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Abstract

Background: Modern causal inference methods allow machine learning to be used to weaken 

parametric modeling assumptions. However, the use of machine learning may result in 

complications for inference. Doubly robust cross-fit estimators have been proposed to yield better 

statistical properties.

Methods: We conducted a simulation study to assess the performance of several different 

estimators for the average causal effect (ACE). The data generating mechanisms for the simulated 

treatment and outcome included log-transforms, polynomial terms, and discontinuities. We 

compared singly robust estimators (g-computation, inverse probability weighting) and doubly 

robust estimators (augmented inverse probability weighting, targeted maximum likelihood 

estimation). We estimated nuisance functions with parametric models and ensemble machine 

learning, separately. We further assessed doubly robust cross-fit estimators.

Results: With correctly specified parametric models, all of the estimators were unbiased and 

confidence intervals achieved nominal coverage. When used with machine learning, the doubly 

robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, 

variance, and confidence interval coverage.

Conclusions: Due to the difficulty of properly specifying parametric models in high 

dimensional data, doubly robust estimators with ensemble learning and cross-fitting may be the 

preferred approach for estimation of the ACE in most epidemiologic studies. However, these 

approaches may require larger sample sizes to avoid finite-sample issues.
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INTRODUCTION

Most causal effect estimation methods for observational data use so-called nuisance 

functions. These functions are not of primary interest but are used as inputs into estimators1. 

For instance, the propensity score function is the nuisance function for the inverse 

probability of treatment weighted estimator. In low-dimensional settings, it is possible to 

estimate these nuisance functions nonparametrically. However, in more realistic settings, 

such as those that involve continuous covariates or in which the minimal sufficient 

adjustment set of confounders is large; parametric models, referred to as nuisance models, 

are often used to estimate the nuisance functions. Proper specification of these nuisance 

models is then required for the resulting estimator to be consistent. Specifically, a properly 

specified model contains the true function as a possible realization. Given the complex 

underlying relationships between variables, it is often implausible that parametric nuisance 

models can be properly specified.

Data-adaptive supervised machine-learning methods (which are fit using data-driven tuning 

parameters)2,3, have been suggested as an alternative approach to estimate nuisance 

functions in high-dimensional settings while not imposing overly restrictive parametric 

functional form assumptions4–8. Despite this optimism, issues in the use of machine learning 

for nuisance function estimation have become apparent9–11. Notably, some machine-learning 

algorithms converge to the true answer at a slow rate (i.e., the mean squared error of the 

estimator diminishes slowly with sample size), leading to substantial undercoverage of 

corresponding confidence intervals. This slow rate of convergence is the ‘cost’ of making 

weaker assumptions. Conversely, the ‘cost’ of making stronger assumptions is 

misspecification (i.e., the bias of the estimator does not diminish with sample size, at any 

rate)12.

Doubly robust estimators have several features that make them less prone to model 

misspecification. First, as implied by their name, these estimators provide two opportunities 

to properly specify nuisance models. Second, in the context of machine learning methods, 

doubly robust estimators allow for the use of slower converging nuisance models. As an 

added benefit, they permit simple approaches for variance estimation, even when machine-

learning is used to fit the nuisance functions. However, restrictions on complexity (i.e., that 

nuisance models fall into a class of well-behaved models known as Donsker class) preclude 

the use of some machine learning approaches.

Doubly robust cross-fit estimators have been developed to reduce overfitting and impose less 

restrictive complexity conditions on the machine learning algorithms used to estimate 

nuisance functions10,13. Cross-fit estimators share similarities with double machine 

learning10, cross-validated estimators14,15, and sample splitting16. An extension, referred to 

as double cross-fitting, has recently been proposed to address so-called nonlinearity bias, 

and when used with undersmoothing methods it achieves the fastest possible convergence 

rate13. In this work, we detail a general procedure for doubly robust double cross-fit 

estimators and demonstrate their performance in a simulation study. We compare a wide 

range of estimators in the context of a simulated study of statins and subsequent 

atherosclerotic cardiovascular disease (ASCVD).
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METHODS

Data Generating Mechanism

Suppose we observe an independent and identically distributed sample (O1, …, On) where 

Oi = (Xi, Yi, Zi)~F. Let X indicate statin use; Y indicate the observed incidence of ASCVD; 

Yx indicate the potential value Y would take if, possibly counter to fact, an individual 

received treatment x; and Z indicate potential confounders. The average causal effect (ACE) 

is then:

ψ = E Y 1 − Y 0 = E Y 1 − E Y 0

Note that the potential outcomes are not necessarily directly observed, so a set of conditions 

are needed to identify the ACE from observable data. Specifically, we assume the following 

conditions hold:

1. Counterfactual consistency17

If Xi = x,  then Y i = Yix

2. Conditional exchangeability18

Y x⫫X Z ∀x ∈ 0, 1

3. Positivity19

if Pr Z = z > 0,  then Pr X = x Z = z > 0 ∀z ∈ Z,  x ∈ 0, 1

Together, these conditions allow the ACE to be identified as:

ψ = z ∈ Z E Y X = 1, Z = z − E Y X = 0, Z = z dFZ

We considered the following confounders in Z for the simulated data generating process: age 

(A), low-density lipoprotein (L), ASCVD risk scores (R), and diabetes (D). Therefore, Z = 

(L, A, R, D) in the following simulated data. These factors were chosen based on the 2018 

primary prevention guidelines for the management of blood cholesterol20. Full details on the 

data generating mechanism are provided in eAppendix 1. The incidence of statin use (X) 

was chosen to be similar to reported empirical trends in US adults21, and generated from the 

following model inspired by the 2018 primary prevention guidelines:

Pr X = 1 Z = Bernoulli expit −3.471 + 1.390 Di + 0.112 Li + 0.973 I Li > ln 60 − 0.046 Ai − 30

+ 0.003 Ai − 30 2 + 0.273 I 0.05 ≤ Ri < 0.075 + 1.592 I 0.075 ≤ Ri < 0.2 + 2.641 I Ri ≥ 0.2

The ASCVD potential outcomes under each potential value of X were generated from the 

following model:
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Pr Y x = 1 Z = Bernoulli expit −6.25 − 0.75x + 0.35x 5 − Li  I Li < ln 130 + 0.45  Ai − 39 0.5 + 1.75 Di
+ 0.29exp Ri + 1 + 0.14 I Li > ln 120 Li

2

The observed outcome was calculated as Y i = XiY i
1 + 1 − Xi Y i

0 . The nuisance functions 

considered are:

Pr X = 1 Z = z = π z (1)

E Y X = x, Z = z = mx z (2)

As the name implies, these nuisance functions are not of direct interest but are used for the 

estimation of the ACE. Unlike in simulated data, the correct specification of these models is 

often unknown; and in the context of parametric models, must be a priori specified.

Nuisance Function Estimators

Before estimating the ACE, the nuisance functions (π(z), mx(z)) need to be estimated. Much 

of the previous work in causal effect estimation has relied on parametric regression models. 

However, these models must be sufficiently flexible to capture the true nuisance functions. 

In our simulations we consider two different parametric model specifications. First, we 

consider the correct model specification as described previously. This is the best-case 

scenario for researchers. Unfortunately, this case is unlikely to occur. Second, we considered 

a main-effects model, where all variables were assumed to be linearly related to the outcome 

and no interaction terms were included in the model. The main-effects model is quite 

restrictive and does not contain the true density function.

As an alternative to the parametric models, we consider several data-adaptive machine 

learning algorithms. There are a variety of potential supervised machine learning algorithms 

and there is no guarantee on which algorithm will perform best in all scenarios22. Therefore, 

we utilize super-learner with 10-fold cross-validation to estimate the nuisance functions. 

Super-learner is a generalized ensemble algorithm that allows for the combination of 

multiple predictive algorithms into a single prediction function23,24. Super-learner has been 

previously shown to asymptotically perform as well as the best performing algorithm 

included within the super-learner procedure23, with studies of finite sample performance 

indicating similar results. Within super-learner, we included the following algorithms: the 

empirical mean, main-effects logistic regression without regularization, generalized additive 

model with 4 splines and a ridge penalty of 0.625, generalized additive model with 6 splines, 

random forest with 500 trees and a minimum of 20 individuals per leaf26, and a neural 

network with a single hidden layer consisting of four nodes. Only non-processed main-

effects variables were provided to each learner.

Estimators for the ACE

After estimation of the nuisance functions, the predictions can be used in estimators for the 

ACE. We considered four estimators: g-computation, an inverse probability weighted (IPW) 
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estimator, an augmented inverse probability weighted (AIPW) estimator, and a targeted 

maximum likelihood estimator (TMLE). The IPW estimator only requires the nuisance 

function from Equation 1 and g-computation only requires the nuisance function from 

Equation 2. Due to their reliance on a single nuisance function, these methods are said to be 

singly robust. However, these singly robust estimators require fast convergence of nuisance 

models, severely limiting which algorithms can be used. The AIPW estimator and TMLE 

instead use both nuisance functions from Equations 1 and 2 and have the property of double 

robustness, such that if either nuisance model is correctly estimated, then the point estimate 

will be consistent4,27–29. Perhaps more important in the context of machine learning, these 

doubly robust estimators allow for slower convergence of nuisance models. However, all of 

these estimators require the nuisance models to not be overly complex, in the sense that they 

belong to the so-called Donsker class10. Intuitively, members of this class are less prone to 

overfitting than models outside the class. For models that do not belong to the Donsker class, 

confidence intervals may be overly narrow and result in misleading inference. Recent work 

has demonstrated that cross-fitting paired with doubly robust estimators weakens the 

complexity conditions for the nuisance models, which allows for a more diverse set of 

algorithms. A double cross-fit procedure allows for further theoretical improvements for 

doubly robust estimators. Therefore, we additionally considered double cross-fit alternatives 

for AIPW (DC-AIPW) and TMLE (DC-TMLE). We briefly outline each estimator, with 

further details and formulas provided in the eAppendix.

G-computation.

We used the g-computation procedure described by Snowden et al. 2011 to estimate the 

ACE30. Briefly, the outcome nuisance model, mx(z), is fit using the observed data. From the 

fit outcome nuisance model, the probability of Y is predicted under X = 1 and under X = 0 

for all individuals. The ACE is estimated by taking the average of the differences of the 

predicted outcome Y under each treatment plan. Wald-type 95% confidence intervals were 

generated using the standard deviation of 250 bootstrap samples with replacement, each of 

size n. We note that it is currently unknown whether the bootstrap is generally valid for the 

g-computation or the other following estimators when data-adaptive methods are used for 

nuisance model fitting.

IPW.

In contrast to the g-computation, the IPW estimator relies on estimation of the treatment 

nuisance model, π(z). From the predicted probabilities of X, weights are constructed by 

taking the inverse of the predicted probabilities of the observed X. These weights are then 

used to calculate the weighted average of Y among subjects with each value of X. We used 

robust standard errors that ignore the estimation of the nuisance function, which results in 

conservative variance estimates for the ACE31. Therefore, confidence interval coverage is 

expected to be at least 95% when the nuisance model is properly specified.

AIPW.

The AIPW estimator uses both the treatment and outcome nuisance functions to estimate the 

ACE. Predicted probabilities of the treatment and outcome are combined via a single 
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equation to generate predictions under each value of X, with confidence intervals calculated 

from the influence curve27,28.

TMLE.

TMLE similarly uses both the treatment and outcome nuisance functions to construct a 

single estimate. Unlike the AIPW estimator, TMLE uses a ‘targeting’ step that corrects the 

bias–variance tradeoff in the estimation4. This is accomplished by fitting a parametric 

working model, where the observed Y is modeled as a function of a transformation of the 

predicted probabilities of X (often referred to as the clever covariate) with the outcome 

nuisance model predictions included as an offset. The targeted predictions under each value 

of X from this model are averaged, and their difference provides an estimate of the ACE. 

Confidence intervals are calculated from the influence curve.

Double cross-fit.

A visualization of the double cross-fit procedure is provided in Figure 1. This process is 

compatible with both doubly robust estimators previously described. First, the data set is 

randomly partitioned into three approximately equal-sized splits or groups (although this can 

be generalized to numbers larger than three10,13). Note that the splits are non-overlapping, so 

that each subject belongs to a single split. Second, nuisance models for the treatment and 

outcome nuisance functions are estimated in each of the three sample splits. This involves 

using the super-learner fitting procedure independently for each split (for a total of six times 

– three for the outcome model and three for the treatment model). Third, predicted treatment 

probabilities and expected values for outcomes are calculated from the nuisance models in 

the discordant splits, such that the predictions do not come from the same data used to fit the 

models. For example, sample split 1 could have the probability of treatment predicted with 

the treatment nuisance model from split 3 and the expected value of the outcome predicted 

with the outcome nuisance model from split 2. The doubly robust estimator of choice is used 

to estimate the ACE from the treatment and outcome predictions within each split. For the 

AIPW estimator this consists of calculating the ACE via the equation provided in eAppendix 

2. For TMLE this consists of the targeting step. In a final step, the split-specific ACE 

estimates from all splits are averaged together to produce a final point estimate of the 

partition-specific ACE.

Since the ACE is dependent on a particular partition of the input data, the previous 

procedure is repeated a large number of times with different possible partitions. In our 

implementation, we used 100 different partitions, as is recommended in other cross-fitting 

procedures10. Results are potentially unstable when only using few partitions with flexible 

algorithms (see eAppendix 4). The overall point estimate of the ACE is calculated as the 

median of the ACE for all partitions p

ACE = median ACEp

While the mean can also be chosen, it is more susceptible to outliers and may require a 

larger number of different partitions10. The estimated variance for the ACE consists of two 

parts: the variability of the ACE within a particular partition and the variance of the ACE 
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point estimate between each partition. The variance for the ACE from the p different splits is 

the median of

V ar ACE = median V ar ACEp + ACEp − ACE 2

A detailed description of the double cross-fit procedure is provided in eAppendix 3.

Performance metrics

For each combination of nuisance function estimators and ACE estimators; we calculated 

bias, empirical standard error (SE), root mean SE, average SE, average confidence limit 

difference, and 95% confidence limit coverage over 2000 simulated samples. Bias was 

defined as mean of the estimated ACE from each simulation minus the true population ACE. 

Empirical SE was the standard error of the estimates across all simulated samples. Root 

mean SE was defined the square root of bias squared plus empirical SE squared. Average SE 

was the mean of the estimated standard error from each simulation. Confidence limit 

difference was the mean of the upper confidence limit minus the lower confidence limit. 

95% confidence interval coverage was calculated as the proportion of confidence intervals 

containing the true population ACE.

All simulations were conducted using Python 3.5.1 (Python Software Foundation, 

Wilmington, DE) with the sklearn implementations of the previously described algorithms32. 

Simulation code is available at https://github.com/pzivich/publications-code. Outside of the 

specified parameters, the defaults of the software were used. The true ACE was calculated as 

the average difference in potential outcomes for a population of 10,000,000 individuals. 

Simulations for estimation of the ACE were repeated 2000 times for n = 3000. The sample 

size for simulations was chosen such that when split into three equally sized groups (n = 

1000), the true parametric models could be fit and used to correctly estimate the true ACE.

RESULTS

Before presentation of the full simulation results, we present summary statistics and 

estimates for a single simulated data set. Characteristics of the single study sample are 

displayed in Table 1. Results for the estimators are presented in Table 2. Nuisance models 

estimated with machine learning led to substantially narrower confidence intervals as 

indicated by the confidence limit difference. Differences were less stark for the double cross-

fit estimators. Broadly, run-times for estimators of ACE were short. The double cross-fit 

estimators had substantially longer run times due to the repeated sample splitting procedure. 

As reference, a single estimation of the DC-AIPW estimator required 600 different super-

learner procedures to be fit. There was notable variation between estimates from the 

different partitions for DC-AIPW with parametric (interquartile range (IQR): −0.10, −0.08; 

Range: −0.12, −0.07) and machine learning (IQR: −0.12 – −0.11; Range: −0.15, −0.08) 

nuisance models. A similar pattern was observed with DC-TMLE for parametric (IQR: 

−0.13, −0.12; Range: −0.14, −0.09) and machine learning (IQR: −0.11, −0.11; Range: −0.12, 

−0.07)) as well.
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Simulations

As expected, ACE estimators with correctly specified parametric nuisance models were 

unbiased and confidence intervals resulted in near-95% coverage (Figure 2, Table 3). The 

most efficient estimator was g-computation (ESE=0.017), followed by TMLE (ESE=0.021), 

AIPW (ESE=0.021), and IPW (ESE=0.024). DC-TMLE and DC-AIPW were comparable to 

their non-cross-fit counterparts (0.021 and 0.021, respectively). Confidence interval 

coverage was higher for double cross-fit estimators.

For main-effects parametric nuisance models, all ACE estimators were biased from the true 

target parameter. Increased root mean SE was primarily a result of the occurrence of bias. 

The double cross-fit procedure did not improve estimates in terms of bias due to model 

misspecification. Confidence interval coverage was likely greater solely due to the penalty in 

estimated variance due to variation between partitions.

For singly robust estimators with machine learning, bias increased compared to correctly 

specified parametric models (Table 3, Figure 2). Non-cross-fit doubly robust estimators with 

machine learning resulted in unbiased estimates of the ACE, but confidence interval 

coverage was below expected levels for AIPW (91.1%) and TMLE (89.5%). Confidence 

interval coverage of DC-AIPW and DC-TMLE were near nominal levels (95.6% and 95.0%, 

respectively).

DISCUSSION

In this simulation study, we explored the performance of singly and doubly robust causal 

effect estimators using both parametric models and data adaptive-machine learning 

algorithms for nuisance models; and doubly robust estimators with and without double 

cross-fitting. In the unlikely scenario in which parametric nuisance model specifications 

correctly capture the true function, all estimators considered are consistent and subsequent 

inference is valid. Confidence intervals were wider for double cross-fit estimators due to the 

variance between partitions being incorporated from the sample splitting procedure. The 

increase in confidence-limit difference highlights the bias–precision tradeoff made when 

choosing a less-restrictive ACE estimator. However, it is often unreasonable to assume 

correct parametric model specification in high-dimensional data with weak background 

information or theory. The pursuit of weaker parametric assumptions for nuisance model 

specification is worthwhile, with machine learning being a viable approach. However, naïve 

use of machine learning may lead to bias and incorrect inference. As highlighted in our 

simulation, doubly robust estimators with double cross-fitting and machine learning 

outperformed both estimators with incorrectly specified parametric nuisance models and 

non-cross-fit estimators with machine learning. While the bias of the IPW estimator fit with 

machine learning was small compared with g-computation and confidence interval coverage 

achieved a nominal level, the variance was substantially larger than any other estimator; 

highlighting the inefficiency of this method. Further, there is currently no theory supporting 

valid statistical inference for singly robust estimators with machine learning33–35. In 

summation, doubly robust estimators with machine learning and cross-fitting may be 

preferred for ACE estimation in many epidemiologic studies.
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The need for doubly robust estimators with cross-fitting when using data-adaptive machine 

learning for nuisance function estimation arises from two terms in the Von Mises expansion 

of the estimator1. The first term, which is described by an empirical process term in the 

expansion, can be controlled by either restricting the complexity of the nuisance models 

(e.g., by requiring them to be in the Donsker class) or through cross-fitting. Because it can 

be difficult or impossible to verify that a given machine learning method is in the Donsker 

class, cross-fitting provides a simple and attractive alternative. The second term is the 

second-order remainder, and it converges to zero as the sample size increases. For valid 

inference, it is desirable for this remainder term to converge as a function of n−1/2, referred 

to as root-n convergence. Convergence rates are not a computational issue, but rather a 

feature of the estimator itself. Unfortunately, data-adaptive algorithms often have slower 

convergence rates as a result of their flexibility. However, because the second-order 

remainder term of doubly robust estimators is the product of the approximation errors of the 

treatment and outcome nuisance models, doubly robust estimators only require that the 
product of the convergence rates for nuisance models be n−1/2. To summarize, cross-fitting 

permits the use of highly complex nuisance models, while doubly robust estimators permit 

the use of slowly converging nuisance models. Used together, these approaches allow one to 

use a wide class of data-adaptive machine learning methods to estimate causal effects.

Cross-fitting has had a long history in statistics36–38, and recent emphasis has focused on its 

use for nonparametric nuisance function estimation10,13,39,40. Broadly, cross-fit procedures 

can be seen as an approach to avoid the overfitting of nuisance models. Single cross-fit 

procedures, where both nuisance models are fit in a single split and predictions are made in a 

second split, uncouple the nuisance model estimation from the corresponding predicted 

values, preventing so-called own observation bias13. However, the treatment nuisance model 

and outcome nuisance model are estimated using the same data in single cross-fit 

procedures. Double cross-fit procedures decouple these nuisance models by using separate 

splits, removing so-called nonlinearity bias13. Removing this secondary bias term may 

further improve the performance of doubly robust estimators. When certain undersmoothing 

methods are additionally used, the double cross-fit procedure achieves the fastest known 

convergence rate of any estimator. As demonstrated in the simulations, even if these 

undersmoothing methods are not used, double cross-fitting results in tangible benefits 

regarding point estimation and inference with machine learning algorithms.

While cross-fitting has tangible benefits, these benefits are not without cost. First, run-times 

for the double cross-fit estimators are substantially longer due to the repetition of fitting 

algorithms to a variety of different partitions. We note that the double cross-fit procedure can 

easily be made to run in parallel, substantially reducing run-times. Computational costs may 

limit cross-fit procedures to estimators with closed-form variances, since bootstrapping 

would require considerable computational resources. A second, and potentially more 

problematic, cost is that sample splitting procedures reduce the amount of data available 

with which to fit algorithms. While the asymptotic behavior of the estimator is the same as if 

the entire sample had been used (indeed each data point contributes to both nuisance 

function and parameter estimation), the partitioning of finite data may preclude some 

complex algorithms from use. This finite data problem is exacerbated with the use of k-fold 

super-learner, further stretching the available data to each model fit. For data sets with few 
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observations, increasing the number of folds in super-learner may aid in alleviating this 

issue41. The use of single cross-fit procedures may also aid with finite sample issues, since 

instead of partitioning the data into three splits, a single cross-fit at minimum requires 

partitioning the data in half. However, the flexibility of machine learning for nuisance 

function estimation may be limited in these small data sets to begin with9. Whether single 

cross-fit with machine learning or highly flexible parametric models is preferred in these 

scenarios is an area for future study.

The problems of sample splitting can manifest themselves as random violations of the 

positivity assumption42. As detailed in previous work by Yu et al. 2019, confounders that are 

strongly related to the exposure may result in positivity violations43. Due to the flexibility of 

machine learning algorithms, these positivity issues may result in highly variable estimates. 

Furthermore, positivity issues may not be easy to diagnose, especially in procedures like 

double cross-fitting. Similar to previous recommendations43, using multiple approaches to 

triangulate estimates may be helpful. For example, researchers may want to compare a 

flexible parametric AIPW estimator and a cross-fit AIPW estimator with super-learner.

While our results support the use of machine learning algorithms, machine learning is not a 

panacea for causal inference. Rather, machine learning can be seen as weakening a single 

assumption, namely the assumption of proper model specification. Prior substantive 

knowledge to justify counterfactual consistency, conditional exchangeability, and positivity 

remain necessary for causal inference9,41. For super-learner and other ensemble approaches 

to provide the maximal benefit in terms of specification, a diverse set of algorithms should 

be included24. Furthermore, multiple tuning parameters, sometimes referred to as 

hyperparameters, should be included. While the program defaults are often used, these 

hyperparameters can dramatically change performance of algorithms44. Therefore, super-

learner should not only include a diverse set of algorithms, but also those same algorithms 

under a diverse set of hyperparameters. Our simulations did not extensively explore 

hyperparameters; with the inclusion of only two hyperparameter specifications for 

generalized additive models. Because double cross-fit procedures scale poorly in terms of 

run-time with the addition of algorithms, including more algorithms with different 

hyperparameters can have substantial cost in terms of run-time. Depending on the 

complexity of machine learning algorithms used, alternative approaches may be required for 

hyperparameter tuning within the cross-fitting procedure45. Despite these concerns, a wide 

variety of hyperparameters should be explored in applications of double cross-fitting. Lastly, 

variable transformations (e.g. interaction terms, etc.) may be necessary for adequate 

performance and should be done in practice34.

Future work is needed to compare the performance of single cross-fit, double cross-fit, and 

other alternatives, such as cross-validated TMLE15 to weaken nuisance model restrictions 

under a variety of data generating mechanisms. Other work is needed to develop diagnostics 

for cross-fitting and to potentially allow the addition of other nuisance functions. Due to the 

repeated partitioning, standard diagnostics (e.g. examining the distributions of predicted 

treatment probabilities43) may be more difficult to interpret. Additionally, realistic analyses 

often have additional issues that must be addressed, such as missing data and loss-to-follow-

up. Therefore, additional nuisance functions (like inverse probability weights for informative 
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loss-to-follow-up) are often needed and cross-fit procedures for these scenarios should be 

assessed.

Conclusion

Machine learning is not a magic formula for the monumental task of causal effect 

estimation. However, these algorithms do impose less restrictive assumptions regarding the 

possible forms of the nuisance functions used for estimation. Cross-fit estimators should be 

seen as an approach to allow for flexibly estimating nuisance functions while retaining valid 

inference. In practice, cross-fit estimators should be used regularly with a super-learner that 

includes a diverse library of learners.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: General double cross-fit procedure for doubly robust estimators
Step 0) The exposure (X), outcome (Y), and necessary set of confounders for identification 

(Z) are identified and collected.

Step 1) The data is partitioned into three approximately equal sized sample splits.

Step 2) The treatment nuisance model and the outcome nuisance model are fit in each 

sample split.

Step 3) Predicted outcomes under each treatment are estimated using the nuisance models 

estimated using discordant data sets. For example, sample split 1 uses the treatment nuisance 

model from sample split 3 and the outcome nuisance model from sample split 2.

Step 4) The target parameter is calculated from the mean of the predictions across all splits. 

The variance for the particular split is calculated as the mean of variance of each split.

Steps 1-4 are repeated a number of times to reduce sensitivity to particular sample splits. 

The overall point estimate is calculated as the median of the point estimates for all of the 

different splits. The estimated variance consists of two parts: the variability of the ACE 

within a particular split and the variance of the ACE point estimate between each split.
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Figure 2: Bias and confidence interval coverage of estimators of the average causal effect
GComp: g-computation, IPW: inverse probability of treatment weighted estimator, AIPW: 

augmented inverse probability weighted estimator, TMLE: targeted maximum likelihood, 

DC-AIPW: double cross-fit AIPW, DC-TMLE: double cross-fit TMLE
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Table 1:

Descriptive characteristics for a single sample

Statin (n=776) No statin (n=2224)

Age, mean (SD) 58 (9.5) 53 (7.6)

Diabetes, % 31 1

log(LDL), mean (SD) 4.92 (0.2) 4.86 (0.2)

Risk score, mean (SD) 0.15 (0.2) 0.06 (0.1)

ASCVD, % 37 29

Descriptive statistics for a single sample from the data generating mechanism. Continuous variables are presented as mean (standard deviation).

SD: standard deviation, LDL: low-density lipoproteins, ASCVD: atherosclerotic cardiovascular disease
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Table 2:

Estimated risk differences for a single sample from the data generating mechanism

RD SD(RD) 95% CL CLD Run-time
a

G-computation

  Main-effects −0.14 0.016 −0.17, −0.11 0.06 0.9

  Machine learning −0.09 0.015 −0.12, −0.06 0.06 82.3

IPW

  Main-effects −0.13 0.039 −0.20, −0.05 0.15 0.0

  Machine learning −0.11 0.028 −0.16, −0.05 0.11 0.3

AIPW

  Main-effects −0.08 0.038 −0.16, −0.01 0.15 0.0

  Machine learning −0.11 0.016 −0.14, −0.08 0.06 0.7

TMLE

  Main-effects −0.12 0.029 −0.18, −0.06 0.11 0.0

  Machine learning −0.12 0.016 −0.15, −0.09 0.06 0.7

DC-AIPW

  Main-effects −0.09 0.039 −0.16, −0.01 0.15 1.3

  Machine learning −0.11 0.023 −0.16, −0.07 0.09 128.1

DC-TMLE

  Main-effects −0.12 0.029 −0.18, −0.07 0.11 1.3

  Machine learning −0.11 0.021 −0.15, −0.07 0.08 129.9

RD: risk difference, SD(RD): standard deviation for the risk difference, 95% CL: 95% confidence limits, CLD: confidence limit difference defined 
as the upper confidence limit minus the lower confidence limit, IPW: inverse probability weighting, AIPW: augmented inverse probability 
weighting, TMLE: targeted maximum likelihood estimation, DC-AIPW: double cross-fit AIPW, DC-TMLE: double cross-fit TMLE.

Machine learning estimators were super-learner with 10-fold cross validation. Algorithms included were the empirical mean, main-effects logistic 
regression without regularization, generalized additive model with four splines and a ridge penalty of 0.6, generalized additive model with four 
splines, random forest with 500 trees and a minimum of 20 individuals per leaf, and a neural network with a single hidden layer consisting of four 
nodes.

Double cross-fit procedures included 100 different sample splits.

a
Run times are based on a server running on a single 2.5 GHz processor with 5 GB of memory allotted. Run times are indicated in minutes. G-

computation run-times are large due to the use of a bootstrap procedure to calculate the variance for the risk difference. IPW used robust variance 
estimators. AIPW, TMLE, DC-AIPW, and DC-TMLE variances were calculated using influence curves.
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Table 3:

Simulation results for estimators under different approaches to estimation of the nuisance functions

Bias RMSE ASE ESE CLD Coverage

G-computation

  True 0.000 0.017 0.017 0.017 0.065 93.5%

  Main-effects −0.023 0.029 0.017 0.018 0.067 72.3%

  Machine learning 0.026 0.031 0.015 0.017 0.058 56.5%

IPW

  True 0.007 0.025 0.025 0.024 0.097 94.9%

  Main-effects −0.022 0.032 0.023 0.023 0.091 86.6%

  Machine learning 0.010 0.023 0.023 0.021 0.090 94.8%

AIPW

  True 0.000 0.021 0.020 0.021 0.077 93.9%

  Main-effects −0.016 0.026 0.020 0.020 0.076 84.4%

  Machine learning 0.004 0.020 0.017 0.019 0.066 91.3%

TMLE

  True 0.000 0.021 0.020 0.021 0.077 93.6%

  Main-effects −0.017 0.025 0.019 0.018 0.075 84.9%

  Machine learning −0.002 0.020 0.017 0.020 0.065 89.5%

DC-AIPW

  True 0.000 0.021 0.022 0.021 0.085 95.2%

  Main-effects −0.015 0.026 0.027 0.022 0.106 92.4%

  Machine learning −0.001 0.020 0.021 0.020 0.082 95.6%

DC-TMLE

  True 0.001 0.020 0.021 0.020 0.084 95.8%

  Main-effects −0.018 0.025 0.024 0.018 0.094 91.4%

  Machine learning 0.000 0.020 0.020 0.020 0.079 95.2%

RMSE: root mean squared error, ASE: average standard error, ESE: empirical standard error, CLD: confidence limit difference, Coverage: 95% 
confidence limit coverage of the true value

IPW: inverse probability of treatment weighted estimator, AIPW: augmented inverse probability weighted estimator, TMLE: targeted maximum 
likelihood estimator, DC-AIPW: double cross-fit AIPW, DC-TMLE: double cross-fit TMLE.

True: correct model specification. Main-effects: all variables were assumed to be linearly related to the outcome and no interaction terms were 
included in the model. Machine learning: super-learner with 10-fold cross-validation including empirical mean, main-effects logistic regression 
without regularization, generalized additive models, random forest, and a neural network.
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