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Abstract

Regeneration is an evolutionarily conserved process in animal kingdoms, however, the regenerative capacities differ
from species and organ/tissues. Mammals possess very limited regenerative potential to replace damaged organs,
whereas non-mammalian species usually have impressive abilities to regenerate organs. The regeneration process
requires proper spatiotemporal regulation from key signaling pathways. The canonical Notch and Wnt signaling
pathways, two fundamental signals guiding animal development, have been demonstrated to play significant roles
in the regeneration of vertebrates. In recent years, increasing evidence has implicated the cross-talking between
Notch and Wnt signals during organ regeneration. In this review, we summarize the roles of Notch signaling and
Wnt signaling during several representative organ regenerative events, emphasizing the functions and molecular
bases of their interplay in these processes, shedding light on utilizing these two signaling pathways to enhance
regeneration in mammals and design legitimate therapeutic strategies.
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Background
Regeneration is a complex biological process, by which
the tissue/organs restore their structures and functions
after injury (Poss 2010). Regeneration occurs widely in
animals, although their regenerative capacities vary
among species. Invertebrates, such as planarians and
Hydra, can regenerate the entire body. Most vertebrates
possess prominent capacities to regenerate damaged
structures at the embryonic/larval stages, but this ability
plummets as development proceeds. Many adult verte-
brates, except mammals, still display spectacular capaci-
ties to fully regenerate certain organs or appendages
after injury. In contrast, the regenerative capacity in
adult mammals is generally limited within the liver,
bones, skeletal muscle, and skin to some degree, whereas
other organs/tissues, like heart and hair cells, fail to
structurally or functionally recover after injury (Brockes

and Kumar 2008; González-Rosa et al. 2017; Knopf et al.
2011; Poss et al. 2003; Tu and Johnson 2011). Based on
these interspecies differences, it is believed that the re-
generation capacity is ancestral although it has occasion-
ally degenerated during the evolution of vertebrates
(Wagner and Misof 1992).
During post-injury repair, tissue-specific stem cells (or

progenitor cells), which are typically quiescent in healthy
condition, are activated to undergo proliferation and
differentiation in order to maintain tissue homeostasis.
Alternatively, some regenerative systems utilize the
existing mature cells to generate new structures by trig-
gering them de-differentiation into multipotent progeni-
tor cells or directly trans-differentiation (Jopling et al.
2011; Kolios and Moodley 2013; Leeman et al. 2014;
Potten and Loeffler 1990). Accordingly, the regeneration
process requires the concerted actions of multiple regulatory
mechanisms controlling cell proliferation, differentiation,
patterning, and/or de-differentiation, trans-differentiation.
Cellular signaling is one of the fundamental mecha-

nisms to regulate cell behaviors. Cells can respond to a
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variety of intracellular and extracellular signals. Many
important signaling pathways, which are active during
embryonic development, are activated again during
organ regeneration. Notch signaling and Wnt/β-catenin
signaling are two such pathways, playing critical roles
during both animal development and regeneration.
These two signaling pathways are evolutionarily con-
served and involved in numerous cellular processes. Fur-
thermore, Notch and Wnt signaling pathways frequently
collaborate to regulate plentiful biological events. The
interaction between these two pathways has been exten-
sively investigated in regenerative tissue/organs (Fre
et al. 2009; Jayasena et al. 2008; Kim et al. 2012; Li et al.
2011a; Li et al. 2015; Pannequin et al. 2009). In this re-
view, focusing on the vertebrate models, we summarize
the regenerative roles of Notch and Wnt signals in
several well-established organ regeneration systems, and
especially highlight the cross-talking between Notch and
Wnt signaling pathways in these regeneration processes,
shedding light on the improvement of regenerative
capacity in vertebrates utilizing these two signaling
pathways.

Notch and Wnt signaling pathways
Notch signaling pathway
Notch signaling is a highly conserved pathway that
mediates cell proliferation, cell fate decision, cell death,
and stem cell maintenance in a variety of tissues during
development and homeostasis (Schwanbeck et al. 2011).
It is also widely involved in various regeneration
processes of different organs, including caudal fin, liver,
retina, spinal cord, and brain, etc. (Dias et al. 2012;
Grotek et al. 2013; Kamei et al. 2012; Wan and Goldman
2017; Zhang et al. 2018).
The Notch pathway conducts intercellular communi-

cations between two neighboring cells, and obtained its
name from the Notch receptor, a single-pass transmem-
brane protein (Gridley 2010; Okuyama et al. 2008). In
mammals, four Notch receptors (Notch1–4) are known,
containing both extracellular and intracellular domains.
At the plasma membrane, Notch protein is activated by
a DSL (Delta/Serrate/LAG-2) family of ligand, which is
known as the Delta-like-type ligands DLL1/3/4 or
Jagged-type ligands Jag1/2 in mammals, and sequentially
cleaved by ADAM family of metalloproteases complex
and γ-secretase, leading to the release of Notch intracel-
lular domain (NICD). In the canonical Notch pathway,
NICD translocates into the nucleus and binds to the
CSL (CBF1/Su(H)/LAG1) transcription factor, known as
RBP-jκ in mammals (Klüppel and Wrana 2005). Eventu-
ally, the CSL transcription factor, along with the coactiva-
tor Mastermind-like (MAML), activates the transcription
of target genes, including Hairy enhancer of split (Hes)
and Hes related to YRPW motif (Hey) families (Watt et al.

2008). In brief, the canonical Notch signaling pathway re-
fers to a NICD-CSL-MAML signal transduction cascade
(Fig. 1a).

Wnt signaling pathway
Wnt signaling regulates cell fate determination, cell pro-
liferation, and cell polarity in the development of all
metazoans (Ling et al. 2009; Pond et al. 2020; Wen et al.
2020). In the canonical pathway, Wnt ligand binds to a
seven-pass transmembrane receptor Frizzled (Fz) and a
single-pass transmembrane co-receptor low-density lipo-
protein receptor-related protein (LRP), activating the
downstream signal transduction involving Dishevelled
(Dvl), glycogen synthase kinase 3β (GSK3β), casein kin-
ase 1 (CK1), Axin, Adenomatous Polyposis Coli (APC)
and β-catenin (Fig. 1b). These proteins act as integral
transcription regulators in the canonical Wnt signaling
pathway. Without Wnt ligand, β-catenin is hyperpho-
sphorylated within a cytoplasmic destruction complex
including Axin, CK1, APC, and GSK3β, and then de-
graded via the E3 ubiquitin ligase β-TrCP-mediated ubi-
quitin/proteasome pathway. When the Wnt-Fz binding
initiates the pathway, phosphorylation of Dvl promotes
the dissociation of Axin/CK1/APC/GSK3β complex,
allowing β-catenin to accumulate in the cytoplasm and
subsequently translocate into the nucleus, where β-
catenin interacts with transcriptional factors, such as
lymphoid enhancer-binding factor1/T cell-specific tran-
scription factor (LEF/TCF), to induce the expression of
target genes (Angers and Moon 2009). The non-
canonical Wnt pathway, such as the planar cell polarity
(PCP) and Wnt-calcium signaling, are transduced from
Fz receptor to alternative intracellular messengers and
effectors independent of β-catenin (Angers and Moon
2009; Gao and Chen 2010).

Interaction between Notch and Wnt signaling pathways
The complete pathway of Notch or Wnt signaling is
found in all multicellular animals, including porifer-
ans, but not in fungi or protozoans (Gazave et al.
2009; Holstein 2012). When these two pathways are
simultaneously active, there must be certain cross-
talks between them to coordinate and fine-tune their
actions (Borggrefe et al. 2016; Collu et al. 2014).
Indeed, the Notch receptor has been reported to
negatively regulate the stability of β-catenin (Acosta
et al. 2011; Kwon et al. 2011). Conversely, the gene
encoding Jag1, a Notch ligand, is a target of canon-
ical Wnt/β-catenin signaling (Estrach et al. 2006;
Katoh and Katoh 2006a; Pannequin et al. 2009).
Notch target gene Hes1 is also regulated by Wnt/β-
catenin signaling at the transcription level (Li et al.
2012; Shimizu et al. 2008). Numb, an inhibitor of
Notch signaling, is a potent target of the Wnt/β-
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catenin signaling in multiple types of progenitor cells
(Katoh and Katoh 2006b). Moreover, GSK3β, a com-
ponent in the destruction complex mediating β-
catenin degradation, can phosphorylate NICD, which
in turn promotes NICD nucleus localization and in-
creases its transcriptional activity and stability (Collu
et al. 2014). Dvl is able to bind with NICD to trigger
its endocytosis and degradation (Muñoz-Descalzo
et al. 2014), or bind with the CSL transcription factor of
Notch pathway and inhibit its transcriptional activity
(Collu et al. 2012). All evidence above has indicated that
Notch and Wnt signaling pathways synergistically or
counteractively interact with each other at multiple levels
of signal transduction cascade.

Roles of Notch and Wnt pathways in regeneration
Organ or tissue regeneration and repair often involve
the re-activation of developmental signaling. As the
classic developmental signals, Notch and Wnt signal-
ing pathways have been involved in diverse regenera-
tive processes (Atkinson et al. 2015; Wilson and
Radtke 2006). Intriguingly, the interaction between the
Notch and Wnt pathways has been evidenced by many
regeneration studies in ear, bone, heart, liver, and
other organ/tissues.

Hair cell regeneration in the cochlea
The mammalian inner ear can be subdivided into a ves-
tibular system dorsally and the cochlea ventrally, which
are responsible for body balance and hearing,

respectively (Atkinson et al. 2015; Groves and Fekete
2012). The sensory hair cells (HCs) in the cochlea con-
nect with neurons to convey mechanical sound informa-
tion into neural impulses. In mammals, only neonatal
cochleae have a limited degree of HC regeneration after
damage (Bramhall et al. 2014; Cox et al. 2014; Hu et al.
2016), and this regenerative capacity diminishes soon in
postnatal mammals (Cox et al. 2014; Maass et al. 2015).
The mature cochlea completely lacks the ability to re-
place damaged HCs spontaneously. The mammalian ves-
tibular sensory epithelium, which uses its hair cells for
sensing balance and motion, has low regenerative cap-
acity in adults (Lin et al. 2011), which is not sufficient to
fully recover vestibular function after injury. Thus, in
mammals, the damage of HCs typically leads to the for-
mation of sensory epithelial scars and irreversible hear-
ing loss and balance deficits. In contrast, in non-
mammalian vertebrates, HCs in both auditory and vestibu-
lar systems constantly renew and regenerate after injury, re-
storing the hearing and balance function throughout the
life (Balak et al. 1990; Stone and Cotanche 2007). During
HC regeneration, the cell source to regenerate new HCs is
the non-sensory supporting cell (SC) populations, which
normally surround the HCs and function to provide the
protection and structural support for HCs in the cochlea
(Cox et al. 2014; White et al. 2006).
In newborn mouse ears, Wnt proteins and Wnt path-

way components are upregulated after HC damage, and
pharmacological inhibition of Wnt signaling decreases
the spontaneous HC regeneration in these ears (Hu

Fig. 1 The diagrams of Notch and Wnt pathways. a The Notch receptor and ligand are localized at the plasma membranes of neighboring cells.
Their binding triggers the sequential cleavage of Notch receptor by ADAM family of metalloproteases and γ-secretase, leading to the release of
Notch intracellular domain (NICD), which translocates into the nucleus and facilitates the CSL (CBF1/Su(H)/LAG1) transcription factor, along with
the coactivator Mastermind-like (MAML), to activate the transcription of target genes. b Without Wnt ligand, β-catenin is hyperphosphorylated
within a cytoplasmic destruction complex including Dishevelled (Dvl), Axin, casein kinase 1 (CK1), Adenomatous Polyposis Coli (APC) and
glycogen synthase kinase 3 (GSK3), and then degraded via the ubiquitin/proteasome pathway. When Wnt ligand binds to a seven-pass
transmembrane receptor Frizzled (Fz) and a single-pass transmembrane co-receptor low-density lipoprotein receptor-related protein (LRP), the
Dvl/Axin/CK1/APC/GSK3 complex is dissociated, allowing β-catenin to accumulate in the cytoplasm and subsequently translocate into the
nucleus, where β-catenin interacts with transcriptional factors, such as lymphoid enhancer-binding factor1/T cell-specific transcription factor (LEF/
TCF), to induce the expression of target genes
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et al. 2016), indicating a requirement of Wnt signaling
for the HC regeneration process. Leucine rich repeat G-
coupled receptor 5 (Lgr5) is a downstream target of ca-
nonical Wnt signaling and labels actively dividing stem
cells/progenitor cells across a diverse range of tissue
(Barker et al. 2007; de Lau et al. 2011; Jaks et al. 2008;
Kemper et al. 2012). It has been demonstrated that the
Lgr5-expressing progenitor cells possess the ability of
self-renewal, proliferation, and regeneration into HCs
(Bramhall et al. 2014; Cox et al. 2014; Wang et al. 2015).
Treatment of Lgr5+ progenitor cells in the neonatal
cochlea with Wnt agonists induces cell proliferation and
differentiation into HCs, whereas Wnt antagonists re-
duce their proliferation (Chai et al. 2012; Shi et al. 2013;
Shi et al. 2012). Recently, more thorough function and
lineage analysis have defined more distinct SC subpopu-
lations (McGovern et al. 2019; Zhang et al. 2019). A
population of SCs with Frizzled-9 (Fz9) expression was
identified as the progenitors for the generation of HCs
in the neonatal mouse cochlea. These Fz9+ cells possess
a similar capacity for proliferation, differentiation, and
HC generation as Lgr5+ progenitors, but they are a
much smaller cell population than Lgr5+ progenitors
(Zhang et al. 2019). Given that Fz9 is a receptor of Wnt,
this study supports again the importance of Wnt signal-
ing in defining the cell population of progenitors for HC
regeneration in the neonatal cochlea. Different from the
neonatal cochlea, the adult cochleae do not proliferate
and regenerate in response to Wnt signaling, possibly
due to the decreased expression of Lgr5 in the adult (Shi
et al. 2013). In non-mammalian vertebrates, which can
spontaneously regenerate sensory HCs, the effect of ac-
tive canonical Wnt signaling in promoting HC prolifera-
tion and regeneration is more robust. In zebrafish lateral
line or chicken auditory organ (basilar papilla), Wnt acti-
vation enhances the generation of sensory HCs, whereas
Wnt inhibition suppresses the proliferation and regener-
ation of sensory HCs (Head et al. 2013; Jacques et al.
2014; Jiang et al. 2014; Li et al. 2017; Romero-Carvajal
et al. 2015). In summary, Wnt/β-catenin signaling pro-
motes HC regeneration in the mammalian neonatal
cochlea and non-mammalian vertebrates as well.
Notch signaling is known as a fundamental pathway to

regulate the cell fate determination and mosaic pattern
formation of HC and SC during the inner ear develop-
ment (Li et al. 2015; Romero-Carvajal et al. 2015). In the
neonatal mice cochlea, which has the ability to generate
HC, expression of Notch target genes, Hes1, Hes5, Hey1,
HeyL, and Jag1 are decreased upon HC damage
(McGovern et al. 2018). Similar down-regulation of
Notch pathway gene expressions were revealed in tran-
scriptomic analyses of zebrafish lateral line and chicken
cochleae after damage (Jiang et al. 2014; Jiang et al.
2018). These results suggest that the down-regulation of

Notch signaling might be required to initiate HC regen-
eration after injury. Consistently, in the neonatal mice
cochlea with HC loss, the spontaneous HC regeneration
can be prevented by increased Notch signaling in SCs
(McGovern et al. 2018). The inhibition of Notch signal-
ing by either knocking out (KO) Notch or using the
γ-secretase inhibitors, which prevent Notch receptor
cleavage and subsequent nuclear translocation of
NICD, is able to enhance the SC proliferation and
their trans-differentiation into HCs (Hu et al. 2016;
Korrapati et al. 2013; Li et al. 2015). In zebrafish lat-
eral line and chicken basilar papilla, inhibition of
Notch signaling with the γ-secretase inhibitor DAPT
causes excessive regeneration of HCs after damage
(Daudet et al. 2009; Ma et al. 2008). It has been re-
ported that inhibition of Notch signaling upregulates the
expression of gene Atoh1 (Itoh and Chitnis 2001; Mizutari
et al. 2013; Yamamoto et al. 2006). Atoh1 is a key tran-
scription factor to determine the HC cell fate, and overex-
pression of Atoh1 is able to induce the SC-to-HC trans-
differentiation in mammalian inner ear (Zheng and Gao
2000). Additionally, Notch signaling positively regulates
the expression of cell-cycle inhibitor cdkn1bb (Romero-
Carvajal et al. 2015). Together, Notch signaling may func-
tion to maintain the SCs in a quiescent status and thus
block HC regeneration through inhibiting Atoh1-mediated
SC-to-HC trans-differentiation and/or limiting the cell
cycle reentry of SCs.
The expression of Notch pathway genes in the mouse

cochlea declines rapidly during the first postnatal week,
and this down-regulation persists in adulthood. There-
fore, in contrast to the neonatal cochlea, the adult
cochlea entirely loses the ability to respond to a Notch
pathway blockade (Maass et al. 2015). Consistently, a
transient activation of Notch signaling together with
Myc overexpression is required to trigger the repro-
gramming of adult SCs, which then respond to the in-
duction signal by Atoh1 to transdifferentiate into HCs
(Shu et al. 2019). All these results imply that adult SCs
may lose some properties, such as Notch signaling activ-
ity, compared to young SCs, resulting in the inability to
regenerate HCs. However, it has been shown that the
γ-secretase inhibitors are able to stimulate cochlear
HC regeneration and partial recovery of hearing abil-
ity in the damaged model of adult cochlea (Mizutari
et al. 2013; Tona et al. 2014). These controversial re-
sults could be explained as a sub-population of SCs
with significant Notch activity exists in the adult
cochlea and transdifferentiates into HCs in response
to the γ-secretase inhibitor-mediated Notch inhib-
ition. It is also possible that the γ-secretase inhibitor
functions on another target, which is Notch-
independent but also able to affect SC-to-HC trans-
differentiation.
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During HC regeneration, SCs can give rise to the new
HCs through either the mitotic regeneration mechanism,
in which SCs proliferate first and then differentiate into
HCs, or the direct trans-differentiation mechanism, in
which SCs directly trans-differentiate into HCs without
first entering the cell cycle (Cox et al. 2014) (Fig. 2).
Usually, the mitotic markers, such as Edu or BrdU,
are used to indicate SC proliferation during mitotic
regeneration. In non-mammal vertebrates, SCs can
give rise to the new HCs through both the mitotic
and non-mitotic mechanism. However, many studies
have found that the majority of generated HCs comes
from the direct trans-differentiation of SCs in mam-
malian cochleae (Chai et al. 2012; Cox et al. 2014).
Given that direct trans-differentiation of SCs into
HCs exhausts the population of SCs, therefore, the
HC generation with proliferation is considered as a
better choice for the regeneration of HCs to restore
hearing. To achieve better efficiency for mitotic HC
regeneration, co-regulation of Wnt and Notch signal-
ing pathways were recently investigated.
In neonatal mouse cochleae, either overexpressing β-

catenin or deleting Notch1 in SCs is able to signifi-
cantly increase the SC proliferation. However, very few
proliferating SCs were observed in Notch1 and β-
catenin double knockout transgenic mice (Ni et al.

2016), implying that the SC proliferation induced by
Notch1 deletion is dependent on β-catenin. Moreover,
Notch signaling needs to be downregulated to activate
Wnt-induced proliferation (Li et al. 2015; Ni et al.
2016). Similarly, in zebrafish lateral line, Wnt pathway
genes are upregulated upon downregulation of Notch
signaling, and Notch signaling inhibits SC proliferation
via inhibition of Wnt (Romero-Carvajal et al. 2015).
These results suggest that Notch signaling acts as an
upstream and negative regulator of Wnt/β-catenin
signaling to inhibit SC proliferation. Furthermore, sim-
ultaneously inhibiting Notch and upregulating Wnt/β-
catenin in neonatal mouse cochlea and utricles led to
more significant enhancement of the SC proliferation
than manipulating either pathway alone (Ni et al. 2016;
Wu et al. 2016), suggesting a synergistic effect of
Notch inhibition and Wnt activation on SC prolifera-
tion. However, by combining β-catenin overexpression
and Notch1 deletion, the mitotic HC generation in the
neonatal cochlea is still very limited (Ni et al. 2016).
Considering that Atoh1 acts as a key transcriptional
factor during the cell fate determination of HCs, co-
activation of β-catenin and Atoh1 in neonatal cochlear
Lgr5+ cells is able to increase the proliferation of SCs
and their differentiation into HCs (Kuo et al. 2015). In-
triguingly, the triple manipulations of Notch1 deletion,

Fig. 2 The roles of Notch and Wnt signaling in hair cell regeneration. a Upon damage, supporting cells (SCs) can give rise to the new hair cells
(HCs) through non-mitotic regeneration (b) or mitotic regeneration (c). b SCs directly trans-differentiate into HCs without entering the cell cycle.
Wnt signaling promotes this process, whereas Notch signaling inhibits it though Atoh1, a key transcription factor for HC cell fate commitment. c
During the mitotic regeneration, SCs proliferate first and then differentiate into new HCs. Wnt signaling is able to induce SC proliferation. Notch
signaling represses SC proliferation and differentiation via the inhibitions of Wnt signaling and Atoh1expression or limiting the cell cycle reentry
of SCs. Usually, the mitotic markers, such as Edu or BrdU, are used to indicate the new SCs/HCs from proliferation, which can be distinguished
from the non-mitotic regenerated HCs
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β-catenin overexpression, and Atoh1 overexpression in
SCs induce massive SC proliferation and extensive mitotic
generation of HCs (Ni et al. 2016). All the above studies
suggest that co-manipulation of multiple effectors could
be promising approaches to achieve both SC proliferation
and differentiation into HCs after HC loss.

Bone and fin regeneration
Bone regeneration
Bone is a unique tissue that can completely regener-
ates in all vertebrates, rather than healing with a scar
after injury (Dimitriou et al. 2011). Under certain sit-
uations like fracture, trauma, and osteoporosis, bone
regeneration is required in large quantities. Bone

formation and regeneration involve the coordinated
response of many types of cells. Osteoblasts, the
bone-forming cells derived from bone marrow mesen-
chymal stem cells (MSCs) can differentiate into osteo-
cytes or die by apoptosis. Osteocytes are terminally
differentiated cells embedded in the mineralized
matrix. The multinucleated osteoclasts are the bone-
resorbing cells. Osteoblasts and osteoclasts cooperate
to regulate the modeling of the growing bone, and
also controls the bone remodeling throughout life. It
has been suggested that both Notch and Wnt signal-
ing pathways as well as their downstream networks
are implicated in bone formation and regeneration
(Knight and Hankenson 2013) (Fig. 3a).

Fig. 3 The role of Notch and Wnt signaling in bone or zebrafish fin regeneration. a Upon bone injury, the bone marrow mesenchymal stem cells
(MSCs) give rise to osteoblasts, which terminally differentiate into osteocytes for bone repair. The osteoblasts, the bone-forming cells, cooperate with
the multinucleated osteoclasts, the bone-resorbing cells, to control the bone remodeling. The canonical Wnt/β-catenin signaling enhances bone
healing through accelerating MSC differentiation into osteoblasts and chondrocytes, which form cartilage. In contrast, Notch signaling in MSCs
functions to inhibit their differentiation through Hes1-mediated suppression of Wnt signaling. In osteocytes, activation of Notch signaling promotes
bone formation by inhibiting the expressions of Wnt-inhibitor Sost and Dkk1. In osteoclasts, Notch signaling is required for bone resorption. b During
zebrafish tail fin regeneration, a mass of undifferentiated proliferating mesenchymal progenitor-like cells at the amputation plane form the blastema,
which gives rise to all the cell types that form the new fin. Notch signaling in proximal blastema functions to maintain blastema cells in an
undifferentiated and proliferative state and block osteoblast differentiation. Wnt signaling is required for the blastema formation and subsequent
proliferation. Wnt signaling is active in non-proliferative distal blastema and functions upstream of Notch signal to regulate blastema cell proliferation
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During development, canonical Wnt/β-catenin signaling
has been well established to positively regulate bone for-
mation (Krishnan 2006), through diverse mechanisms, in-
cluding inducing osteoblastogenesis from MSCs (Bennett
et al. 2005), promoting osteoblast proliferation and differ-
entiation (Yan et al. 2009), protecting osteoblasts from
apoptosis (Bodine et al. 2005; Bodine et al. 2004), and
inhibiting osteoclast formation to suppress bone resorp-
tion (Glass et al. 2005). In contrast, Notch signaling main-
tains bone marrow mesenchymal progenitors by
inhibiting MSC differentiation into osteoblasts in the early
stage (Hilton et al. 2008; Ji et al. 2017; Tu et al. 2012), but
enhances osteoblast differentiation into osteocytes and in-
hibits osteoclast formation and bone resorption in late
stage (Canalis et al. 2013; Engin et al. 2008; Ji et al. 2017;
Liu et al. 2016). Moreover, canonical Notch signaling acti-
vation in osteocytes decreases osteoclasts and bone re-
sorption, and increases the bone volume (Canalis et al.
2016). Different from the mice model, in human bone
marrow mesenchymal stem cells (BMSCs), Notch signal-
ing activation consistently induces osteogenic differenti-
ation. The treatment of human MSCs with Jag1, or
overexpression of NICD2, leads to an increase in osteo-
blast related genes ALP and Bone Sialoprotein, and a
downregulation of TWIST1/2, the negative regulators of
osteogenic differentiation, hence an induction of osteo-
blastogenesis (Osathanon et al. 2019; Zhu et al. 2013).
Upon bone injury, the expression of Wnt ligands, recep-

tors, β-catenin, and signaling reporters are upregulated
(Chen et al. 2007; Kim et al. 2007; Leucht et al. 2008). The
bone healing was significantly repressed in the mice with
an osteoblast-specific null allele of β-catenin, but dramat-
ically enhanced in mice expressing an activated form of β-
catenin in osteoblasts (Chen et al. 2007). Similarly, knock-
ing out LRP5 in mice, or overexpressing DKK1, a Wnt an-
tagonist that binds to LRP5, inhibits the healing process
(Chen et al. 2007; Komatsu et al. 2010), whereas the re-
pression of DKK1 or treatment with a GSK3β inhibitor
improves bone repair and regeneration (Komatsu et al.
2010; Li et al. 2011b; Sisask et al. 2013). Furthermore,
Wnt3a injection into the periosteum induces faster bone
regeneration by stimulating the proliferation of skeletal
progenitor cells and accelerating their differentiation into
osteoblasts (Minear et al. 2010). In addition to osteocyte
lineage, inhibiting Wnt/β-catenin signaling in chondro-
cytes also compromises fracture healing due to reduced
and delayed cartilage formation and bone generation in
mice (Huang et al. 2012). Accordingly, a population of
long-lived skeletal cells on the periosteum of a long bone
with Axin2 gene expression was identified as Wnt-
responding cells, which are activated upon injury and give
rise to both cartilage and bone for repair (Ransom et al.
2016). All these results support a positive role of Wnt sig-
naling for bone regeneration.

Notch signaling is also playing important roles during
bone regeneration and healing. The expressions of mul-
tiple genes in the canonical Notch pathway are upregu-
lated, such as Jag1, Notch3, Hes1, and Hey1, during tibial
fracture healing (Dishowitz et al. 2012; Osathanon et al.
2019). The transgenic mice with repressed Notch signal-
ing by expressing a dominant-negative form of MAML
(dnMAML) shows abnormal bone maturation and re-
modeling after injury (Dishowitz et al. 2013). Further
cell-lineage specific studies have revealed that the role of
Notch signaling seems to be complicated during bone
healing. Loss of Notch signaling in BMSCs by deleting
RBP-jκ results in fracture nonunion likely due to the de-
fective BMSC pool (Wang et al. 2016), suggesting that
Notch signaling may function to maintain MSC at a pro-
liferative status and thus inhibit MSC differentiation. Ac-
cordingly, for bone repair, Notch signaling needs to be
repressed to allow MSC differentiation. Indeed, down-
regulation of Notch signaling has been observed after
fracture in a particular population of MSCs with alpha
smooth muscle actin (αSMA) marker, which contributes
to osteochondral elements during fracture healing
(Matthews et al. 2014). In contrast, in osteoblasts or
chondrocytes, the removal of Notch signaling has no
effects on the fracture repair process (Wang et al.
2016). In osteocytes, activation of Notch signaling
promotes bone healing following osteotomy (Liu et al.
2016). Suppression of Notch signaling in osteoclasts
by dnMAML reduces osteoclastic resorption and im-
proves bone regeneration and healing (Goel et al.
2019). Collectively, Notch signaling regulates bone re-
generation in a cell-context dependent manner, and
the underlying molecular mechanism in details needs
to be further investigated.
The crosstalk between Notch and Wnt signaling for

bone formation has been implicated in several studies.
An in vitro study has demonstrated that NICD overex-
pression in MSCs impairs osteoblastogenesis through
suppressing Wnt/β-catenin signaling mediated by Hes1
(Deregowski et al. 2006). Activation of canonical Notch
signaling in osteocytes increases bone formation by inhi-
biting Sost and Dkk1 expressions and consequent upreg-
ulation of Wnt signaling, which effects are disappeared
in the context of the RBP-jκ inactivation (Canalis et al.
2016). Furthermore, the interaction between Notch and
Wnt signaling has been considered in the therapeutic
treatment for bone healing. It was reported that medi-
carpin, a natural pterocarpan, promoted bone regener-
ation and healing by activating canonical Notch and
Wnt signaling pathways (Dixit et al. 2015).

Zebrafish fin regeneration
The zebrafish caudal fin is a complex structure, with
16–18 segmented bony fin rays (lepidotrichia) that are
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directly formed from osteoblasts, and the soft interray
tissue. Each bony fin ray is formed by two concave hemi-
rays, which are lined with osteoblasts on surfaces and
serve to protect a core of blood vessels, nerves, melano-
cytes, fibroblasts, and mesenchymal cells (Tal et al.
2010). The caudal fin provides a productive model of
limb regeneration and bone repair because it is easily ac-
cessible and not essential for survival (Akimenko et al.
2003; Poss et al. 2003). Complete caudal fin regeneration
takes around 14 days and comprises three phases: wound
healing, blastema formation, and regenerative outgrowth
(Munch et al. 2013). Several signaling pathways have
been found to be required for fin regeneration, including
Notch and Wnt pathways (Poss 2010; Stoick-Cooper
et al. 2007; Tal et al. 2010) (Fig. 3b).
During zebrafish fin regeneration, the tissue blastema,

a mass of undifferentiated proliferating mesenchymal
progenitor-like cells at the amputation plane, gives rise
to all the cell types that form the new fin. It has been
demonstrated that the blastemal cells are partially de-
rived from dedifferentiated mature osteoblasts (Knopf
et al. 2011). Notch signaling is activated early in the
blastema and remains active throughout the regener-
ation process. It functions to maintain blastema cells in
an undifferentiated and proliferative state during fin re-
generation. Notch signaling inhibition with inhibitors or
morpholinos (MO) reduces blastema cell proliferation
and impairs fin regeneration. Overexpression of NICD
in the regenerating fin leads to the expansion of blas-
tema, but the reduction of osteoblast differentiation, and
thus inhibition of bone regeneration (Grotek et al. 2013;
Munch et al. 2013). Wnt/β-catenin signaling is activated
in distal blastema during zebrafish tail fin regeneration
(Stoick-Cooper et al. 2007; Wehner et al. 2014). The
studies from Wnt inhibitor Dkk transgenic fish revealed
that Wnt/β-catenin signaling is required for the blas-
tema formation and subsequent proliferation of the blas-
tema (Stoick-Cooper et al. 2007). Wnt10a is possible the
primary Wnt ligand responsible for early activation of
this pathway during fin regeneration. Enhanced Wnt/β-
catenin signaling by overexpressing Wnt ligand or
GSK3β inhibitor treatment is sufficient to induce faster
regeneration by elevating cell proliferation and osteo-
blast differentiation in fins (Sarmah et al. 2019; Stoick-
Cooper et al. 2007). Moreover, the analysis of gene
expression profile during regeneration revealed that
Wnt/β-catenin signaling can regulate multiple key sig-
nals, including Notch. The expression of Notch signaling
target genes, her family, can be altered upon Wnt inhib-
ition, whereas Notch inhibition has little effect on Wnt
signaling activity (Wehner et al. 2014). Therefore, Wnt/
β-catenin signaling function upstream of Notch signal to
orchestrate growth and differentiation of the regenerat-
ing fin.

Heart regeneration
As the most important organ of vertebrates, the damage
of the heart is fatal for individuals. Myocardial infarction
(MI) is a leading cause of morbidity and mortality glo-
bally, which are characterized by the irreversible loss of
cardiomyocytes and replacement with fibrosis scar, in-
creasing susceptibility to heart failure and sudden death.
So the regenerative capacity of the heart is beneficial for
survival, however, it is actually greatly variable among
species. The heart of adult mammals, including humans,
fails to recover structurally or functionally after injury,
owing to a permanent scar deposition of massive fibrotic
tissue, along with an extremely low renewal rate of
cardiomyocytes (Bergmann et al. 2009; Bergmann et al.
2015). However, neonatal mammals possess a certain
capacity to regenerate heart tissue. The heart in neonatal
mouse or neonatal pig exhibits a transient regenerative
potential, which is dampened quickly during the first
week or 2 days of postnatal life, respectively (Porrello
et al. 2011; Ye et al. 2018; Zhu et al. 2018). Strikingly,
adult zebrafish can completely regenerate their hearts in
30–120 days in different cardiac injury models, such as
apical resection, ventricular cryoinjury or genetic abla-
tion of cardiomyocytes (Chablais et al. 2011; Gonzalez-
Rosa et al. 2017; Gonzalez-Rosa and Mercader 2012;
Poss et al. 2002; Wang et al. 2011). Different from a
permanent scar formation in adult mammals, the scar in
the fish heart is eventually dissolved and the injured
tissue is replaced by new cardiomyocytes (Gonzalez-Rosa
et al. 2011). The natural capacity for cardiac regeneration
exhibited by adult zebrafish and neonatal mammalian sug-
gests the possibility that adult mammal hearts could be
stimulated to regenerate if the cellular and genetic deter-
minants or signaling pathways for cardiomyocyte prolifer-
ation were fully elucidated.
Notch signaling pathway plays pivotal roles during

heart development and disease processes, reviewed re-
cently (Luxan et al. 2016). Current studies have charac-
terized the potential benefits of Notch activation for
reducing infarct size and improving cardiac function
after myocardial infarct in mice (Gude et al. 2008) and
the involvements of Notch pathways during heart regen-
eration in zebrafish (Munch et al. 2017; Raya et al. 2003;
Zhao et al. 2014). During zebrafish heart regeneration,
Notch signaling is activated after cardiac injury in either
ventricular resection or cryoinjury models, including the
elevated gene expressions of Notch receptors (notch1a,
notch1b, notch2, and notch3), ligands (dlc and dll4), and
the signaling modulator lunatic fringe (lfng) (Munch et al.
2017; Raya et al. 2003; Zhao et al. 2014). Suppression of
Notch pathway through either transgenic expressing
Notch inhibitory factor DN-MAML or pharmacological
treatment with Notch inhibitor RO492909 decreases the
cardiomyocyte proliferation rate, impairs the regeneration
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of new muscle, and induces scar formation at the site of
injury (Munch et al. 2017; Zhao et al. 2014). Moreover,
ubiquitous Notch pathway activation also compromises
zebrafish cardiomyocyte proliferation and cardiac regener-
ation, indicating that cardiomyocyte proliferative renewal
is exquisitely sensitive to perturbations in Notch signaling
(Zhao et al. 2014).
We have reported that the expressions of Notch recep-

tors (notch1a, notch1b, and notch2) are stimulated spe-
cifically in the endocardium and epicardium, but not in
myocardial cells, after the amputation injury of zebrafish
heart (Zhao et al. 2014), indicating that Notch signaling
functions for CM proliferation and heart regeneration
through a paracrine mechanism. To understand the
lineage-specific requirement for Notch signaling in
zebrafish heart regeneration, the consequences of
endocardial-specific Notch inhibition is evaluated follow-
ing cardiac apical amputation injury. This manipulation

dampens cardiomyocyte proliferation and leads to regen-
erative failures, implicating a requirement of endocardial
Notch signaling for heart regeneration (Zhao et al. 2019a).
RNA-seq profiles in hearts revealed that the expressions
of two transcripts, wif1 and notum1b, which encode two
secreted Wnt antagonists, are reduced in the endocardium
and epicardium upon Notch repression during zebrafish
heart regeneration (Zhao et al. 2019a) (Fig. 4). In the car-
diac development context, the Wnt pathway is required
for mesodermal specification of embryonic stem cells but
needs to be deactivated for further differentiation of cardi-
omyocytes (Ozhan and Weidinger 2015). In adult mice
that lacks the capacity of heart regeneration, multiple Wnt
pathway components are activated in response to the car-
diac injury (Aisagbonhi et al. 2011; Duan et al. 2012),
which could be associated with the pathological healing
process (Haybar et al. 2019). During zebrafish heart regen-
eration, several small molecules as Wnt inhibitors

Fig. 4 The roles of Notch and Wnt signaling in zebrafish heart regeneration. During zebrafish heart regeneration, Notch signaling functions for
CM proliferation and heart regeneration through a paracrine mechanism. After the amputation injury of zebrafish heart, Notch signaling is
activated specifically in the endocardium and epicardium, but not in myocardial cells. Endocardial Notch signaling restrains myocardial Wnt
pathway activation through inducing the expression of wif1 and notum1b, which encode two secreted Wnt antagonists, therefore promotes
cardiomyocyte proliferation in the myocardium. The activated Notch signaling in epicardium may function in a similar manner to facilitate heart
regeneration, which requires further exploration in the future
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positively promote cardiomyocytes proliferation and heart
regeneration (Xie et al. 2020), suggesting that Wnt signal-
ing might be reduced to enable natural heart regeneration.
Upon cardiac injury in zebrafish, Wnt signaling activity
detected by a transgenic reporter accumulates along the
edge of the wound area (Stoick-Cooper et al. 2007).
Hyperactivation of canonical Wnt signaling by small
molecular activator 6-bromoindirubin-3-oxime (BIO)
administration impedes cardiomyocyte proliferation
and induces scarring after injury (Zhao et al. 2019a).
It has also been noted that the non-canonical Wnt
pathway might be required to regulate cardiomyocyte
proliferation during zebrafish heart regeneration (Peng
et al. 2020). Another recent study demonstrated that
the CM-specific downregulation of Lrp6, one Wnt co-
receptor, could increase CM proliferation and im-
prove cardiac functions after MI in mice (Wu et al.
2020). Significantly, our study has revealed that Wnt
pathway inhibition partially rescues the myocardial
proliferation deficit observed in endocardial-specific
Notch-suppressed hearts, suggesting that endocardial
Notch signaling restrains myocardial Wnt pathway ac-
tivation during heart regeneration (Zhao et al.
2019a) (Fig. 4). This antagonistic crosstalk between
Notch and Wnt pathways also exists in many other
biological contexts (Boulter et al. 2012; Kwon et al.
2011; Tian et al. 2015). Nevertheless, whether the an-
tagonistic crosstalk of these two pathways is also re-
quired in the epicardium during heart regeneration
remains tested. Actually, Wnt/β-catenin signaling
plays distinct roles during heart development. In the
early developmental stage, the Wnt pathway is re-
quired for enhancing CM formation, possibly via pro-
moting precursor cell proliferation. However, in the
later developmental stage, Wnt activity needs to be
repressed for CM differentiation. During regeneration
or response to cardiac injury, current studies indi-
cated the converse roles. Further efforts are expected
to elucidate the molecular mechanisms underlying the
different functions of Wnt signaling in the context of
cardiac development and regeneration.

Liver regeneration
The liver is mainly associated with metabolism in verte-
brates and plays essential roles in detoxifying various
metabolites, regulating glucose and lipid metabolism,
synthesizing serum proteins, and secreting bile. Hepato-
cytes and cholangiocytes are two major cell types in the
liver (Michalopoulos and Bhushan 2020). Hepatocytes
conduct most of the hepatic functions and account for
more than 80% of liver mass. Cholangiocytes are biliary
epithelial cells forming the biliary network that trans-
ports bile from hepatocytes to the gallbladder.

The liver is a highly regenerative organ, and able to re-
store its mass and function after injury (Michalopoulos
and Bhushan 2020). In the context of many injury
models, such as the partial removal of the liver (partial
hepatectomy), liver regeneration is predominantly con-
tributed by the proliferation/growth of existing hepato-
cytes (Michalopoulos and Bhushan 2020) (Fig. 5a).
Following the liver injury with a biliary response or
under conditions where the proliferation capacity of the
hepatocyte is impaired, liver progenitor cell (LPC)-driven
regeneration is an alternative mode to mediate hepatic
repair, in which the biliary-derived or hepatocyte-
derived LPCs proliferate and differentiate into cholan-
giocytes or hepatocytes (So et al. 2020) (Fig. 5b). In
addition, it has been suggested that hepatocytes can
transdifferentiate into cholangiocytes after certain forms
of injuries (Yanger et al. 2013). Although the liver and
gallbladder are closely related in position and function,
unlike the liver, the gallbladder is not renewable.
In rats, β-catenin migrates rapidly to hepatocyte nuclei

within minutes after partial hepatectomy (Monga et al.
2001), suggesting a role of canonical Wnt signaling dur-
ing the regenerative response of hepatocytes. It has been
revealed that Wnt/ β-catenin signaling promotes hepato-
cyte proliferation for liver regeneration by activating the
expression of target genes, such as cell-cycle regulator
cyclin-D1 (Russell and Monga 2018). Eliminating β-
catenin in mice can delay liver regeneration but not
abolish liver regeneration (Tan et al. 2006; Yang et al.
2014). The Wnt signals are given rise from endothelial
cells and macrophages in the damaged liver (Boulter
et al. 2012; Preziosi et al. 2018; Zhao et al. 2019b). In re-
sponse to Wnt signals, rather than a specialized cell
population, the hepatocytes throughout the liver can up-
regulate the expression of the Wnt target gene Axin2
and contribute to liver regeneration after injury (Sun
et al. 2020).
Notch pathway activity increases in hepatocytes fol-

lowing partial hepatectomy in rats and is required for
hepatocyte proliferation and regeneration (Köhler et al.
2004; Zhang et al. 2018). In addition, activation of Notch
signaling in LPCs in vitro upregulates biliary markers
but downregulates hepatocyte markers (Lu et al. 2016).
Consistently, during zebrafish liver regeneration, Notch
inhibition promotes differentiation of LPCs into hepato-
cytes, while Notch overactivation impairs this process
(Russell et al. 2019). Similarly, regenerative hepatocyte-
to-cholangiocyte reprogramming also requires Notch
signaling (Yanger et al. 2013). These results indicate that
Notch signaling is crucial to commit cholangiocyte fate.
It has been shown that interactions between Notch

and Wnt signaling pathways are critical for the fate
commitment of LPCs during liver regeneration (Fig. 5b).
Jag1 expressed in myofibroblasts activates Notch
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signaling in LPCs, thereby guiding the differentiation of
LPCs into cholangiocytes, whereas Wnt3a secreted from
macrophages during liver regeneration suppresses Notch
signaling in nearby LPCs, promoting their differentiation
into hepatocytes in mice (Boulter et al. 2012). The an-
tagonistic interplay between Notch and Wnt signalings
is also revealed during liver regeneration in the ethanol-
induced fibrosis zebrafish model, in which a number of
Notch antagonists and Wnt agonists were identified
through chemical screens to facilitate hepatocyte regen-
eration in the fibrotic liver of zebrafish. Furthermore,
the Wnt-Notch interplay during liver regeneration is
mediated by Numb, which is a direct transcriptional
target of canonical Wnt signaling but functions to
inhibit Notch signaling (Boulter et al. 2012; Huang
et al. 2014).

The regeneration of other organs
Skin is the largest organ in the body, including two main
layers: the superficial layer, epidermis, and the deeper
layer, the dermis. The epidermis functions as a barrier
against external microorganisms consisting of a stratified
keratinized epithelium interspersed with hair follicles
and glands (Martin 1997). Mammalian skin has the re-
markable ability to regenerate itself, replacing dead
sloughed skin and healing wounds (Adolphe and

Wainwright 2005). Wnt/β-catenin and Notch signaling
are both crucial mediators of wound repair. Activation
of Notch or Wnt/β-catenin signaling promotes wound
closure and acquires a thicker epidermis layer, whereas
downregulation of Notch or Wnt/β-catenin signaling
impairs epidermis re-formation, collagen arrangement,
and skin appendage regeneration (Cheon et al. 2002;
Chigurupati et al. 2007; Shi et al. 2015). The two path-
ways might interact in vitro and in vivo. In cultured epi-
dermal stem cells (ESCs) or rat models, the expression
levels of Wnt/β-catenin signaling components are
significantly elevated in response to Jag1, but decreased
after treatment with DAPT, a Notch antagonist. Simi-
larly, the activation of Wnt signaling promotes an upreg-
ulated protein expression of Notch components,
whereas Wnt inhibition results in downregulated levels
of Notch components (Shi et al. 2015). These results
imply that Notch and Wnt pathway crosstalk each other
to synchronize during skin repair (Fig. 6). Actually, β-
catenin can stimulate Notch signaling by inducing Jag1
transcription during hair follicle formation in adult epi-
dermis (Estrach et al. 2006), which could provide clues
to explore the molecular mechanism underlying the
Notch and Wnt interaction during skin repair.
Skeletal muscle regeneration in adults is attributed

to the presence of satellite cells, which reside between

Fig. 5 The roles of Notch and Wnt signaling in liver regeneration. a In hepatocyte injury models, such as the partial removal of the liver (partial
hepatectomy), the liver regeneration is predominantly contributed by the proliferation of existing hepatocytes. Wnt and Notch signaling are
required for hepatocyte proliferation and liver regeneration. b Following the liver injury with a biliary response or under conditions where the
proliferation capacity of the hepatocyte is impaired, liver progenitor cell (LPC)-driven regeneration is an alternative mode to mediate hepatic
repair. The myofibroblast-involved Notch signaling activation in LPCs guides their differentiation into cholangiocytes, whereas Wnt proteins
secreted from macrophages and endothelial cells promote the differentiation of nearby LPCs into hepatocytes. The Wnt-Notch interaction during
this process is mediated by Numb, a direct transcriptional target of canonical Wnt signaling that functions to inhibit Notch signaling

Gao et al. Cell Regeneration           (2021) 10:11 Page 11 of 17



the sarcolemma and the basal lamina in a relatively
dormant metabolic state (Yin et al. 2013). Upon in-
jury to skeletal muscle, satellite cells become activated
and undergo several rounds of cell division before dif-
ferentiating into myoblasts, which ultimately fuse with
injured myofibers to accomplish regeneration (Yin
et al. 2013). Activation of Notch signaling promotes
satellite cell self-renewal and proliferation, and in-
hibits their differentiation into the myogenic lineage
through repressing MyoD (Mourikis et al. 2012). By
contrast, the activation of canonical Wnt signaling
promotes satellite cell differentiation and fusion to in-
jured myofibers (Brack et al. 2008). The temporal
switch from progenitor cell proliferation to differenti-
ation is essential for muscle regeneration, which
needs a transition from Notch to Wnt signaling in
myogenic progenitors (Fig. 6). Interaction between the
two pathways occurs via GSK3β, which is maintained
in an active form through Notch but is suppressed by
Wnt in the canonical Wnt signaling cascade (Brack
et al. 2008). Notch/NICD is another component to
bridge Wnt and Notch signalings during muscle re-
generation. A constitutively phosphoryl-mimicking
mutation of Fas-associated death domain (FADD) en-
hances the phosphorylation of PKCα, which stabilizes
Notch-1, resulting in the inhibition of β-catenin accu-
mulation and compromises regeneration of muscles
(Zhang et al. 2014).
The regeneration of pancreas also requires Notch sig-

naling, as loss of Notch signaling leads to impaired pan-
creas regeneration after acute pancreatitis with fewer

mature acinar cells. Furthermore, an interaction between
Notch and Wnt signaling was identified in pancreatic ac-
inar cells, with NICD1 inhibiting β-catenin-mediated
transcriptional activity (Siveke et al. 2008) (Fig. 6).

Outlook from the view of clinic trials
To date, the attempts of applying Notch and Wnt signal-
ing modulators into the regeneration of human organs
or tissues have made significant progress, especially in
the regeneration of sensory hair cells. For example, the
Notch signaling inhibitor LY3056480 for hair cell regen-
eration in humans has been clinically tested and shows
good clinical effects (Samarajeewa et al. 2019). The com-
bination of Wnt signaling activator CHIR99021 (CHIR)
and histone deacetylase inhibitor valproic acid (VPA)
can enhance hair cell yield from Lgr5-positive cells iso-
lated from neonatal mice, or adult mice, or non-human
primates, or healthy human inner ear tissue (McLean
et al. 2017). The drug FX-322, developed as a proprietary
combination of CHIR and VPA, has been successfully
applied in a first-in-human trial and its safety and toler-
ability in patients have been confirmed (McLean et al.
2017; Samarajeewa et al. 2019). However, regarding the
regeneration of other organs or tissues, clinical trials re-
lated to canonical Notch and Wnt signals are still very
lacking. Nevertheless, the combination therapy with
agents affecting multiple pathways in a human organ or
tissue regeneration will be an effective strategy for future
clinical trials. With the increasing emphasis and tech-
niques improvement, a more thorough understanding of
Notch-Wnt signaling crosstalk and the development of

Fig. 6 Summary of interaction between Notch and Wnt signaling in representative organ regeneration processes. The relative positions of Notch
and Wnt indicate their upstream/downstream relationship in the particular organ regeneration process. The arrows adjacent to the Notch or Wnt
are indicating how the signaling activity is altered during regeneration
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related therapeutic treatments in human organ/tissue re-
generation are promising in the near future.

Conclusions
Organ regeneration recapitulates organ development in
numerous aspects, in an attempt to restore the integrity
and function of the injured tissue. Obviously, the differ-
ence is indeed existing between development and regen-
eration. The development process is to form an entire
organ, whereas regeneration is to generate only the
missing part of an organ. Therefore, to achieve the
reconstruction of the injury region as the original, the
accurate position and pattern information is required for
the regenerating cells to determine their locations and
cell types, and then a certain mechanism should control
the timing to stop the regeneration. In addition, how the
newly generated cells are recognized by the pre-existing
cells to work as integrity should also be addressed. All of
the questions above are of interest in this field, however,
still far away from being clearly answered.
Many of the key signaling pathways that are active

during development are re-deployed during postnatal
tissue repair, including the Notch and Wnt/β-catenin
pathways. During development, the canonical Wnt sig-
naling has been well-recognized as a pivotal signal to
maintain the stemness of stem/progenitor cells, promote
cell proliferation, and guide morphogenesis, while the
well-established role of Notch signaling is to determine
cell fates. These cellular processes are also involved in
the reconstruction of a tissue/organ with full structure
and function, so it is not surprising that the Wnt and
Notch signaling play important roles during regener-
ation. It has also been shown that canonical Wnt and
Notch pathways genetically interact in many regenera-
tive events in a synergistic or antagonistic manner (Fig.
6). The molecular relationship between these two path-
ways varies upon different organs and even different cell
types. Therefore, the cell-lineage-specific analysis for the
Notch-Wnt interaction may provide more valuable in-
formation in the future. As the sequential or concurrent
manipulation of multiple pathways is likely a more
efficient approach to improve the organ regeneration in
mammals and humans, better understanding the cross-
talk between Notch and Wnt signaling is not only im-
portant to deepen our knowledge for regeneration, but
also constructive for the clinic attempts. It is noteworthy
that non-canonical Notch and Wnt signaling pathways
are relatively few studied in the process of organ or tis-
sue regeneration, but we cannot rule out their import-
ance in this process.
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