indels, and fusions (Supplemental Table 

S1) 22, 23. The majority of samples (about 80%) were tested by a 70-gene panel; samples 

after November 2016 were generally analyzed with the expanded (73-gene) panel. At least 5 

ng of cell free DNA was required for hybrid capture-based next generation paired-end 

sequencing of 160 – 170 base pair DNA strands with average coverage of 8,000x-15,000x 

depending on the test version. Germline variants were quantitatively excluded, as previously 

described 22, 23.

Imaging measurements of tumor burden

Tumor burden for each case was quantified using radiographic tumor measurements from 

CT, 18F-FDG PET-CT, and/or brain MRI scans obtained as part of standard clinical care. 

Only patients with a CT and/or PET-CT scan within 30 days of ctDNA sample collection 

were included. RECIST sum of longest diameters (SLD) and tumor volume calculated by 

semi-automated contouring on CT (syngo.via, Siemens; Malvern, PA) were measured for 

each case. For cases with available PET imaging, metabolic tumor volume (MTV), 

maximum SUV (SUVmax), and Total Lesion Glycolysis (TLG) were also obtained. MTV 

and TLG have shown prognostic utility in various malignancies, including NSCLC 24 MTV 

and TLG were measured by (MIM v.6, MIM Software; Cleveland, OH). TLG was defined as 

the product of mean SUV and MTV 25. SLD was defined as the sum of the longest 

diameters of up to five target lesions (maximum two per organ, including short axis 

diameters of lymph nodes with short axis ≥ 1.5 cm per RECIST v1.1) 26.

Statistical analysis

For all statistical analyses, ctDNA VAF for each sample was defined as the maximum VAF 

of the ctDNA alterations detected. All somatic alterations were considered, including 

variants of unknown significance (VUS) and synonymous mutations. The Wilcoxon rank-

sum test and Kruskal-Wallis test were used to compare ctDNA VAF. Spearman’s correlation 

coefficients were determined to assess the relationship between ctDNA VAF and tumor 

measurements. All tests were two-sided and a p value ≤ 0.05 was considered to be 

statistically significant. Statistical analyses were conducted using R (version 3.3.2, Vienna, 

Austria). This study was conducted in accordance with the institutional review board at The 

University of Texas M.D. Anderson Cancer Center.
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RESULTS

Baseline characteristics and summary statistics

The overall study cohort is mostly comprised of previously treated patients (68.1%) that 

generally had progressive disease at the time of ctDNA testing (Table 1). The prevalence of 

histologic and major genomic subtypes in the cohort is generally consistent with known 

prevalence in NSCLC, though, given our study design, EGFR-mutated cases are relatively 

over-represented (40% vs 17% in adenocarcinoma cases of the Pan-Lung Cancer NGS study 
27). For each case, maximum VAF detected in the sample was generally low (median 2.0%, 

range 0 – 72.5%) and median tumor burden as approximated by RECIST SLD was 6.3 cm (0 

– 19.2 cm) and by CT volume was 27.4 cm3 (0 – 330.5 cm3).

Of the patients with NCCN guideline recommended biomarkers28 detected by ctDNA, nine 

patients (6%) had MET amplification, six (4%) had EGFR exon 20 insertion, four (3%) had 

MET exon 14 skipping, two (1%) had HER2 amplification, one (1%) had HER2 exon 20 

insertion, and one (1%) had NTRK1 fusion (Supplemental Table S4). In the overall study 

cohort, seven patients (4.9%) had no detectable ctDNA somatic alteration. Eighty patients 

(55.6%) had prior tissue molecular profiling results available that helped inform their overall 

mutation status (e.g. TP53, KRAS, or EGFR mutated). In those cases, the overall mutation 

status was determined by the union of the ctDNA and tissue somatic mutations.

Radiographic quantifications of tumor burden are associated with ctDNA shedding

We quantified tumor burden using five different approaches: RECIST SLD, CT volume, 

metabolic tumor volume (MTV), SUVmax, and Total Lesion Glycolysis (TLG). Within the 

subgroup of patients that had both CT and PET imaging evaluable (n = 69), each of these 

radiographic measurements positively correlated with ctDNA VAF, with Spearman’s rho 

ranging from 0.273 (SUVmax) to 0.414 (RECIST SLD); Supplemental Fig. S1 and Fig. 1. 

When assessing the overall advanced-stage cohort, CT volume had the strongest correlation 

(Spearman’s rho = 0.336, p ≤ 0.00001; Fig. 1) and was an independent predictor of ctDNA 

shedding in a stepwise multivariable regression accounting for visceral metastasis and 

genomic subtype (Table 2). While the positive correlation between VAF and CT volume was 

seen across all of the genomic subtypes analyzed, it was strongest in KRAS mutant cases 

(rho = 0.56, p ≤ 0.001) and weakest in AGFR-mutated tumors (rho = 0.24, p = 0.077); 

Supplemental Fig. S2.

Visceral metastasis is associated with increased ctDNA shedding

Patients with visceral metastasis (defined in this study as hepatic, adrenal, renal, or splenic 

metastasis) had larger tumor burden (as approximated by CT volume, Wilcoxon p ≤ 0.001; 

figure not shown) and increased ctDNA VAF (Wilcoxon rank sum test p ≤ 0.001; Fig. 2). 

Stepwise multivariate Cox regression modeling, accounting for mutation status, and tumor 

burden, affirmed visceral metastasis as an independent predictor of increased ctDNA 

shedding (Table 2). Notably, there were numerically higher ctDNA levels observed in 

patients with the CNS as at least one metastatic site (Wilcoxon p = 0.100; Fig. 2c), though 

CNS metastasis was not significant in the final regression model. Furthermore, we assessed 

the impact on ctDNA VAF due to tumor distribution not reflected in RECIST SLD: pleural 
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effusions (moderate or large) and bilateral sub-centimeter pulmonary nodules (< 10 

nodules). There was no statistically significant increase in ctDNA shedding in the presence 

of those tumor burden characteristics. Additionally, we detected no significant impact on 

ctDNA shedding due to histology (adenocarcinoma vs squamous cell carcinoma).

Oncogenic mutations in EGFR and TP53 are associated with increased ctDNA shedding

We next compared ctDNA shedding in subgroups defined by the three most common 

genomic alterations in our cohort: KRAS, TP53, and EGFR. The KRAS and TP53 
subgroups consisted of all patients with non-synonymous somatic mutations in those genes. 

Only patients with canonical EGFR driver mutations (e.g. L858R, exon 19 deletion, G719X, 

S768I, L861Q, and T790M resistance mutation; no exon 20 insertions) were included in the 

EGFR subgroup. Significantly higher ctDNA VAF was observed in TP53 mutant vs wild-

type tumors (Wilcoxon p ≤ 0.001), while numerically higher VAF were observed for the 

EGFR, and KRAS subgroups (p = 0.17 and p = 0.16 respectively; Fig. 3a). To verify that 

these observations were not due to differences in tumor burden, we divided CT tumor 

volume into tertiles (low, mid, and high volume) and assessed VAF. Median CT volume for 

the low, mid, and high tertiles were 2.6 cm3, 28.3 cm3, and 95.6 cm3, respectively. For the 

TP53-mutated and EGFR-mutated subgroups, numerically higher VAF was observed across 

the tumor burden spectrum as approximated by CT volume (Fig. 3b). In the multivariate 

analysis, TP53-mutated and EGFR-mutated status were affirmed as strong, independent 

predictors of increased ctDNA shedding (Table 2).

Tumors with EGFR mutations are known to commonly have copy number gains (CNGs); 

observed in 28.3% of the EGFR+ cases in this cohort. We examined the impact of CNGs on 

ctDNA levels in EGFR+ tumors. EGFR+/CNG+ tumors had a significantly higher VAF than 

EGFR+/CNG-tumors (Tukey’s HSD p ≤ 0.00001) (Fig. 4a) . Furthermore, EGFR+/CNG-

tumors had a VAF comparable to EGFR wt/CNG-tumors, suggesting that EGFR CNGs were 

an important contributor to the increased VAF in EGFR+ tumors. Furthermore, to determine 

whether concurrent TP53 mutations may be driving increased shedding in the EGFR+ 

tumors, we compared EGFR+/TP53 mutant vs EGFR+/TP53 wt tumors. TP53 co-mutation 

had no significant additive effect on ctDNA VAF (Fig. 4b).

Patients undergoing active treatment may have decreased ctDNA shedding and thus 

potentially impact these genotype-specific findings. To further evaluate this potential 

interaction, we performed additional subgroup analyses with (1) patients that were 

treatment-naïve and (2) patients that had not received treatment within a month prior to 

ctDNA testing (treatment-naïve plus “prior treatment” as defined in Table 1). These analyses 

affirmed differential ctDNA shedding in TP53 and EGFR mutants; though with diminished 

statistical significance, as expected due to smaller sample size of the subgroups 

(Supplemental Fig. S3 – S6, Table S7).

DISCUSSION

As clinical uses of ctDNA continue to rapidly mature and incorporate more challenging 

applications such as MRD detection, disease monitoring, and cancer screening and 

localization, it is critical to further our understanding of tumor factors that may contribute to 
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ctDNA shedding heterogeneity. In lung cancer, insight about specific histologic, anatomic, 

tumor burden, and genomic determinants of ctDNA shedding remains incomplete. In this 

retrospective analysis, we leverage comprehensive patient-level data of an advanced-stage 

NSCLC cohort with ctDNA testing results to further our understanding of the relationship 

between ctDNA detection and key clinicopathological features such as tumor volume and 

genotype.

A strong correlation between ctDNA VAF and tumor volume has previously been 

demonstrated in early-stage NSCLC 3, 4. However, how this correlation holds in advanced-

stage disease is not well understood, particularly since volumetrics and other comprehensive 

measures of metastatic tumor burden are not routinely reported in the clinical setting. We 

observed that ctDNA VAF positively correlated with metastatic tumor burden as quantified 

by various radiographic measures including functional assessments of metabolic tumor 

volume (MTV), SUV, and TLG. To our knowledge, this is the largest analysis of ctDNA 

correlation with comprehensive radiographic tumor metrics in advanced NSCLC to date. It 

can be reasonably speculated that non-functional imaging such as CT scans may not be able 

to accurately measure systemic tumor burden, since observed radiographic lesions may be 

comprised of necrotic cells or non-neoplastic cells (e.g. stromal, inflammatory) 29 It is 

therefore notable that tumor burden approximated by anatomical CT volumetrics was 

comparable to PET-based volumetrics in ctDNA fraction correlation. Furthermore, the 

ubiquitous RECIST SLD measurement also appeared to comparably approximate overall 

tumor burden, as correlated by ctDNA fraction.

While positive, the modest correlation observed between VAF and tumor burden in our 

cohort suggests that other factors also significantly impact ctDNA shedding. Our findings 

that visceral metastasis predicts for increased ctDNA shedding is consistent with prior 

studies correlating liver metastasis with increased ctDNA levels in NSCLC 30, 31. While 

vascular accessibility may facilitate tumor ctDNA release, poor tumor vascularization may 

also contribute to ctDNA shedding in the setting of hypoxia and cell death.

Additionally, liver metastasis, in particular, may possibly be associated with high ctDNA 

VAF because of attenuation in the hepatic clearance of ctDNA, since the liver is the primary 

mechanism of ctDNA removal 32 In contrast, histology, brain metastasis, and significant 

pleural effusions or bilateral sub-centimeter pulmonary nodules did not appear to 

independently impact ctDNA levels in our study.

We observed genotype-specific differences in ctDNA levels in our cohort, potentially 

highlighting underlying differences in tumor biology mediated by metabolic activity and 

DNA copy number alterations. The finding that TP53 mutations independently predict for 

increased ctDNA shedding, even after accounting for tumor burden and visceral metastasis, 

may reflect the increased cellular turnover or metabolic activity of these tumors. TP53 
mutation (or overexpression) has been considered a marker of poor prognosis but this 

assessment has been hampered by an evolving understanding of how best to accurately 

evaluate TP53 function and status 33, 34 Moreover, our observations about increased ctDNA 

shedding in EGFR mutated tumors and possible interactions due to concomitant EGFR copy 

number gains have implications for the use of ctDNA as a biomarker in this important 
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genomic subgroup. Focal amplifications of specific chromosomal regions, such as EGFR 
CNGs, result in an increased fraction of detectable ctDNA in plasma, thus potentially over-

estimating tumor volume and biasing ctDNA-derived measures of clonality 35 and tumor 

mutation burden, a biomarker with predictive utility across multiple tumor types 15–18, 36

Our findings of differential shedding also have ramifications for one of the major emerging 

clinical applications of ctDNA: cancer detection. Our group and others have shown that 

ultra-sensitive ctDNA assays can effectively detect MRD after curative intent therapy in 

localized NSCLC, thus identifying patients with highest risk for subsequent relapse 3, 4, 19 

Other ctDNA-based platforms further optimize DNA fragment size and methylation analyses 

to enable detection of minimal levels of ctDNA and thus potential population-scale cancer 

screening 37, 38. Clinical validation of these emerging ctDNA applications will need to 

evaluate and potentially stratify for heterogeneity in the various determinants of shedding in 

order to accurately demonstrate clinical utility. For example, early detection of recurrence 

may be missed in patients presenting primarily with pleural effusions or sub-centimeter 

pulmonary nodules. Conversely, overrepresentation in the number of patients presenting 

with visceral metastasis or tumors with CNGs may exaggerate the ability of a particular 

assay to detect small tumor volumes. Additionally, since clinical trials required to 

prospectively validate cancer screening tests are enormously time and resource intensive 
39, 40, in-silico modeling and simulation are useful for projecting ctDNA test performance 

characteristics such as minimal tumor detection volumes 41. Observations about 

determinants of ctDNA shedding are critical to inform these models.

Our study has several possible limitations. Since our cohort is mostly comprised of 

previously treated patients (68%), generally with progressive disease at the time of ctDNA 

testing, there may be a higher prevalence of resistance alterations (e.g. MET amplifications) 

that may impact ctDNA levels but not accounted for in the current analysis. Additionally, 

our KRAS-mutated cohort reflects the known heterogeneity of KRAS in lung 

adenocarcinoma. We have previously shown that KRAS subgroups (characterized by 

inactivation of TP53, STK11, KEAP1, and CDKN2A/B) indeed have distinct cancer biology 
42. A larger KRAS cohort may better delineate potential ctDNA shedding differences 

between these KRAS subgroups. Finally, while the clinical ctDNA assay used in our study 

bioinformatically excludes variants associated with clonal hematopoiesis (CH), the potential 

inclusion of these non-tumor-related somatic variants in our analyses cannot be definitively 

quantified since matching white blood cells were not available for further DNA sequencing.

Despite these limitations, our findings strongly suggest that ctDNA shedding is not only 

impacted by tumor burden but also by anatomic location and genomic subtype. These 

findings further the understanding of ctDNA biology in NSCLC and have implications for 

the rapidly emerging use of ctDNA in NSCLC MRD, disease monitoring, and early 

detection.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Correlation between ctDNA VAF and tumor burden as approximated by (A) CT volume 

(cm3) (B) RECIST SLD (cm) in the overall cohort and (C) MTV (cm3) in the PET 

subgroup; Spearman’s rho correlation.
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Figure 2. 
Impact of (A) visceral metastasis, (B) treatment status, and (C) CNS metastasis on ctDNA 

VAF. Wilcoxon rank-sum test.
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Figure 3. 
ctDNA VAF comparison across genomic subtypes. (A) Wilcoxon rank-sum test for TP53, 
EGFR, and KRAS mutated tumors and (B) Wilcoxon rank-sum test in TP53, EGFR, and 
KRAS mutated cases by CT volume (low [0-10 cm3], mid [10-50 cm3], high [> 50 cm3]).
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Figure 4. 
Impact of co-alterations on EGFR-mutated shedding. (A) Impact of EGFR copy number 

gain and (B) TP53 co-mutation on EGFR-mutated shedding; ANOVA comparison.
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Table 1:

Baseline Characteristics of Overall Study Cohort

Characteristic (n = 144) Number (%)

Median age (range) 64 (28 – 96)

Sex

 Female 78 (54.2)

 Male 66 (45.8)

Histology

 Adenocarcinoma 112 (77.8)

 Squamous cell 31 (21.5)

 Other NSCLC 1 (0.7)

Alteration 
a

 TP53 mutation 77 (53.5)

 KRAS mutation 33 (22.9)

 EGFR mutation 57 (39.6)

 ALK fusion 4 (2.8)

Treatment status

 Treatment naïve 46 (31.9)

 Active treatment 
b 77 (53.5)

 Prior treatment 
c 21 (14.6)

Immunotherapy exposure

 No 118 (81.9)

 Yes 26 (18.1)

a
Sum is greater than number of patients due to co-mutations

b
Systemic treatment within 1 month prior to ctDNA testing

c
Systemic treatment more than 1 month prior to ctDNA testing but within last 2 years
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Table 2:

Univariate and multivariate analysis of ctDNA VAF

Univariate analysis Multivariate analysis

Characteristic HR (95% CI) P-value HR 95% CI P-value

Histology 0.94 (0.70 – 1.27) 0.694

Immunotherapy exposure 1.03 (0.75 – 1.43) 0.845

Visceral metastasis 1.66 (1.27 – 2.19) < 0.001 1.48 (1.16 – 1.91) 0.002

CNS metastasis 1.33 (1.00 – 1.79) 0.053

RECIST SLD 1.05 (1.03 – 1.08) < 0.0001

CT volume 1.00 (1.00 – 1.00) < 0.0001 1.00 (1.00 – 1.00) < 0.001

TP53+ 1.58 (1.25 – 2.00) < 0.001 1.45 (1.16 – 1.80) 0.001

EGFR+ 1.19 (0.92 – 1.53) 0.179 1.36 (1.08 – 1.71) 0.009

KRAS+ 1.22 (0.91 – 1.64) 0.178
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