Skip to main content
. Author manuscript; available in PMC: 2022 May 1.
Published in final edited form as: Epidemiology. 2021 May 1;32(3):393–401. doi: 10.1097/EDE.0000000000001332

Table 3:

Simulation results for estimators under different approaches to estimation of the nuisance functions

Bias RMSE ASE ESE CLD Coverage

G-computation
  True 0.000 0.017 0.017 0.017 0.065 93.5%
  Main-effects −0.023 0.029 0.017 0.018 0.067 72.3%
  Machine learning 0.026 0.031 0.015 0.017 0.058 56.5%
IPW
  True 0.007 0.025 0.025 0.024 0.097 94.9%
  Main-effects −0.022 0.032 0.023 0.023 0.091 86.6%
  Machine learning 0.010 0.023 0.023 0.021 0.090 94.8%
AIPW
  True 0.000 0.021 0.020 0.021 0.077 93.9%
  Main-effects −0.016 0.026 0.020 0.020 0.076 84.4%
  Machine learning 0.004 0.020 0.017 0.019 0.066 91.3%
TMLE
  True 0.000 0.021 0.020 0.021 0.077 93.6%
  Main-effects −0.017 0.025 0.019 0.018 0.075 84.9%
  Machine learning −0.002 0.020 0.017 0.020 0.065 89.5%
DC-AIPW
  True 0.000 0.021 0.022 0.021 0.085 95.2%
  Main-effects −0.015 0.026 0.027 0.022 0.106 92.4%
  Machine learning −0.001 0.020 0.021 0.020 0.082 95.6%
DC-TMLE
  True 0.001 0.020 0.021 0.020 0.084 95.8%
  Main-effects −0.018 0.025 0.024 0.018 0.094 91.4%
  Machine learning 0.000 0.020 0.020 0.020 0.079 95.2%

RMSE: root mean squared error, ASE: average standard error, ESE: empirical standard error, CLD: confidence limit difference, Coverage: 95% confidence limit coverage of the true value

IPW: inverse probability of treatment weighted estimator, AIPW: augmented inverse probability weighted estimator, TMLE: targeted maximum likelihood estimator, DC-AIPW: double cross-fit AIPW, DC-TMLE: double cross-fit TMLE.

True: correct model specification. Main-effects: all variables were assumed to be linearly related to the outcome and no interaction terms were included in the model. Machine learning: super-learner with 10-fold cross-validation including empirical mean, main-effects logistic regression without regularization, generalized additive models, random forest, and a neural network.