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Research advances in and prospects of ornamental

plant genomics

Tangchun Zheng', Ping Li', Lulu Li' and Qixiang Zhang'

Abstract

The term ‘ornamental plant’ refers to all plants with ornamental value, which generally have beautiful flowers or special
plant architectures. China is rich in ornamental plant resources and known as the “mother of gardens”. Genomics is the
science of studying genomes and is useful for carrying out research on genome evolution, genomic variations, gene
regulation, and important biological mechanisms based on detailed genome sequence information. Due to the
diversity of ornamental plants and high sequencing costs, the progress of genome research on ornamental plants has
been slow for a long time. With the emergence of new sequencing technologies and a reduction in costs since the

application prospects.

whole-genome sequencing of the first ornamental plant (Prunus mume) was completed in 2012, whole-genome
sequencing of more than 69 ornamental plants has been completed in <10 years. In this review, whole-genome
sequencing and resequencing of ornamental plants will be discussed. We provide analysis with regard to basic data
from whole-genome studies of important ornamental plants, the regulation of important ornamental traits, and

Introduction

Genomics is the science of studying genomes. It is used
to summarize a branch of genetics involving genome
mapping, sequencing, and whole-genome functional
analysis. The whole genome is taken as the research
object, with a focus on analyzing all of the genetic infor-
mation in whole genomes of organisms. The main pur-
pose of carrying out genomics research is to interpret the
whole-genome sequence, including genomic variations
and gene regulation, through mining and expression to
gain a deeper understanding of biological mechanisms,
formulate more effective breeding strategies, expand the
mining breadth and depth of excellent alleles in germ-
plasm resources, and increase the operability for
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improving complex traits and the efficiency of breeding
new varieties.

Ornamental plants, a vital component of agriculture and
horticulture, are of great significance for beautifying and
improving humans’ living environment, cultivating
human sentiment, and promoting structural adjustments
in the agricultural industry. The first plant genome to be
published was that of Arabidopsis thaliana in 2000". With
the emergence of next-generation and high-throughput
sequencing, sequencing technologies have continuously
evolved, while their costs have continuously decreased,
facilitating the whole-genome sequencing of many plants.
According to incomplete statistics, whole-genome
sequencing has been completed for ~400 plants®. With
this progress, more abundant genetic data are provided
for plant diversity studies, enabling breeders to perform
comprehensive multidimensional research in the fields of
genetics, genomics, and molecular breeding. This brings
new development opportunities and driving forces for the
breeding of more plants and thus leads to a new revolu-
tion of breeding technology. Since genome sequencing of
the first ornamental plant (Prunus mume) was completed
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in 2012°, whole-genome sequencing of more than 65
ornamental plants has been completed in <10 years. The
whole-genome sequencing results from these ornamental
plant species have built an enormous resource platform
for molecular biology research in ornamental horticulture,
which not only contributes to the understanding of gen-
ome structure and function in ornamental horticulture
but also has substantial guiding significance for exploring
the origin and evolution of ornamental plants, mapping
and cloning the functional genes of important traits and
accelerating the course of molecular breeding.

In this study, the research results from whole-genome
sequencing and resequencing of ornamental plants are
summarized. We provide a discussion with regard to basic
data from whole-genome studies of important ornamental
plants, the regulation of important ornamental traits, and
application prospects.

Whole-genome sequences of ornamental plants
As of 30 October 2020, the whole-genome sequences
and draft genome sequences of 69 ornamental plants have
been published, including herbaceous plants, such as
carnation (Dianthus caryophyllus), phalaenopsis (Pha-
laenopsis aphrodite), orchid (Apostasia odorata), sacred
lotus (Nelumbo nucifera), chrysanthemum (Den-
dranthema morifolium) and Dionaea muscipula, and
woody plants, such as mei (Prunus mume), Yoshino
cherry (Prunus yedoensis), sweet osmanthus (Osmanthus
fragrans), peony (Paeonia suffruticosa), and Chinese rose
(Rosa chinensis) (Table 1). The number of sequenced
genomes of ornamental plants completed each year sig-
nificantly increased from 1 in 2012 to 17 in 2018. In
particular, more than 10 species were sequenced for three
consecutive years from 2016 to 2018 (Fig. 1a). China has
independently completed or led genome sequencing for
32 ornamental plants, followed by Japan and the United
States, which have also completed the genome sequencing
of more than 10 species (Fig. 1b). Considering the
sequencing material, except for the double-haploid
material with relatively high homozygosity used for R.
chinensis™®, wild diploids or cultivars with relatively
unclear genetic backgrounds and low heterozygosity were
used for all of the other plants. Long-read sequencers in
combination with optical maps® are used to generate
high-quality chromosome-level genome assemblies. For
ornamental plants, the PacBio RS II system was first
applied for the construction of the 1.27 Gb genome
assembly of Dendrobium officinale’. Long-range scaf-
folding techniques such as high-throughput chromosome
conformation capture (Hi-C) facilitate chromosome-scale
assembly of contigs. In this respect, recently built genome
assemblies of Rosa chinensis (515 Mb) have a contig N50
of 24 Mb, which is one of the most comprehensive plant
genomes®, In consideration of the comprehensive
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utilization of Illumina HiSeq, Nanopore, PacBio, and Hi-C
technologies, the contig N50 values of Gardenia jasmi-
noides and Chimonanthus praecox can reach 44 and
65.35 Mb, respectively, which was unthinkable five years
ago®’. Generally, the sequencing technology that is pre-
dominantly used is next-generation sequencing on the
Mlumina platform (HiSeq 2000/2500/4000 and HiSeq X
ten), coupled with third-generation sequencing (PacBio
and Nanopore) and Hi-C technology. The assembled
genome size of sequenced ornamental plants ranges from
237 Mb to 13.79 Gb with a scaffold N50 ranging from 13.8
Kb to 65.35Mb (Fig. 2). We constructed phylogenetic
trees for all species with a published genome, which
belong to 21 orders and 35 families (Fig. 3). The repre-
sentative species in Rosaceae, Orchidaceae, and Aster-
aceae for which high-quality sequencing has been
completed were described and discussed.

Rosaceae

Rosaceae contains more than 3300 species in 124 genera
that are rich in economic and ornamental value and
occupy an important position in gardens worldwide. The
first flowering ornamental plant to be sequenced was
Prunus mume (mei) from Rosaceae. In 2009, the National
Engineering Research Center for Floriculture of Beijing
Forestry University cooperated with the Beijing Genomics
Institute (BGI) and other institutions to launch the mei
genome project. First, a 237 Mb (84.6% of the estimated
genome) genome of wild-type mei was assembled using
the Illumina GA II. The scaffold N50 was 577.8 Kb, and
31,390 protein-coding genes were annotated. The genome
data were published in Nature Communications in 2012,
and this effort marked the first genome sequence map of a
flowering crop worldwide®. Interestingly, equal to the
status of mei in China, the “Yoshino cherry” tree (Prunus
x yedoensis) is one of the most popular Prunus species in
Japan, and its genome was sequenced by Korean
researchers, revealing the parental origin and genomic
delimitation of hybrid taxa using both Illumina and Pac-
Bio platforms in 2018'°. Soon afterwards, researchers
from Japan also completed two similar genomes of Cer-
asus yedoensis, “Somei-Yoshino”, which were merged into
a special genome'’. At present, a large number of genome
studies focusing on Prunus and Rosa in Rosaceae are
underway.

Roses have high cultural and economic value as the
most commonly cultivated ornamental and spice plants
worldwide. The first ornamental Rosa to have its genome
sequenced was Rosa multiflora, which was reported by
Japanese scholars focusing on flower color, flower scent,
and floral development traits'>. Then, another well-
known and long-awaited major study was published in
Nature Genetics in May 2018. A team at the University of
Lyon and Centre National de la Recherche Scientifique
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(CNRS) first revealed another parent of the modern rose,
Rosa chinensis. The size of the Rosa genome is 560 Mb
with a contig N50 of 24 Mb, which is one of the most
comprehensive plant genomes®. Coincidentally, one
month later, the same experimental material (a doubled
haploid line from ‘Old Blush’) of Rosa chinensis was
sequenced and republished in Nature Plants in June 2018.
The high-quality genome was cross-verified, and orna-
mental and production traits of rose have been inter-
preted with the joint efforts of many research institutions
from France, Belgium, Russia, etc.”.

Orchidaceae

As one of the most abundant families in the plant
kingdom, Orchidaceae (orchid) plants are the flagship
species of plant diversity protection, known as the “panda
of the plant kingdom”. Orchids are divided into five
subfamilies: Apostasioideae, Vanilloideae, Cypripedioi-
deae, Orchidoideae, and Epidendroideae. Phalaenopsis
and Dendrobium belong to Orchidoideae and Epiden-
droideae. Phalaenopsis plants are representative of
Orchidaceae plants and have important ornamental value.
Professor Zhongjian Liu of the National Orchid
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Conservation Center of China overcame technical pro-
blems resulting from high heterozygosity and completed
the assembly of the whole-genome sequence of P. eques-
tris with a scaffold N50 size of 359.1 Kb. As the first
monocot flower for which genome-wide sequencing was
completed, the genome of P. equestris was published as a
cover paper in the journal Nature Genetics in November
2014"3. Phalaenopsis is an important potted flower with
high economic value worldwide. A 3.1 Gb draft genome
assembly of an important winter-flowering Phalaenopsis
cultivar ‘KHM190" was completed by researchers from
China and Australia'*. Another species of Phalaenopsis, P.
aphrodite, also underwent high-quality genome sequen-
cing with a scaffold N50 size of 19.7 Mb in April 20187,
Scholars from China further analyzed the whole genomes
of Dendrobium officinale and Dendrobium catenatuma,
which were published in the journals Molecular Plant and
Scientific Reports, respectively”'®. Apostasia shenzhenica
is representative of one of two genera that form a sister
lineage with the rest of the Orchidaceae; they have unique
flower morphologies as well as diverse lifestyles and
habitats. Professor Zhongjian Liu resequenced the high-
quality genome of A. shenzhenica with a scaffold N50 size
of 3.0 Mb. A 349 Mb genome was assembled and pub-
lished in Nature in 2017". Vanilla fragrans is a plant of
the vanilla family. Due to its unique fragrance that cannot
be synthesized artificially, it is known as the “Perfume
Queen”. In July 2014, the Fujian Agriculture & Forestry
University and National Orchid Conservation Center of
China (Shenzhen) officially launched the Vanilla shenz-
henica genome project. As the first Orchidaceae vine
plant to undergo complete sequencing, the genome of V.
shenzhenica was ~800 Mb with a scaffold N50 size of 288
Kb, and its heterozygosity was ~1.14% (https://www.fafu.
edu.cn/2015/0208/c132a18466/page.htm).

Asteraceae

There are ~24,000-35,000 species in Asteraceae; this
family has very high plant diversity, accounting for ~10%
of total angiosperms. Chrysanthemum, as a typical
representative genus, is one of the most important orna-
mental crops in the world. The genome of Chrysanthe-
mum morifolium is estimated to be more than 9 Gb
(http://data.kew.org/cvalues/). Since the Chrysanthemum
genus is large and complex, the genome of Chrysanthe-
mum was not reported for a long time. In October 2018,
the China Academy of Chinese Medical Sciences, Hubei
University of Chinese Medicine cooperated with Nanjing
Agricultural University and completed the sequencing of
Chrysanthemum nankingense, a diploid species (2n = 18),
which represents one of the progenitor genomes of
domesticated chrysanthemums'®. At around the same
time, the de novo whole-genome assembly of Chry-
santhemum seticuspe was announced by researchers from


https://www.fafu.edu.cn/2015/0208/c132a18466/page.htm
https://www.fafu.edu.cn/2015/0208/c132a18466/page.htm
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the Kazusa DNA Research Institute of Japan'®. The
2.72Gb of assembled sequences covered 89.0% of the
3.06 Gb C. seticuspe genome with 71,057 annotated
genesw. Sunflower (Helianthus annuus L.), in the Aster-
aceae and the Helianthus genus, is a horticultural crop
with important economic and ornamental value and a
major research focus. In May 2017, a high-quality refer-
ence for the sunflower genome was published in the
journal Nature by scientists from France and Canada™.
The size of the sunflower genome was 2.94 Gb and cov-
ered 80% of the estimated genome; finally, 97% of anno-
tated genes were anchored on a total of 17
pseudochromosomes.

Resequencing of ornamental plants
Whole-genome resequencing is a process of sequen-

cing the genomes of different individuals of species

with known genome sequences and analyzing the

differences among individuals or populations. In recent
years, to overcome the narrow genetic variation in
current ornamental plant breeding programs, genome-
scale investigations of wide germplasm panels and
cultivated varieties have served to identify important
genetic materials to study genomic variation dynamics
during domestication and selective breeding’'. For
example, resequencing of multiple materials from dif-
ferent crop species based on genome-wide association
study (GWAS) was facilitated to identify key genomic
regions associated with plant domestication and selec-
tion/improvement’”>. Based on genome-wide rese-
quencing technology, researchers can quickly screen
resources, find a large number of genetic variations, and
realize genetic evolution analysis and prediction of
important candidate genes. Although great progress
has been made in the de novo sequencing of orna-
mental plant genomes, only a few species of ornamental
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plants, such as sunflower, lotus, mei, rose, sakura, and Sunflower is not only an ornamental plant but also one
Liriodendron chinense, have undergone genome rese- of the four major oil crops in the world. In June 2017,
quencing (Table 2). genome sequencing of sunflower was completed, eighty
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Table 2 List of resequenced species of ornamental plants

Reference

Objects/goals

Average sequencing depth

Plant material

Species

Code Date

42

Investigating genomic diversity

10.9%

37 European diversity panel trees

26-Dec-16  Fraxinus excelsior
1-Jun-17

1-Jun-17

1

20

Evolution of the cultivated sunflower

GWAS

10-20x
9.3-19.5x

4x

80 domesticated lines

72 inbred lines
19 individuals

Helianthus annuus

2

20

Helianthus annuus

75

Exploring genomic variation and evolution among

different germplasms

Nelumbo nucifera

20-Oct-17

4

Investigating the genetic architecture of floral traits "

19.3%
and its domestication history

333 cultivated landraces, 15 wild P. mume, and 3 close relatives of

Prunus

27-Apr-18  Prunus mume

5

5

Genetic diversity within the Rosa genus

8 Rosa species, representing three of the four subgenera (Hulthemia: R 36.5x

persica, Herperhodos: R. minutifolia and Rosa).

Rosa chinensis

30-Apr-18

6

4

Gaining insight into the makeup of the genomic

relationship of modern roses

14 Rosa species, representing three sections (Synstylae, Chinenses, and  5-60x

Cinnamomeae)

Rosa chinensis

11-Jun-18

7

Parental origin and genomic delimitation of

hybrid taxa

7.5-206.3%

9 accessions and 7 candidate parental species

Prunus yedoensis

4-Sep-18

8

57

Historical demographic fluctuations and present-

day genetic diversity

24.68-57.35%

14 L. chinense individuals and six L. tulipifera individuals

17-Dec-18  Liriodendron chinense

9

73

Genetic diversity and to quantify contributions

from wild relatives

1-25x%

287 cultivars, 17 Native American landraces, and 189 wild accessions

31-Dec-18  Helianthus annuus

10
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domesticated lines (10-20x coverage) and 72 inbred lines
(9.3-19.5x coverage) from 480 F; hybrids were rese-
quenced, and 35 genomic regions associated with flow-
ering time were identified by GWAS®. Subsequently, to
characterize genetic diversity in sunflower and to quantify
contributions from wild relatives, scientists from the
University of British Columbia sequenced 493 accessions,
including cultivars, landraces, and wild relatives’. In all,
61,205 genes have been identified within the gene set of
the sunflower pangenome, and a large number of candi-
date resistance genes and single nucleotide polymorphism
(SNP) markers for downy mildew resistance were identi-
fied by GWAS, which may be of interest to other
researchers and sunflower breeders””.

To reveal the evolutionary history of Prunus mume and
the Prunus genus and the genetic mechanism of impor-
tant ornamental characteristics of P. mume, 333 cultivated
landraces, 15 wild P. mume, and three close relatives of
Prunus (P. sibirica, P. davidiana, and P. salicina) were
selected for genome-wide resequencing by Professor
Qixiang Zhang from the National Engineering Research
Center for Floriculture of China’*. A total of 5.34 million
high-quality SNPs were identified, and 24 important
ornamental traits (such as petal color, stigma color, calyx
color, bud color, stamina filament color, wood color, petal
number, pistil character, bud aperture, and branching
phenotype) of 333 cultivars of P. mume were analyzed by
GWAS for the first time to confirm the hypothesis that P.
mume exists due to introgression from P. sibirica and P.
salicina”™.

Three versions of the lotus genome have been published
in five years®"***°, To explore the genomic diversity and
microevolution related to the rhizome growth pattern,
especially the genomic markers of ecotype differentiation,
researchers from the Wuhan Botanical Garden of the
Chinese Academy of Sciences resequenced 19 individuals
including rhizome lotus, seed lotus, flower lotus, wild
lotus, Thai lotus and Nelumbo lutea’. Candidate genes
associated with temperate and tropical lotus divergence
always exhibited highly divergent expression patterns,
which are valuable for the breeding and cultivation of
lotus”®.

Roses have high cultural and economic value because of
their outstanding ornamental characteristics and essential
oil composition. To analyze the genetic diversity and
genetic regulation mechanism of important ornamental
traits in roses, eight Rosa species representing three of the
four subgenera (R. persica, R. minutifolia and Rosa) were
resequenced, and the whole-genome sequence of a
double-haploid rose line was completed®. At the same
time, to gain insight into the makeup of modern roses,
Raymond et al.* resequenced representatives of three
sections (“Synstylae”, “Chinenses” and “Cinnamomeae”)
that participated in the domestication and breeding of the
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modern hybrid rose after the genome of homozygous
Rosa chinensis ‘Old Blush’ was sequenced.

Sakura (Prunus yedoensis) is a woody ornamental plant
with important cultural and economic value. To study the
genomic relationship between P. yedoensis and its closely
related species, nine P. yedoensis accessions and seven
accessions of candidate parental species, including P.
pendula, P. jamasakura and P. sargentii, were rese-
quenced and compared to the assembled genome by
researchers from Korea'®. Resequencing data of six rela-
ted taxa show that 41% of the genes were assigned to the
parent state, suggesting that wild P. yedoensis is an F;
hybrid originating from a cross between P. pendula and
P. jamasakura™.

Liriodendron chinense is an important woody orna-
mental plant known as a “woody tulip” in the UK and
USA, as its flower shape is similar to that of the tulip. The
high-quality genome of L. chinense was published in the
journal Nature Plants in December 2018 in a project led
by Professor Jisen Shi from Nanjing Forestry University®”.
To explore the historical demographic fluctuations and
present-day genetic diversity between L. chinense and L.
tulipifera, 14 L. chinense individuals and 6 L. tulipifera
individuals were resequenced. Population analysis showed
that Liriodendron can be divided into three subgroups: the
Eastern China subgroup, Western China subgroup and
North American subgroup. The species divergence time
confirmed that the genetic diversity of L. chinense was
much higher than that of L. tulipifera™ .

Applications of whole-genome sequencing in
ornamental plants
Gene annotation

Gene annotation is the process of attributing biological
information to the completed sequence of a species using
bioinformatics methods. It identifies gene fragments that
do not encode proteins, recognizes elements on genes
(gene prediction) and adds biological information to the
elements for sequence repeat identification, noncoding
RNA prediction, gene structure prediction, and gene
function annotation. In this way, genes associated with
ornamental horticultural traits such as flowering reg-
ulation, flower color, floral fragrance, plant type, dor-
mancy, cold resistance, and disease resistance can be
identified. The dormancy-associated MADS-box tran-
scription factor (DAM) family, which is related to dor-
mancy induction and release, is especially critical for
ornamental plants’®. Zhang et al.® identified six DAM
genes in the tandem array in the P. mume genome and
confirmed that the distribution pattern was consistent
with that from previous studies of the peach genome””.
In Rosa, Raymond et al.* identified new candidate genes
potentially involved in recurrent blooming, such as
TFL1, SPT, and DOGI.

Page 12 of 19

Comparative genomics research

Based on genome mapping and sequencing technolo-
gies, comparative genomics research compares known
genes and genome structures to understand the functions
of associated genes, their expression mechanism, and the
phylogenetic relationships of species. The acquisition of
genomic information from multiple closely related species
facilitates more comprehensive and in-depth research in
comparative genomics. Moreover, it is crucial to perform
in-depth comparative analysis of the collinear relationship
between the genome sequences of two plants to analyze
the origin and evolutionary relationship of plants and to
explore important chromosome fragments or gene clus-
ters that control major plant traits, which can provide
essential reference information for the discovery and
cloning of important genes. Zhang et al. constructed nine
ancestral chromosomes of the Rosaceae family by com-
paring Rosaceae genomes. For the first time, these
researchers revealed that ancestral chromosomes have
evolved into eight existing chromosomes in P. mume via
11 fusions, seven existing chromosomes in strawberry
(Fragaria ananassa) via 15 fusions and 17 existing chro-
mosomes in apple (Malus domestica) via one whole-
genome duplication event plus five fusions. These findings
lay an important foundation for research to unravel the
origin and evolution of Rosaceae’.

Resequencing

Whole-genome resequencing involves the sequencing
of genomes in different individuals of species with known
genome sequences and subsequent analysis of differences
among individuals or populations. Whole-genome rese-
quencing technology can be used to rapidly conduct
resource screening, to find a large number of genetic
variations and to implement genetic evolution analysis
and candidate gene prediction for important traits. These
results provide essential references for identifying valuable
genetic resources and for horticultural crop breeding and
are thus of significant research and industrial value. In P.
mume, researchers investigated the genetic architecture of
floral traits and plant domestication history by rese-
quencing 348 P. mume accessions and three other Prunus
species at an average sequencing depth of 19.3x. Highly
admixed population structure and introgression from
Prunus species were identified in mei accessions’*. Huang
et al.”® resequenced and analyzed the genomes of 19 lotus
germplasms, provided a reliable and detailed under-
standing of the genome evolution of different lotus
germplasms, and provided clues to key mutations
responsible for rhizome enlargement.

GWAS
A GWAS is a genome-wide comparative analysis or
correlation analysis using millions of SNPs in the genome
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as molecular genetic markers. It is a new strategy to find
genetic variations that affect complex traits by compar-
ison. With the development of genomics research and
DNA microarray technology, a GWAS can provide an
outlined overview of important traits simultaneously and
is therefore suitable for the study of complex traits. At the
genome-wide level, association studies between genes and
traits are conducted with multiple centers, large samples,
and repeated verifications. This method has been applied
for the screening and identification of major genes for
important economic traits in agriculture. In P. mume,
through a GWAS, researchers have identified significant
quantitative trait loci (QTLs) and genomic regions where
several genes associated with petal color, stigma color,
calyx color, bud color, stamina filament color, wood color,
petal number, pistil character, bud aperture, and
branching phenotype are located”®. Taken together, the
identification of genetic loci associated with floral and
other traits provides more insight into the genetic
mechanisms that underlie the domestication of P. mume
and provides opportunities to design strategies for geno-
mic selection to improve the performance of ornamental
species. In sunflowers and roses, the key ornamental trait
of flowering time was also identified by the GWAS
method™**.

Comparative analysis with transcriptome data

RNA sequencing is a newly emerging technology that
uses next-generation sequencing for transcriptome ana-
lysis. It can comprehensively and rapidly acquire sequence
information and expression information for almost all
transcripts from specific cells or tissues in a particular
state, including protein-coding mRNAs and various
noncoding RNAs, as well as the expression abundance of
different transcripts generated by alternative gene spli-
cing. The transcriptome is an inevitable link that connects
genetic information of the genome with the biological
functions of the proteome. Currently, transcriptional
regulation is the most well-studied and foremost reg-
ulatory method in organisms. Transcriptome studies are
the foundation and starting point of gene function-
structure studies and the first issue to address after the
completion of whole-genome sequencing. Furthermore,
transcriptome analysis provides large numbers of mole-
cular markers, such as simple sequence repeats and SNPs.
All of the sequence information, expression data, and
molecular markers facilitate the localization of QTLs for
key ornamental traits in ornamental plants through
genetic mapping and contribute to the development of
molecular markers in close linkage with excellent traits
for use in the molecular marker-assisted breeding of
flowers. Based on the genome sequence of P. mume, vital
differences in gene expression between the bud stage and
squaring stage were observed, and 7,813 DEGs were
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identified, which provided a special perspective on floral
scent formation in P. mume’®. The water lily genome
revealed variable genomic signatures of ancient vascular
cambium losses, and the expression profiles of floral
ABCE genes, floral scent and color genes were screened
from the DEGs in a comparative analysis of the
transcriptome®*,

Development of SNP microarrays

According to their position in genes, SNPs can occur in
coding regions, noncoding regions, and gene spacer
regions. They are DNA molecular markers that have the
most abundant polymorphisms in the genome and are
characterized by large numbers, a uniform distribution,
and easy typing. SNPs can be used for the identification of
genetic variation and genotyping of associated pheno-
types. Using SNPs as molecular markers to construct
genetic variation maps of the genome has become a vital
part of the research for studying genome diversity,
obtaining domesticated selection regions, and screening
key genes of important traits. Based on the genome
sequence and resequencing of P. mume, a total of
1,298,196 raw SNPs were located within coding regions of
genes, 733,292 of which were nonsynonymous’*. Fur-
thermore, by combining transcriptome data, 76 SNPs
within DEGs were identified that were associated with
petal, stigma, calyx, and bud color’®. In sacred lotus, wild
and Thai lotus exhibited greater differentiation with a
higher genomic diversity than cultivated lotus based on
SNP sites in resequenced species’”.

Exploiting genes associated with important
ornamental traits

During the course of whole-genome sequencing, a very
large number of genes, in the range of 19,507-87,603, are
annotated for each flowering species (Table 1). Through
further analysis, important genes associated with floral
development, flower color formation, and stress resistance
can be discovered. This is conducive to the breeding of
unique, high-quality, and high-resistance varieties or types
of a species and provides important references for
improving ornamental and resistance qualities in other
flowering species.

Candidate genes for controlling floral development
Flower blooming is a process that involves the formation
of inflorescence meristems and flower meristem tissues
through floral induction and a series of internal and
external factors, followed by the generation of floral organ
primordia and eventually the release of flora bud dor-
mancy to form floral organs. The process of flowering is
controlled by a complex regulatory network, with at least
seven flowering regulation pathways found in A. thali-
ana’®. The genes associated with floral development can
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be divided into two classes. One class consists of genes
that control the formation of inflorescence meristems and
determine the direction of newly formed floral primordia.
These genes influence the flowering time of plants by
controlling the formation of inflorescence meristems or
flower meristems, and mutations in these genes can result
in earlier or later flowering mutants. The other class
consists of genes that determine the formation of floral
organs, and mutations in these genes can result in
homeoboxes’®. In ornamental plants, the morphology and
number of floral organs have undergone substantial var-
iations, for example, double petals, multiple sepals, and
multiple pistils and stamens, developing into independent
flowers during the course of long-term artificial domes-
tication and cultivation. These variations increase the
ornamental value of ornamental plants while providing
excellent materials for the study of floral organ develop-
ment in plants. With genomic data analysis, as an
important scientific issue, some key genes related to
flowering transition and flower development have been
analyzed, such as those in Tarenaya hassleriana®®, Den-
drobium officinale’, Primula veris®®, Dendrobium catena-
tum*®, Hibiscus syriacus*', Rosa™'*, Chrysanthemum®"?,
and Nymphaea colorata®,

Candidate genes for controlling anthocyanin synthesis
Flower color is one of the most vital quality traits of
ornamental plants. Anthocyanin is an essential pigment
for coloring flowers, and its biosynthesis is catalyzed by a
series of enzymes®’. Various anthocyanins are formed due
to differences in the substituent groups at varied positions
on the basic skeleton, thus leading to different plant organ
colors, such as red, purple, blue-purple, and blue.
Anthocyanins are flavonoid secondary metabolites in
plants and the most widely distributed water-soluble
pigments in nature, playing a major role in the color
formation and antioxidation in plant flowers and fruits.
R2R3-MYB genes are involved in anthocyanin synthesis®".
In P. mume, 96 R2R3-MYB genes were identified and
divided into 35 subfamilies. Finally, the functions of
PmMYB1 and PmMYBal were identified by over-
expression in tobacco and significantly promoted the
accumulation of anthocyanins in transgenic tobacco. The
flower colors of PmMYBI-overexpressing transgenic
plants were significantly deepened, and the anthocyanin
contents in the corolla of transgenic plants were sig-
nificantly higher than those of the control®. To under-
stand the molecular basis of the blue color in water lily,
delphinidin 3’-O was identified as the main blue antho-
cyanidin pigment, and some genes for an anthocyanidin
synthase and a delphinidin-modification enzyme were
screened by comparing the expression profiles between
two N. colorata cultivars with white and blue petals®*.
Interestingly, after the butterfly pea UDP (uridine
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diphosphate)-glucose:  anthocyanin  3’,5’-O-glucosyl-
transferase gene was introduced in chrysanthemums, blue
flowers appeared®®. In Rosa rugosa, two MYB transcrip-
tion factors have been confirmed to affect flower color by
regulating flavonoid biosynthesis in response to wounding
and oxidation®*. In Paeonia, a chalcone synthase (PhCHS)
involved in flavonoid biosynthesis and two anthocyanin
O-methyltransferase (AOMT) genes were consistent with
anthocyanin accumulation in petals®>*°.

Candidate genes for controlling floral scent biosynthesis
Floral scent, as one of the quality traits of ornamental
plants, has great aesthetic, economic, and application
value. The scent components present in petals primarily
include secondary metabolites such as esters, alcohols,
ketones, aldehydes, terpenes, and volatile phenols, mainly
derived from terpene metabolism, phenylpropane meta-
bolism, and the lipoxygenase pathway®’. There are various
types of scent components in different petals, thereby
forming distinct scents among various flower species. In a
study on the molecular mechanism responsible for the
floral scent in P. mume, Zhang et al.? first discovered that
the benzylalcohol acetyltransferase (BEAT) gene can
directly catalyze the formation of benzyl acetate, a crucial
component of the floral scent in P. mume. Moreover,
based on genomic data from P. mume and P. persica, 44
unique PmBEATs were found in P. mume, far more than
the 16 in apple, 14 in strawberry, and four in grape. These
PmBEAT genes originated from gene duplication events
during the species evolution of P. mume, and retro-
duplication and tandem duplication were the two domi-
nant duplication patterns. Overexpression of the
PmBEAT36 or PmBEAT37 genes increased benzyl acetate
production in the petal protoplasts of P. mume, and
interference in the expression of these genes slightly
decreased the benzyl acetate content®®. Zhao et al.”®
conducted a comparative transcriptome analysis of dif-
ferent developmental stages and tissues of flower genes
associated with floral traits and preliminarily selected 12
new genes involved in floral scent formation in P. mume.
Furthermore, five of the TFs (bHLH4, bHLH6, bZIP4,
ERF1, and NACI) from Phalaenopsis bellina have been
proven to be involved in orchid floral monoterpenes®. In
Plumeria rubra, PrCYP79D73 is involved in floral volatile
organic compounds and other nitrogen-containing

. 0
volatiles®.

Candidate genes for controlling plant architecture

Rich and diverse plant architectures are the result of
long-term evolution, natural selection, and a complex
regulatory process of interaction between genetics and the
environment. Diverse plant architecture traits are not only
conducive to the creation of rich and diverse horticultural
landscapes but are also favorable for plant adaptation to
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complex environments and competition and the utiliza-
tion of light and nutrients. Along with the completion of
whole-genome sequencing for multiple ornamental plants
of the genus Prunus, the results lay an important data
foundation for studying the molecular genetic mechan-
isms of pendulous traits>”". According to the eight scaf-
folds of the P. mume genome, Zhang et al. constructed a
high-density genetic map using specific-length amplified
fragment sequencing (SLAF) and mapped QTLs for major
traits such as plant type, flower color, petals, and leaves in
P. mume. They found 10 SLAF markers that were closely
linked to the pendulous traits of P. mume. Using these
markers, the pendulous traits were finely mapped to a
1.14 cM region on chromosome 7, and 36 candidate genes
that might be associated with the pendulous traits of P.
mume were predicted®”. Breakthroughs were also
achieved in the mining and labeling of genes for weeping
and dwarf traits in peach (P. persica) by using genome and
bulked segregant analyses®>.

Candidate genes for controlling dormancy release

Flowers of the genus Prunus, such as P. mume and P.
yedoensis, are early flowering types in spring. Zhang et al.>
explored the molecular mechanisms underpinning dor-
mancy break and flowering in P. mume at low tempera-
ture. These researchers identified a total of six dormancy-
associated MADS-box (DAM) genes with a tandem repeat
distribution in the genome. The six DAM genes in P.
mume are derived from a series of duplication events in
the following order: PmDAMI, PmDAMS3, PmDAM?2,
PmDAMS, PmDAM4, and PmDAM6. The molecular
evolution pattern of DAM genes is unique to Prunus
plants and is present in P. persica, but tandem genes have
not been found in M. domestica or F. ananassa. This
phenomenon could be related to the earlier flowering of
Pruynus plants, including P. persica, P. mume, apricot
(Armeniaca vulgaris) and sweet cherry (Prunus avium),
than of most other flowering species®. DAM genes are
regulated by C-repeat-binding transcription factors
(CBFs). A conserved CBF site was found 1000 bp
upstream of the transcription start site of DAM4-DAM6
in P. persica and plum (Prunus salicina). The latest
research results show that a sense-response relationship
between PmCBFs and PmDAMs is exhibited in cold-
induced dormancy and is jointly regulated by six PmCBFs
and PmDAM4-6"".

Candidate genes for controlling self-incompatibility
Self-incompatibility has always been an important
research topic in the molecular genetic biology of flowers.
According to different hereditary patterns of pollen
incompatibility phenotypes, the regeneration disorder
whereby plants reject self-pollen can be divided into
sporophytic self-incompatibility and gametophytic self-
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incompatibility”®. Various flowers of the Rosaceae family,
including P. mume, P. yedoensis and P. persica, all exhibit
gametophytic self-incompatibility, which is controlled by
an S-locus with multiple alleles, including two linked
genes: one is the S-RNase gene specifically expressed in
pistil tissue, and the other is the S-haplotype-specific F-
box gene specifically expressed in pollen®®. In Tarenaya
hassleriana, three syntenic regions containing most of the
genes of the S-locus were found, and it was assumed that
the single-copy ancestral region contained homologs of
Pub8, ARK3, and B1207.

Candidate genes for controlling disease resistance

Disease resistance is an essential trait that attracts
research attention across all flowering plants. Thus, the
whole-genome analysis also focuses on the genes asso-
ciated with disease resistance. The genes involved in plant
disease resistance are mainly R genes, which encode
proteins with extremely high structural similarities, such
as leucine zippers, nucleotide-binding sites, transmem-
brane domains, leucine-rich repeats, and similar extra-
cellular regions of drosophilid toll protein and
mammalian toll and interleukin-1 receptor (TIR).
Nucleotide-binding site leucine-rich repeat genes con-
stitute the gene family with the widest distribution and
largest number of plant R genes. In their encoded pro-
teins, the nucleotide-binding site is present near the N-
terminus, while the leucine-rich repeat exists near the C-
terminus. The N-terminus of proteins encoded by dif-
ferent genes may also include one or more of the fol-
lowing two conserved structures: the coiled-coil motif and
TIR motif. In the P. mume genome, 253 leucine-rich
repeats receptor-like kinase (LRR-RLK) genes were iden-
tified, and most pathogenesis-related (PR) gene families
were notably expanded and arranged in tandem, especially
PR10°. In Hibiscus syriacus, resistance (R) genes account
for 0.53% of its total predicted genes, which is lower than
that of other plants evaluated in genomic studies (0.63 to
1.35%)*'. The Asparagus setaceus genome included 76 R
genes with nucleotide-binding sites (NBSs), and the R
genes belonged to five groups: TIR-NBS, CC-NBS-LRR,
NBS-LRR, NBS, and CC-NBS. NBS-LRR was the largest
group, including a total of 29 genes®.

Candidate genes for controlling abiotic stress resistance
Adverse conditions such as low temperature, humidity,
heat, drought, and saline-alkali conditions severely inhibit
the growth and development of ornamental plants. These
conditions can cause changes in plant physiology, bio-
chemistry, and morphology and even lead to death. Due
to this issue, cultivation facilities for ornamental plants
are cumbersome and cannot be widely promoted, which
considerably affects their qualities and benefits. Low
temperature is an important factor that constrains the
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normal growth, development, and geographical distribu-
tion of plants. Stress caused by low temperature can be
divided into chilling stress (>0°C) and freezing stress
(<0°C). Plants from the tropics and subtropics are more
sensitive to cold; in contrast, plants from temperate
regions have evolved complex mechanisms to resist and
adapt to chilling (freezing) stress, protecting the plants
from injury. Cold acclimation is a responsive protection
mechanism for plant adaptation and resistance to low-
temperature stress, and this process is regulated by a
complex network”. In particular, the CBF pathway is
considered the most important and well-studied path-
way’®, Based on the genome data for P. mume, 30 LEA
genes were identified, and heterologous expression of
PmLEA increased the cold resistance of Escherichia coli
and tobacco (Nicotiana tabacum)®®'°°. Furthermore, a
molecular regulation model of the PmDAM and PmCBF
genes in response to dormancy and dormancy release of
flower buds induced by low-temperature signals was
proposed based on yeast two-hybrid and bimolecular
fluorescence complementation experiments%.

Prospects for whole-genome sequencing data for
ornamental plants

The Earth BioGenome Project (EBP) is a massive pro-
ject in biology that aims to sequence, catalog, and char-
acterize the genomes of all of Earth’s eukaryotic
biodiversity over a period of 10 years. For plants, the core
scientific problems are to improve crop yields and other
agronomically important traits, biofuel production, gene
editing, and conservation of endangered species'®’. The
10,000 Plant Genome Sequencing Project (10KP) initiated
by the Beijing Genomics Institute in Shenzhen (BGI-
Shenzhen) is a landmark effort to catalog plant genomic
variation and represents a major step in understanding
the tree of life’®. A tentative plan of the 100 Flowers
Genome Sequencing Project has been put forward by the
National Engineering Research Center for Floriculture in
China. Many ornamentals are marked by high ploidy
levels and homologous polyploids (chrysanthemum and
alfalfa) or extremely large genome sizes (lily and tulip),
which limit the development and utilization of genome
sequencing technology in ornamental plants. Along with
the development of sequencing and bioinformatics ana-
lysis technologies and the continuous emergence of var-
ious new biological technologies, genomics research on
ornamental plants has developed faster and better.
Although genome sequencing and assembly of flowering
plants face substantial difficulties, the quality of genome
assembly results is relatively high in terms of the analytical
results from 69 flower species that underwent genome
sequencing, and four of them have been resequenced
using updated sequencing technology®'*”*°, As far as we
know, there are at least a dozen ornamental plants
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undergoing the process of genome quality improvement.
As more ornamental plant genomes are sequenced, fur-
ther bioinformatics analysis could reveal crucial basic
information on the origin of species and the genes that
control flower traits. The development of genomics will
surely address the knowledge gaps of traditional breeding
methods. The ultimate goal is to obtain the optimal type
of flower variety with fixed-point improvement and the
aggregation of multiple elite traits by using the most
effective and rapid method.

China has 30,000 species of higher (flowering) plants,
and some ornamental flowering plants reached Europe
quite early'®. Chinese people love flowers and cultivate
many kinds of brilliant flowers, such as mei, peony,
chrysanthemum, rose, lily, lotus, and orchid. Due to the
rapid development of genome sequencing technology
worldwide, large quantities of whole-genome sequencing
data are in urgent need of deep mining. A long-term
strategic genomics research plan should be formulated
that is not limited to cultivated species but considers
thorough development of the sequencing of important
wild relatives of ornamental species in China and pro-
moting the mining, protection, and utilization of impor-
tant genetic resources. It is essential to put an end to the
dependence on the apparent phenotype, transform
investigations into genotype-dependent research and shift
from single-gene studies to GWAS. Efforts should be
made to vigorously promote the application of genomics
in gene cloning and molecular breeding in China and to
improve the breeding capacity and level of
horticultural crops.

Due to their complexity and particularity, plant gen-
omes have always been an important focus of genomics.
Before the second generation of high-throughput
sequencing, sequencing costs were high, and the
throughput was low. For species with highly repetitive
sequences, it was too difficult or too expensive for
researchers to obtain the whole-genome sequences of
high repeat sequence species. Many species with impor-
tant economic and ornamental value have not yet been
submitted to complete genome sequencing. In short, due
to the particularity and diversity of ornamental plants,
there are challenges and opportunities in genome
research of these species. Challenge: (1) Complex genome.
The term complex genome refers to a kind of genome
that cannot be directly analyzed by conventional
sequencing and assembly methods. It usually refers to a
genome containing a high proportion of repetitive
sequences, high heterozygosity, extreme GC content, and
difficulty in eliminating foreign DNA contamination. (2)
Autopolyploidy. Autopolyploidy is common in orna-
mental plants. It is usually formed by doubling two or
more sets of genomes, which is of great value in genetic
breeding and agricultural production. Using conventional
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methods, it is easy to connect incorrect allele fragments
together, resulting in the wrong connection of homo-
logous chromosomes and a large number of chimeric
assemblies; thus, assembly is still difficult. (3) Mega-
genome. Megagenome generally refers to species with
genomes larger than 10 Gb. The sequencing and analysis
of these species are very involved, especially for assembly
analysis, which is a major challenge. Paris japonica is an
unusual plant. Scientists have found that it has the world’s
largest genome, with 150 Gb, which is 50 times more than
that of humans. Although the genomes of some orna-
mental plants have been deemed complete, the assembly
quality of some species is poor, and a small number of
“holes” have not yet been completed due to technical
limitations, although the interest of scientists in this
regard is debatable. The latest research shows that the
sequences that were once considered irrelevant, or “gar-
bage”, in the genome have their own significance. These
missing sequences play a very important role, and we now
have the opportunity to mine them. Third-generation
sequencing technology (PacBio and Nanopore) can make
up for the holes in some genomic regions that are difficult
to assemble due to sequencing errors, repeat regions,
heterochromatin, genomic polymorphisms, and second-
generation sequencing preferences. To solve the challenge
of sequencing the genomes of ornamental plants, the
following new technologies can be tried with third-
generation sequencing technology. (1) Pangenome. The
pangenome includes the core genome and the non-
essential genome. Among them, the core genome refers to
the genes that exist in all individuals; the nonessential
genome refers to the genes that exist only in some indi-
viduals. (2) Hi-C. The advantages of Hi-C sequencing
technology are as follows: on the one hand, there is no
need to construct a large number of F; populations, as
only individuals are needed; on the other hand, the hap-
lotype genome can be separated without parent purifica-
tion, so this method is suitable for the assembly of a highly
heterozygous genome that is not easy to purify.

With the development of sequencing technology, the
concepts of difficult genome sequencing and assembly
quality have also developed and changed. We cannot
sequence everything for the sake of genome sequencing.
The purpose of sequencing must be to reveal the key
scientific problems of species. We should strengthen
research related to transcriptomics, metabolomics, pro-
teomics, degradomics, and phenomics. With more geno-
mic data published, it has become a great challenge to
analyze, store and share the massive amounts of genome
sequencing data. A key problem is how to solve the time
and cost problems faced by researchers to achieve the
purpose of reducing repetitive research, improving the
practicability of scientific research, mining research con-
tent, and improving the transparency of scientific research
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and data sharing with cross-research into other fields.
Moreover, it is necessary to enhance bioinformatics
education and apply bioinformatics in practice. With the
continuous development of sequencing technology, we
believe that the whole-genome sequencing of horti-
cultural crops will enter a rapid development stage in the
near future, leading to tremendous contributions to the
world’s horticultural industry.
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