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Abstract

Dataset is the basis of deep learning model development, and the success of deep learning models 

heavily relies on the quality and size of the dataset. In this work, we present a new data 

preparation protocol and build a large fragment-based dataset Frag20, which consists of optimized 

3D geometries and calculated molecular properties from Merck Molecular Force Field (MMFF) 

and DFT at B3LYP/6-31G* level of theory for more than half a million molecules composed of H, 

B, C, O, N, F, P, S, Cl, Br with no larger than 20 heavy atoms. Based on the new dataset, we 

develop robust molecular energy prediction models using a simplified PhysNet architecture for 

both DFT-optimized and MMFF-optimized geometries, which achieve better than or close to 

chemical accuracy (1 kcal/mol) on multiple test sets, including CSD20 and Plati20 based on 

experimental crystal structures.
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INTRODUCTION

Molecular energy calculation is crucial for conformation analysis and structure-based drug 

design. However, accurate calculation achieved by high-level quantum mechanical 

calculations1 can be computationally demanding even for small molecules,2 while the 

application of more computational efficient molecular mechanical methods2–5 is limited by 

the accuracy of force fields. Recently, an appealing alternative is to obtain the molecular 

energy using deep learning models.6–56 Deep learning models can extract the high-level 

atom or molecule representation from raw data using multiple nonlinear layers and provide 

reliable predictions with much less computational cost.57 The success of deep learning 

methods heavily relies on the data quality, and the dataset covering broad chemical space is 

necessary for developing a robust model with good generalization ability. Therefore, many 

datasets focusing on different chemical domains have been constructed.13–14, 41–43, 58–66, 91

Most of deep learning models for molecular energy prediction have been developed with the 

QM9 dataset,59, 64, 66 which was built using organic drug-like molecules from a subset of 

GDB-17.66 QM9 encompasses equilibrium structures and molecular properties calculated 

using DFT method at B3LYP/6-31G(2df, p) level of theory for 133,885 molecules composed 

of H,C,N,O,F with no larger than nine heavy atoms, and it has become a classic benchmark 

dataset for deep learning models. However, the applicability of deep learning models to 

predict molecular energies based on DFT optimized geometries would be significantly 

limited due to the computational cost of DFT geometry optimizations. To address this 

problem, in our recent study, we built several datasets based on QM9 which provide both 

DFT calculated properties and MMFF optimized geometries, and developed deep learning 

models that can achieve 0.34 kcal/mol MAE and 0.79 kcal/mol MAE on QM9 when using 

DFT optimized geometries and MMFF optimized geometries as inputs, respectively.38 

However, our model’s performance dropped significantly on an external conformation test 
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set composed of molecules with 10–12 heavy atoms and functional groups that have not 

been covered in QM9. Recently, Glavatskikh et al. also pointed out that QM9 lacks chemical 

diversity after detailed bond distance analysis and functional groups analysis.67 Thus, to 

make further progress in developing more robust and applicable deep learning models for 

molecular energy prediction using 3D geometries, larger and more diverse molecular 

datasets are needed.

In this work, we presented a new data preparation protocol and built a fragment-based 

dataset Frag20. Frag20 is built using commercially available and publicly reported 

molecules from ZINC68–69 and PubChem70 database, and it has mainly made improvements 

from the following three aspects: 1. Molecule size and element coverage: Frag20 includes 

more than half a million molecules with no larger than 20 heavy atoms and covers common 

elements (H, B, C, N, O, F, P, S, Cl, Br) in organic drug-like compounds. 2. Chemical 

diversity and chemical space coverage: in the construction of Frag20, representative and 

diverse molecules are selected using Murcko fragmentation71 and extended functional 

groups (EFGs). 3. Geometries and properties: Frag20 provides geometries and molecular 

properties calculated using both Merck Molecular Force Field (MMFF) and DFT at B3LYP/

6-31G* level of theory. Thus, Frag20 can be used to develop deep learning models that can 

make predictions based on MMFF-optimized geometries. Besides Frag20, we also 

constructed Plati20 and CSD20 using protein-bound ligand molecules from Platinum 

dataset72 and crystal structures from Cambridge Structure Database (CSD)73 to evaluate 

model’s generalization performance.

Based on datasets with both DFT and MMFF-optimized geometries, we have built robust 

molecular energy prediction models using simplified PhysNet.47 PhysNet was originally 

written in TensorFlow86 and we reimplemented it in PyTorch85. All results shown below 

involving PhysNet are from the PyTorch implementation. PhysNet has achieved the state-of-

the-art performance on QM9 through a deep neural network architecture that incorporates 

long-range terms explicitly, which should be desirable for large molecule energy predictions. 

We did a grid search over hyperparameters as well as slightly modified its model 

architecture and found a simplified PhysNet (sPhysNet) with nearly doubled training speed 

while maintaining the similar performance. Our developed deep learning models can predict 

DFT level energy using MMFF- as well as DFT-optimized geometries and can achieve better 

than or close to chemical accuracy (MAE of 1 kcal/mol) on multiple test sets. Corresponding 

source codes and data sets are available on the web at: https://www.nyu.edu/projects/yzhang/

IMA.

DATASET

Dataset is the basis of deep learning model development. Here we constructed Frag20, 

which includes more than half a million fragments with no larger than 20 heavy atoms. In 

addition, we built Plati20 and CSD20 datasets as two external test sets, as shown in Table 1.

A. Frag20 Dataset

Frag20 includes representative and diverse fragments with no larger than 20 heavy atoms. 

Figure 1 illustrates the data preparation protocol for Frag20, and it mainly includes four 
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steps: data preprocessing, molecule fragmentation, molecule selection, and 1D (SMILES) to 

3D (geometry) labeling.

Data Preprocessing—Frag20 is built based on commercially available and publicly 

reported molecules from ZINC and PubChem databases. The ZINC database is for virtual 

screening, and we downloaded more than 1 billion SMILES strings for molecules with 

molecular weight no larger than 400 Daltons and LogP no larger than 5 from the ZINC 15.75 

Similarly, we downloaded around 96 million SMILES from PubChem70. We first merged 

two datasets and removed duplicates and then filtered molecules to only keep molecules 

with no larger than 20 heavy atoms and composed of H, B, C, N, O, F, P, S, Cl and Br. 

Following the SMILES cleaning procedure described in the recent work,76 we also removed 

stereochemistry and only kept the largest fragment after stripping salts. Our initial Mol20 

dataset includes SMILES for 98,449,207 molecules.

Molecule Fragmentation—Due to the huge number of molecules in Mol20 (~98 

million), it would be intractable for us to conduct QM calculations for all molecules. 

Therefore, we decomposed the molecules into fragments and built our fragment-based 

dataset to cover molecular pieces. Here, we used Murcko fragmentation,71 and each 

molecule was cut into the scaffold, which is a ring system with linker atoms, and the side 

chains (Figure 1). Hydrogen atoms have been added to the cut positions to convert the 

fragments into the completed molecules. Molecules which cannot pass Murcko 

fragmentation were removed. After molecule fragmentation, the dataset size was reduced to 

around 9 million (8,659,028), which is 1/10 of the original Mol20 size. The distribution of 

fragments for different number of heavy atoms is shown in Figure S1 of the Supporting 

Information (SI). There are still huge number of molecules when the number of heavy atoms 

increases. For example, we have around 1.3 million molecules with 20 heavy atoms.

Molecule Selection—To further reduce the number of molecules with larger than 10 

heavy atoms, we selected molecules based on an extended functional group (EFG) library. 

EFG extends the traditional chemical functional group definition88 by including chemical 

groups formed only by carbon atoms, and hence the whole molecule can be described using 

EFGs (Figure 1). The generation of extended functional groups has been implemented into a 

python package (EFGs, https://github.com/HelloJocelynLu/EFGs). We generated an EFG 

library for our initial Mol20 with frequency percentage cutoff of 0.1 and only kept the Top 

10% most frequent EFGs from Mol20. Our EFG library includes 4,520 different EFGs and 

covers 99.9% of molecules in Mol20. To select diverse molecules, we first divided datasets 

into several subsets with different number of heavy atoms. Then for each EFG in the EFG 

library, we ranked molecules containing corresponding EFG using their fragment 

frequencies and selected the ones with high fragment frequencies until the number of unique 

molecules meets the selection rate times the original subset size. Here, the selection rates 

have been predefined to make sure that we would not include too many large molecules that 

are computational demanding in subsequent QM calculations, and they are gradually 

decreasing from 10% to 1% for molecules with 11–20 heavy atoms.
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1D to 3D labelling: Geometry Generation—As shown in Figure 2, the first step in 1D 

to 3D labeling pipeline is to generate 3D geometry for each molecule since the original data 

only provides 1D SMILES. Here, we randomly generated 1 conformation for each molecule 

using ETKDG method from RDKit.77–78 Molecules that failed in the conformation 

generation process were excluded.

1D to 3D labelling: MMFF and QM Calculation—For each molecule, we optimized its 

geometry using MMFF94 (MMFF)3 implemented in RDKit. Based on MMFF optimized 

geometry, QM geometry optimization and frequency calculation have been performed using 

Gaussian09 with DFT method at B3LYP/6-31G* level of theory.79 All molecules failed in 

QM calculation have been removed. Hence, for each molecule, our dataset provides two type 

of geometries optimized in both MMFF and DFT and the corresponding DFT level 

electronic and thermodynamic properties. There are 5,786 molecules failed in MMFF 

optimization, and we used Universal force field (UFF)5 to optimize these molecules. Since 

different force field methods have been applied, we only used molecules with MMFF 

optimized geometries in our Frag20-hold out test set and MM-based model development.

1D to 3D labelling: Sanity Check—In the last step, we checked the canonical SMILES 

for initial molecule, MMFF optimized geometry and QM optimized geometry and only kept 

the molecules with consistent SMILESs. We also removed molecules with partial charge or 

radicals to make sure that our dataset only includes neutral molecules.

As shown in Table 1, Frag20 dataset includes MMFF and DFT optimized geometries and 

calculated molecular properties for 566,296 molecules. Since some fragments become the 

same after SMILES conversion, the number of unique molecules in our Frag20 is 565,438. 

The detailed information for molecules with different number of heavy atoms can be found 

in Table S1. In addition, RMSD of heavy atoms, as a useful measurement to evaluate the 

difference between 3D structures, was calculated (Table 2 and Figure S2). The whole data 

preparation process has been implemented into a python package (Frag20Prep, https://

github.com/jenniening/Frag20_prepare) which can be adapted for further dataset 

construction.

B. Plati20 Dataset

To evaluate our model’s performance on molecular conformation analysis, we prepared the 

Plati20 dataset based on Platinum, which is a data set composed of high-quality X-ray 

structures for protein-bound ligand conformations.72 We selected neutral molecules with 10–

20 heavy atoms and composed of H, C, O, N, F from Platinum. For each selected compound, 

up to 300 conformations have been generated using ETKDG78 method and optimized with 

MMFF3. We removed similar conformations using Butina80 clustering with 0.2Å RMSD 

cutoff, and mirror-image conformations identified by ArbAlign81 RMSD calculation with 

consideration of symmetry. After that, we optimized each MMFF optimized conformation 

using B3LYP/6-31G* to get corresponding DFT-level energy. The final dataset includes 401 

unique molecules with 20,972 conformations. For each molecule, we computed the smallest 

RMSD that has been achieved by all generated and optimized conformations in comparison 

with the protein-bound ligand structures. As shown in Table 2 and Figure S3, less than 1.0 Å 
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RMSD has been obtained for most molecules (> 90%), which indicates that our employed 

conformation generation protocol is very reasonable.

CSD20 Dataset

In order to further evaluate our model’s performance, we prepared CSD20 dataset based on 

Cambridge Structure Database (CSD), which is a curated and comprehensive repository for 

crystal structures of small organic molecules.73 Here, starting from the crystal structure for 

each molecule which appears both in Mol20 and CSD, we directly conducted MMFF 

optimization, DFT optimization and molecular energy calculation. Our constructed CSD20 

dataset includes 39,816 molecules with no larger than 20 heavy atoms (C, N, O, F, P, S, Cl, 

Br). Since some molecules have multiple crystal structures in CSD, the unique number of 

molecules in CSD20 is 33,572. RMSD between crystal structure and optimized geometry for 

molecules in CSD20 have been computed and shown in Table 2 and Figure S4.

METHOD

A. Deep Learning Models

In our previous work, we developed DTNN_7ib model based on deep tensor neural 

network36 which achieved 0.34 kcal/mol MAE on QM9. To overcome the application 

limitation caused by using DFT optimized geometry as model inputs, we applied transfer 

learning and built models to predict molecular energy at DFT level using MMFF optimized 

geometries and atomic vectors learnt from DTNN_7ib.38

Recently, PhysNet has been introduced and it has achieved state-of-the-art performance on 

QM9 dataset for molecular energy prediction.47 The architecture of PhysNet (Figure 3A) 

was inspired by both ScheNet82 and HIP-NN28. Similar to many other deep learning models 

for molecular energy prediction based on 3D geometries, the input of PhysNet includes a 

nuclear charge vector Z and a pairwise distance matrix. To obtain the initial atom vector xi0, 

atom nuclear charge vector Zi is mapped to embedding vectors ez composed of learnable 

parameters. The initial atom vector xi0 is passed to Nmodule modules that have the same 

composition but independent parameters. Each module contains an interaction block, 

Nresidual 
atomic   atomic residual blocks and one output block. In the interaction block, the atom 

vector x is updated by accounting for its local environment as following:

xi
l + 1 = ul ∘ xil + f vil

where ul is a learnable parameter vector, f is a neural network which compose of multiple 

Nresidual
interaction   residual layers and one linear layer, and vil is the message accounting for the 

local environments. vil can be obtained by a message pass layer:

vil = gself  xil + ∑
j ∈ Ni

gneigℎbor  xjl, RBFji
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where gself is an activation-first linear layer, Ni is a set containing all of atom xi’s neighbors 

and gneighbor is a neural network calculating the interaction from xi to xj depending on the 

Radius Basis Function(RBFji) which is a expansion function depending purely on the 

distance between xi and xj. Detailed process is described in Ref 47. Residual block is used to 

refine the atom vector in each module, and it adds shortcut connections to enable the neural 

networks to increase or at least have the similar performance when the depth is increased. 

Finally, output block is used to compute the atom-wise properties through linear 

transformation of activated atom vector passed from Nresidual 
output   residual blocks. Each module 

in PhysNet produces one atom-wise prediction and they are aggregated throughout all 

modules, finally, molecule-level properties are obtained by summing up every atom in each 

molecule. PhysNet can predict energy, force, charge and dipole moment at the same time, 

and hence its loss function is the weighted sum of loss of each term. To make sure the 

prediction of each module decay hierarchically when the depth of the module increases, a 

regularization term of nonhierarchical penalty is also added. PhysNet also incorporates long 

range interaction by adding electrostatic interaction and dispersion correction terms 

explicitly. Thus, it should be a more suitable model for large molecules compared to 

DTNN_7ib. PhysNet47 was originally implemented in TensorFlow86. In this work, we have 

reimplemented it with PyTorch85, which has the same number of trainable parameters as the 

TensorFlow one (1,293,948) and achieved similar performance and computational efficiency. 

Furthermore, by exploring model hyperparameters, we found a simplified version of 

PhysNet (sPhysNet) (Figure 3B, Table 3), which significantly reduced the number of 

trainable parameters to about 0.74 million while achieved the similar performance on the 

QM9 dataset. We reduced the number of main modules from 5 to 3, removed one residual 

layer in the main module and 2 residual layers in interaction layers, while slightly increased 

the atomic embedding dimension (num_feature) from 128 to 160. Unlike original PhysNet, 

the output of sPhysNet modules was the output of the last module rather than summing over 

all outputs.

For explicit energy terms, we removed DFT-D3 energy term because it is not considered in 

B3LYP/6-31G* calculations used in 1D to 3D labeling. The final predicted energy therefore 

changes from:

EPℎysNet  = ∑
i = 1

N
Ei + ke ∑

i = 1

N
∑

j > i

N
qiqjχ rij + ED3

To:

EsPℎysNet  = ∑
i = 1

N
Ei + ke ∑

i = 1

N
∑

j > i

N
qiqjχ rij

Where N is number of atoms in the molecule and χ(rij) is a function which approximate 1/rij 

at long range while avoiding singularity at rij = 0.47 And qi is the corrected charge of atom i 

by:
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qi = qi − 1
N ∑

j = 1

N
qj − Q

Where Q is the total charge of the system. This correction is necessary to guarantee charge 

conservation.47

B. Training Protocol

Since Frag20 consists of molecules containing 1 to 20 heavy atoms, we prepared a hold-out 

test set from Frag20 by randomly selecting 10% of molecules for each heavy atom number. 

Our Frag20 test set includes 56,636 molecules, validation set includes 1,000 molecules, and 

all remain 508,660 molecules were used as training set in our final model development.

As mentioned above, we successfully reimplemented PhysNet architecture on PyTorch with 

similar performance and efficiency, and the rest of work were run on PyTorch version.

Model was trained on a single GPU (P1080, P100, K80 and V100, depending on resource 

allocation) with batch size 100. We used AMSGrad87 optimizer at learning rate=0.001, 

betas= (0.9, 0.99), eps=1e-8 and weight decay=0 to optimize the model. The actual model 

used for validation and testing was a shadow model with the same initialization and 

exponential moving average over training model parameters.47,89 No early stopping was 

used, and the model was trained until it reaches 1000 epochs or time limit 36 hours, 

whichever came first. At the end of each epoch, we test our model on a separate validation 

set and calculate the loss. If the validation loss was better than the previous lowest validation 

loss, we saved the model as the best model into disk. In this way, the saved model was the 

one with lowest validation loss throughout the training.

To build models with MMFF optimized geometries, we restored all weights trained using 

DFT optimized geometries, and then either retrained the weights in the output block of each 

module using MMFF optimized geometries (transfer learning), or directly fine-tuned the 

whole model without any layer-freezing (fine tuning).

When performing model assessment using external CSD20 and Plati20 datasets, we 

excluded molecules that also exist in Frag20 and eMol9, and final Plati20 and CSD20 used 

as test sets contained 380 molecules with 19,504 conformations and 36,552 molecules, 

respectively.

To evaluate model performance, both mean absolute error (MAE) and root mean square 

error (RMSE) have been used. It should be noted that RMSE is more sensitive for outliers, 

which are data points with large prediction errors. In addition, percentages of molecules with 

prediction error larger than 1 kcal/mol and 10 kcal/mol have also been calculated and 

presented. To assess the conformational energy prediction, we used both absolute error 

(ErrorA) and relative error (ErrorR). ErrorA measures the MAE and RMSE of predictions for 

all conformation. In terms of ErrorR, for each molecule, we first computed the MAE and 

RMSE for the energy difference between each conformational energy and the lowest energy 

of the molecule, and then averaged the MAEs or RMSEs among all molecules. Besides 
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ErrorR, the success rate for finding the right lowest conformation of all molecules in the test 

set has also been calculated.

RESULTS

A. Dataset Analysis

Chemical diversity of the dataset can be analyzed using extended functional group. Extended 

functional group is a generalized version of traditional functional group and it also contains 

chemical groups formed by only carbon atoms. EFG library was generated based on Mol20 

and it includes 4,520 EFGs which can fully cover 99.9% of molecules in Mol20. By 

checking the existence of each EFG in molecules, we found Frag20 has 3,889 EFGs and its 

subset Frag9 has 2,486 EFGs (up to 9 heavy atoms), which are much more than 482 EFGs 

that QM9 has. In addition, some of EFGs with top 100 frequencies in Mol20 such as 

O=CNO, N-N, and C=NN are not found in QM9. This indicates that our fragmentation 

process has led to a much more diverse dataset which would facilitate the development of 

more robust and applicable deep learning models.

B. Molecular Energy Prediction with both DFT and MMFF Optimized Geometries

QM9 dataset has been used as a classic benchmark for deep learning models with DFT 

optimized geometries. Considering the computational cost of DFT optimizations, the 

applicability of deep learning models with DFT-optimized geometries as input would be 

significantly limited. Previously, in order to explore whether MM-optimized geometries can 

be used for molecular energy prediction, we introduced QM9M and eMol9 datasets, and 

developed DTNN_7ib based on deep tensor neural network36. Our model can achieve 0.34 

kcal/mol MAE on QM9 and 0.79 kcal/mol MAE on QM9M with transfer learning. In this 

work, we trained both PhysNet and our optimized sPhysNet on QM9 and QM9M datasets 

with the same training/validation/test splits as for DTNN_7ib, and the results are shown in 

Table 4. For training on the QM9M dataset, first we restored all weights learned from pre-

trained models using DFT optimized geometries, then either only retrained the output block 

weights in each module using MMFF optimized geometries from QM9M dataset (transfer-

learning) or retrain the whole model without any weight freezing (fine-tuning). From Table 

4, we can see that sPhysNet has the similar performance as PhysNet, and both models can 

perform significantly better than DTNN_7ib. The sPhysNet model can achieve 0.19 kcal/mol 

MAE on QM9 and 0.35 kcal/mol MAE on QM9M with fine-tuning. Since the sPhysNet 

model is less complicated and more efficient to train than PhysNet and fine-tuning always 

yields better results than transfer learning alone for molecular energy prediction with MMFF 

optimized geometries, we mainly focus on the sPhysNet model and fine-tuning in our further 

model development with Frag20, a significantly larger and diverse dataset.

Based on the Frag20 dataset, we further explored to develop molecular energy prediction 

models with sPhysNet. In order to considering conformations, we also added the previously 

developed eMol9 dataset (see Table 1), which is a conformation dataset and is built using 

overlapping molecules from QM9 and eMolecules, into our training set. To extensively 

examine the model’s performance, we not only used Frag20 hold-out test set, but also 

employed two additional test sets CSD20 and Plati20, which have been newly constructed in 
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this work based on crystal structures (See Table 1). As shown in Table 5, using DFT 

optimized geometries as input, our trained sPhysNet model can achieve 0.34 kcal/mol MAE 

for Frag20, 0.82 kcal/mol MAE for CSD20, and 0.72 kcal/mol MAE for Plati 20, and all are 

better than chemical accuracy of 1.0 kcal/mol. Meanwhile, MAEs of our further fine-tuned 

sPhysNet model with MMFF-optimized geometries as input are 0.63 kcal/mol, 1.36 

kcal/mol and 1.40 kcal/mol respectively for Frag20, CSD20 and Plati20 test sets. Although 

deep learning models using DFT-optimized geometries as inputs outperform those with 

MMFF-optimized geometries, the computational cost to obtain DFT optimized geometries is 

more than thousands of that to obtain MMFF-optimized geometries. To obtain a DFT 

optimized geometry, which needs to do multiple DFT energy and gradient calculations, is 

much more expensive than to calculate the DFT energy itself. From this perspective, deep 

learning models requiring DFT-optimized geometries as inputs have limited value in real 

applications. Therefore, our results here indicate that to develop deep learning models for 

predicting molecular energies with force-field optimized geometries as input is a very 

promising direction while there is still room to be improved, and our trained sPhysNet 

model based on Frag20 and eMol9 can be utilized as a baseline model for future 

development to explore chemical space with 3D geometries.

DISCUSSION AND CONCLUSION

Deep learning models have achieved considerable progress in molecular energy prediction 

and their successes are dependent on the size and quality of the training set. In this work, we 

presented a data preparation protocol based on molecular fragmentation and selection and 

built a Frag20 dataset which includes more than half million molecules up to 20 heavy 

atoms. Frag20 shows broad coverage of chemical space and wide diversity of chemical 

groups which would enhance the performance of deep learning models. With more than 

500k molecules in the dataset, Frag20 can also be used to do active learning for uncertainty 

models including ensemble models42, 53 and Bayesian neural networks83–84. Frag20 

provides both DFT and MMFF geometries so that it can be used to develop deep learning 

models for predicting molecular energies without the dependence on DFT optimized 

geometries. Furthermore, Frag20 can be used as the basis to develop new molecular datasets 

to predict other molecular properties, such as solvation effects and molecular spectroscopies. 

Besides Frag20, we also constructed Plati20 and CSD20 datasets, which are based on 

protein-bound ligand molecules from Platinum dataset72 and crystal structures from 

Cambridge Structure Database (CSD)73 respectively, to evaluate model’s generalization 

performance in potential real applications.

In this work, we have also reimplemented PhysNet, a state-of-the-art deep learning model to 

predict molecular properties with 3D geometries, with PyTorch. By modifying its model 

architecture and hyperparameters, we found a simplified PhysNet (sPhysNet), which 

reduced trainable parameters by about 40%, nearly doubled the training speed while yielded 

the similar performance in comparison with the original PhysNet model. The sPhysNet 

model can achieve 0.19 kcal/mol MAE on QM9 and 0.35 kcal/mol MAE on QM9M with 

fine-tuning, which has significantly improved over our previously developed DTNN_7ib 

model (0.34 kcal/mol MAE on QM9 and 0.79 kcal/mol MAE on QM9M with transfer 

learning). Finally, based on both Frag20 and eMol9 datasets, we developed the sPhysNet 
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model to predict molecular energies for MMFF-optimized geometries, which achieved 0.63 

kcal/mol, 1.36 kcal/mol and 1.40 kcal/mol respectively for Frag20, CSD20 and Plati20 test 

sets. Our work further demonstrated that it is a promising direction to develop deep learning 

models to predict molecular energies with force field based geometries, which would 

facilitate the efficient exploration of chemical space with 3D geometries.
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Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGMENTS

We would like to acknowledge the support by NIH (R35-GM127040) and computing resources provided by NYU-
ITS.

REFERENCES

1. Rossi M; Chutia S; Scheffler M; Blum V Validation Challenge of Density-Functional Theory for 
Peptides—Example of Ac-Phe-Ala 5 -LysH +. J Phys Chem 2014, 118, 7349–7359. 10.1021/
jp412055r.

2. Hawkins PCD Conformation Generation: The State of the Art. J Chem Inf Model 2017, 57, 1747–
1756. 10.1021/acs.jcim.7b00221. [PubMed: 28682617] 

3. Halgren TA Merck Molecular Force Field. II. MMFF94 van Der Waals and Electrostatic Parameters 
for Intermolecular Interactions. J Comput Chem 1996, 17, 520–552. 10.1002/
(sici)1096-987x(199604)17:5/6<520::aid-jcc2>3.0.co;2-w.

4. Halgren TA Merck Molecular Force Field. II. MMFF94 van Der Waals and Electrostatic Parameters 
for Intermolecular Interactions. J Comput Chem 1996, 17, 520–552. 10.1002/
(sici)1096-987x(199604)17:5/6<520::aid-jcc2>3.0.co;2-w.

5. Vanommeslaeghe K; Hatcher E; Acharya C; Kundu S; Zhong S; Shim J; Darian E; Guvench O; 
Lopes P; Vorobyov I; Mackerell AD CHARMM General Force Field: A Force Field for Drug-like 
Molecules Compatible with the CHARMM All-atom Additive Biological Force Fields. J Comput 
Chem 2010, 31, 671–690. 10.1002/jcc.21367. [PubMed: 19575467] 

6. Ramakrishnan R; Dral PO; Rupp M; Lilienfeld O. A. von. Big Data Meets Quantum Chemistry 
Approximations: The Δ-Machine Learning Approach. J Chem Theory Comput 11, 2087–2096. 
10.1021/acs.jctc.5b00099.

7. Bartók AP; Kondor R; Csányi G Publisher’s Note: On Representing Chemical Environments [Phys. 
Rev. B 87, 184115 (2013)]. Phys Rev B 2013, 87, 219902. 10.1103/physrevb.87.219902.

8. Bartók AP; Payne MC; Kondor R; Csányi G Gaussian Approximation Potentials: The Accuracy of 
Quantum Mechanics, without the Electrons. Phys Rev Lett 2010, 104, 136403. 10.1103/
physrevlett.104.136403. [PubMed: 20481899] 

9. Behler J Atom-Centered Symmetry Functions for Constructing High-Dimensional Neural Network 
Potentials. J Chem Phys 2011, 134, 074106. 10.1063/1.3553717. [PubMed: 21341827] 

10. Behler J; Parrinello M Generalized Neural-Network Representation of High-Dimensional 
Potential-Energy Surfaces. Phys Rev Lett 2007, 98, 146401. 10.1103/physrevlett.98.146401. 
[PubMed: 17501293] 

11. Brockherde F; Vogt L; Li L; Tuckerman ME; Burke K; Müller K-R Bypassing the Kohn-Sham 
Equations with Machine Learning. Nat Commun 2017, 8, 872. 10.1038/s41467-017-00839-3. 
[PubMed: 29021555] 

12. Butler KT; Davies DW; Cartwright H; Isayev O; Walsh A Machine Learning for Molecular and 
Materials Science. Nature 2018, 559, 547–555. 10.1038/s41586-018-0337-2. [PubMed: 30046072] 

13. Chmiela S; Sauceda HE; Müller K-R; Tkatchenko A Towards Exact Molecular Dynamics 
Simulations with Machine-Learned Force Fields. Nat Commun 2018, 9, 3887. 10.1038/
s41467-018-06169-2. [PubMed: 30250077] 

Lu et al. Page 11

J Chem Inf Model. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



14. Chmiela S; Tkatchenko A; Sauceda HE; Poltavsky I; Schütt KT; Müller K-R Machine Learning of 
Accurate Energy-Conserving Molecular Force Fields. Sci Adv 2017, 3, e1603015. 10.1126/
sciadv.1603015. [PubMed: 28508076] 

15. Eickenberg M; Exarchakis G; Hirn M; Mallat S Solid Harmonic Wavelet Scattering: Predicting 
Quantum Molecular Energy from Invariant Descriptors of 3D Electronic Densities. 31st 
Conference on Neural Information Processing System 2017, 6543–6552.

16. Eickenberg M; Exarchakis G; Hirn M; Mallat S; Thiry L Solid Harmonic Wavelet Scattering for 
Predictions of Molecule Properties. J Chem Phys 2018, 148, 241732. 10.1063/1.5023798. 
[PubMed: 29960365] 

17. Faber FA; Christensen AS; Huang B; Lilienfeld OA von. Alchemical and Structural Distribution 
Based Representation for Universal Quantum Machine Learning. J Chem Phys 2018, 148, 241717. 
10.1063/1.5020710. [PubMed: 29960351] 

18. Faber FA; Hutchison L; Huang B; Gilmer J; Schoenholz SS; Dahl GE; Vinyals O; Kearnes S; Riley 
PF; Lilienfeld O. A. von. Prediction Errors of Molecular Machine Learning Models Lower than 
Hybrid DFT Error. J Chem Theory Comput 2017, 13, 5255–5264. 10.1021/acs.jctc.7b00577. 
[PubMed: 28926232] 

19. Faber FA; Lindmaa A; Lilienfeld OA von; Armiento, R. Machine Learning Energies of 2 Million 
Elpasolite (ABC2D6) Crystals. Phys Rev Lett 2016, 117, 135502. 10.1103/
physrevlett.117.135502. [PubMed: 27715098] 

20. Ferré G; Haut T; Barros K Learning Molecular Energies Using Localized Graph Kernels. J Chem 
Phys 2017, 146, 114107. 10.1063/1.4978623. [PubMed: 28330348] 

21. Faber FA; Christensen AS; Huang B; Lilienfeld OA von. Alchemical and Structural Distribution 
Based Representation for Universal Quantum Machine Learning. J Chem Phys 2018, 148, 241717. 
10.1063/1.5020710. [PubMed: 29960351] 

22. Han J; Zhang L; Car R; E W Deep Potential: A General Representation of a Many-Body Potential 
Energy Surface 2017, arXiv:1707.09571. arXiv.org e-Print archive. https://arxiv.org/abs/
1707.01478

23. Hansen K; Biegler F; Ramakrishnan R; Pronobis W; von Lilienfeld OA; Müller K-R; Tkatchenko 
A Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and 
Nonlocality in Chemical Space. J Phys Chem Lett 2015, 6, 2326–2331. 10.1021/
acs.jpclett.5b00831. [PubMed: 26113956] 

24. Hansen K; Montavon G; Biegler F; Fazli S; Rupp M; Scheffler M; Lilienfeld O. A. von; 
Tkatchenko A; Müller K-R Assessment and Validation of Machine Learning Methods for 
Predicting Molecular Atomization Energies. J Chem Theory Comput 2013, 9, 3404–3419. 
10.1021/ct400195d. [PubMed: 26584096] 

25. Hansen K; Biegler F; Ramakrishnan R; Pronobis W; von Lilienfeld OA; Müller K-R; Tkatchenko 
A Machine Learning Predictions of Molecular Properties: Accurate Many-Body Potentials and 
Nonlocality in Chemical Space. J Phys Chem Lett 2015, 6, 2326–2331. 10.1021/
acs.jpclett.5b00831. [PubMed: 26113956] 

26. Huo H; Rupp M Unified Representation of Molecules and Crystals for Machine Learning 2017. 
arXiv:1704.06439. arXiv.org e-Print archive. https://arxiv.org/abs/1704.06439

27. Jørgensen PB; Jacobsen KW; Schmidt MN Neural Message Passing with Edge Updates for 
Predicting Properties of Molecules and Materials 2018. arXiv:1806.03146. arXiv.org e-Print 
archive. https://arxiv.org/abs/1806.03146

28. Lubbers N; Smith JS; Barros K Hierarchical Modeling of Molecular Energies Using a Deep Neural 
Network. J Chem Phys 2018, 148, 241715. 10.1063/1.5011181. [PubMed: 29960311] 

29. Mills K; Ryczko K; Luchak I; Domurad A; Beeler C; Tamblyn I Extensive Deep Neural Networks 
for Transferring Small Scale Learning to Large Scale Systems. Chem Sci 2019, 10, 4129–4140. 
10.1039/c8sc04578j. [PubMed: 31015950] 

30. Montavon G; Rupp M; Gobre V; Vazquez-Mayagoitia A; Hansen K; Tkatchenko A; Müller K-R; 
Lilienfeld O. A. von. Machine Learning of Molecular Electronic Properties in Chemical 
Compound Space. New J Phys 2013, 15, 095003. 10.1088/1367-2630/15/9/095003.

31. Podryabinkin EV; Shapeev AV Active Learning of Linearly Parametrized Interatomic Potentials. 
Comp Mater Sci 2017, 140, 171–180. 10.1016/j.commatsci.2017.08.031.

Lu et al. Page 12

J Chem Inf Model. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arXiv.org
https://arxiv.org/abs/1707.01478
https://arxiv.org/abs/1707.01478
http://arXiv.org
https://arxiv.org/abs/1704.06439
http://arXiv.org
https://arxiv.org/abs/1806.03146


32. Pronobis W; Tkatchenko A; Müller K-R Many-Body Descriptors for Predicting Molecular 
Properties with Machine Learning: Analysis of Pairwise and Three-Body Interactions in 
Molecules. J Chem Theory Comput 2018, 14, 2991–3003. 10.1021/acs.jctc.8b00110. [PubMed: 
29750522] 

33. Rowe P; Csányi G; Alfè D; Michaelides A Development of a Machine Learning Potential for 
Graphene. Phys Rev B 2018, 97, 054303. 10.1103/physrevb.97.054303.

34. Rupp M; Tkatchenko A; Müller K-R; Lilienfeld O. A. von. Fast and Accurate Modeling of 
Molecular Atomization Energies with Machine Learning. Phys Rev Lett 2012, 108, 058301. 
10.1103/physrevlett.108.058301. [PubMed: 22400967] 

35. Ryczko K; Mills K; Luchak I; Homenick C; Tamblyn I Convolutional Neural Networks for 
Atomistic Systems. Comp Mater Sci 2018, 149, 134–142. 10.1016/j.commatsci.2018.03.005.

36. Schütt KT; Arbabzadah F; Chmiela S; Müller KR; Tkatchenko A Quantum-Chemical Insights from 
Deep Tensor Neural Networks. Nat Commun 2017, 8, 13890. 10.1038/ncomms13890. [PubMed: 
28067221] 

37. Schütt KT; Glawe H; Brockherde F; Sanna A; Müller KR; Gross EKU How to Represent Crystal 
Structures for Machine Learning: Towards Fast Prediction of Electronic Properties. Phys Rev B 
2014, 89, 205118. 10.1103/physrevb.89.205118.

38. Lu J; Wang C; Zhang Y Predicting Molecular Energy Using Force-Field Optimized Geometries 
and Atomic Vector Representations Learned from an Improved Deep Tensor Neural Network. J 
Chem Theory Comput 2019, 15, 4113–4121. 10.1021/acs.jctc.9b00001. [PubMed: 31142110] 

39. Shapeev AV Moment Tensor Potentials: A Class of Systematically Improvable Interatomic 
Potentials. Multiscale Model Sim 2016, 14, 1153–1173. 10.1137/15m1054183.

40. Sinitskiy AV; Pande VS Deep Neural Network Computes Electron Densities and Energies of a 
Large Set of Organic Molecules Faster than Density Functional Theory (DFT) 2018. 
arXiv:1809.02723. arXiv.org e-Print archive. https://arxiv.org/abs/1809.02723

41. Smith JS; Isayev O; Roitberg AE ANI-1: An Extensible Neural Network Potential with DFT 
Accuracy at Force Field Computational Cost. Chem Sci 2017, 8, 3192–3203. 10.1039/c6sc05720a. 
[PubMed: 28507695] 

42. Smith JS; Nebgen B; Lubbers N; Isayev O; Roitberg AE Less Is More: Sampling Chemical Space 
with Active Learning. J Chem Phys 2018, 148, 241733. 10.1063/1.5023802. [PubMed: 29960353] 

43. Smith JS; Nebgen BT; Zubatyuk R; Lubbers N; Devereux C; Barros K; Tretiak S; Isayev O; 
Roitberg AE Approaching Coupled Cluster Accuracy with a General-Purpose Neural Network 
Potential through Transfer Learning. Nat Commun 2019, 10, 2903. 10.1038/s41467-019-10827-4. 
[PubMed: 31263102] 

44. Smith JS; Roitberg AE; Isayev O Transforming Computational Drug Discovery with Machine 
Learning and AI. Acs Med Chem Lett 2018, 9, 1065–1069. 10.1021/acsmedchemlett.8b00437. 
[PubMed: 30429945] 

45. Tsubaki M; Mizoguchi T Fast and Accurate Molecular Property Prediction: Learning Atomic 
Interactions and Potentials with Neural Networks. J Phys Chem Lett 2018, 9, 5733–5741. 10.1021/
acs.jpclett.8b01837. [PubMed: 30081630] 

46. Unke OT; Meuwly M A Reactive, Scalable, and Transferable Model for Molecular Energies from a 
Neural Network Approach Based on Local Information. J Chem Phys 2018, 148, 241708. 
10.1063/1.5017898. [PubMed: 29960298] 

47. Unke OT; Meuwly M PhysNet: A Neural Network for Predicting Energies, Forces, Dipole 
Moments, and Partial Charges. J Chem Theory Comput 2019, 15, 3678–3693. 10.1021/
acs.jctc.9b00181. [PubMed: 31042390] 

48. Unke OT; Meuwly M PhysNet: A Neural Network for Predicting Energies, Forces, Dipole 
Moments, and Partial Charges. J Chem Theory Comput 2019, 15, 3678–3693. 10.1021/
acs.jctc.9b00181. [PubMed: 31042390] 

49. Wang R Significantly Improving the Prediction of Molecular Atomization Energies by an 
Ensemble of Machine Learning Algorithms and Rescanning Input Space: A Stacked 
Generalization Approach. J Phys Chem C 2018, 122, 8868–8873. 10.1021/acs.jpcc.8b03405.

Lu et al. Page 13

J Chem Inf Model. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arXiv.org
https://arxiv.org/abs/1809.02723


50. Yao K; Herr JE; Toth DW; Mckintyre R; Parkhill J The TensorMol-0.1 Model Chemistry: A Neural 
Network Augmented with Long-Range Physics. Chem Sci 2018, 9, 2261–2269. 10.1039/
c7sc04934j. [PubMed: 29719699] 

51. Zhang L; Han J; Wang H; Car R; E W Deep Potential Molecular Dynamics: A Scalable Model 
with the Accuracy of Quantum Mechanics. Phys Rev Lett 2018, 120, 143001. 10.1103/
physrevlett.120.143001. [PubMed: 29694129] 

52. Zhang L; Han J; Wang H; Saidi WA; Car R; E W End-to-End Symmetry Preserving Inter-Atomic 
Potential Energy Model for Finite and Extended Systems 2018. arXiv:1805.09003. arXiv.org e-
Print archive. https://arxiv.org/abs/1805.09003

53. Zhang L; Lin D-Y; Wang H; Car R; E W Active Learning of Uniformly Accurate Interatomic 
Potentials for Materials Simulation. Phys Rev Mater 2019, 3, 023804. 10.1103/
physrevmaterials.3.023804.

54. Zubatyuk R; Smith JS; Leszczynski J; Isayev O Accurate and Transferable Multitask Prediction of 
Chemical Properties with an Atoms-in-Molecules Neural Network. Sci Adv 2019, 5, eaav6490. 
10.1126/sciadv.aav6490. [PubMed: 31448325] 

55. Pronobis W; Schütt KT; Tkatchenko A; Müller K-R Capturing Intensive and Extensive DFT/
TDDFT Molecular Properties with Machine Learning. European Phys J B 2018, 91, 178. 10.1140/
epjb/e2018-90148-y.

56. Klicpera J; Groß J; Günnemann S Directional Message Passing for Molecular Graphs 2020. 
arXiv:2003.03123. arXiv.org e-Print archive. https://arxiv.org/abs/2003.03123

57. LeCun Y; Bengio Y; Hinton G Deep Learning. Nature 2015, 521, 436–444. 10.1038/nature14539. 
[PubMed: 26017442] 

58. Blum LC; Reymond J-L 970 Million Druglike Small Molecules for Virtual Screening in the 
Chemical Universe Database GDB-13. J Am Chem Soc 2009, 131, 8732–8733. 10.1021/
ja902302h. [PubMed: 19505099] 

59. Ramakrishnan R; Dral PO; Rupp M; Lilienfeld O. A. von. Quantum Chemistry Structures and 
Properties of 134 Kilo Molecules. Sci Data 2014, 1, 140022. 10.1038/sdata.2014.22. [PubMed: 
25977779] 

60. Reymond J-L The Chemical Space Project. Accounts Chem Res 2015, 48, 722–730. 10.1021/
ar500432k.

61. Smith JS; Zubatyuk R; Nebgen B; Lubbers N; Barros K; Roitberg AE; Isayev O; Tretiak S The 
ANI-1ccx and ANI-1x Data Sets, Coupled-Cluster and Density Functional Theory Properties for 
Molecules. Sci Data 2020, 7, 134. 10.1038/s41597-0200473-z. [PubMed: 32358545] 

62. Montavon G; Rupp M; Gobre V; Vazquez-Mayagoitia A; Hansen K; Tkatchenko A; Müller K-R; 
Lilienfeld O. A. von. Machine Learning of Molecular Electronic Properties in Chemical 
Compound Space. New J Phys 2013, 15, 095003. 10.1088/1367-2630/15/9/095003.

63. Rupp M; Tkatchenko A; Müller K-R; Lilienfeld OA von. Fast and Accurate Modeling of 
Molecular Atomization Energies with Machine Learning. Phys Rev Lett 2012, 108, 058301. 
10.1103/physrevlett.108.058301. [PubMed: 22400967] 

64. Ramakrishnan R; Hartmann M; Tapavicza E; Lilienfeld O. A. von. Electronic Spectra from 
TDDFT and Machine Learning in Chemical Space. J Chem Phys 2015, 143, 084111. 
10.1063/1.4928757. [PubMed: 26328822] 

65. Smith JS; Isayev O; Roitberg AE ANI-1, A Data Set of 20 Million Calculated off-Equilibrium 
Conformations for Organic Molecules. Sci Data 2017, 4, 170193. 10.1038/sdata.2017.193. 
[PubMed: 29257127] 

66. Ruddigkeit L; Deursen R. van; Blum LC; Reymond J-L Enumeration of 166 Billion Organic Small 
Molecules in the Chemical Universe Database GDB-17. J Chem Inf Model 2012, 52, 2864–2875. 
10.1021/ci300415d. [PubMed: 23088335] 

67. Glavatskikh M; Leguy J; Hunault G; Cauchy T; Mota BD Dataset’s Chemical Diversity Limits the 
Generalizability of Machine Learning Predictions. J Cheminformatics 2019, 11, 69. 10.1186/
s13321-019-0391-2.

68. Irwin JJ; Shoichet BK ZINC — A Free Database of Commercially Available Compounds for 
Virtual Screening. Cheminform 2005, 36. 10.1002/chin.200516215.

Lu et al. Page 14

J Chem Inf Model. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arXiv.org
https://arxiv.org/abs/1805.09003
http://arXiv.org
https://arxiv.org/abs/2003.03123


69. Irwin JJ; Sterling T; Mysinger MM; Bolstad ES; Coleman RG ZINC: A Free Tool to Discover 
Chemistry for Biology. J Chem Inf Model 2012, 52, 1757–1768. 10.1021/ci3001277. [PubMed: 
22587354] 

70. Kim S; Chen J; Cheng T; Gindulyte A; He J; He S; Li Q; Shoemaker BA; Thiessen PA; Yu B; 
Zaslavsky L; Zhang J; Bolton EE PubChem 2019 Update: Improved Access to Chemical Data. 
Nucleic Acids Res 2018, 47, gky1033. 10.1093/nar/gky1033.

71. Bemis GW; Murcko MA The Properties of Known Drugs. 1. Molecular Frameworks. J Med Chem 
1996, 39, 2887–2893. 10.1021/jm9602928. [PubMed: 8709122] 

72. Friedrich N-O; Meyder A; Kops C. de B.; Sommer K; Flachsenberg F; Rarey M; Kirchmair J 
High-Quality Dataset of Protein-Bound Ligand Conformations and Its Application to 
Benchmarking Conformer Ensemble Generators. J Chem Inf Model 2017, 57, 529–539. 10.1021/
acs.jcim.6b00613. [PubMed: 28206754] 

73. Groom CR; Bruno IJ; Lightfoot MP; Ward SC The Cambridge Structural Database. Acta 
Crystallogr Sect B Struct Sci Cryst Eng Mater 2016, 72, 171–179. 10.1107/s2052520616003954.

74. eMolecules. https://www.emolecules.com/. (accessed Oct 2017).

75. Sterling T; Irwin JJ ZINC 15 – Ligand Discovery for Everyone. J Chem Inf Model 2015, 55, 2324–
2337. 10.1021/acs.jcim.5b00559. [PubMed: 26479676] 

76. Winter R; Montanari F; Noé F; Clevert D-A Learning Continuous and Data-Driven Molecular 
Descriptors by Translating Equivalent Chemical Representations. Chem Sci 2018, 10, 1692–1701. 
10.1039/c8sc04175j. [PubMed: 30842833] 

77. The RDKit: Open-Source Cheminformatics Software. http://www.rdkit.org (accessed Mar 2019).

78. Riniker S; Landrum GA Better Informed Distance Geometry: Using What We Know To Improve 
Conformation Generation. J Chem Inf Model 2015, 55, 2562–2574. 10.1021/acs.jcim.5b00654. 
[PubMed: 26575315] 

79. Frisch MJT,GW; Schlegel HB; Scuseria GE; Robb MA; Cheeseman JR; Scalmani G; Barone V; 
Mennucci B; Petersson GA; Nakatsuji H; Caricato M; Li X; Hratchian HP; Izmaylov AF; Bloino 
J; Zheng G; Sonnenberg JL; Hada M; Ehara M; Toyota K; Fukuda R; Hasegawa J; Ishida M; 
Nakajima T; Honda Y; Kitao O; Nakai H; Vreven T; Montgomery JA Jr.; Peralta JE; Ogliaro F; 
Bearpark M; Heyd JJ; Brothers E; Kudin KN; Staroverov VN; Kobayashi R; Normand J; 
Raghavachari K; Rendell A; Burant JC; Iyengar SS; Tomasi J; Cossi M; Rega N; Millam JM; 
Klene M; Knox JE; Cross JB; Bakken V; Adamo C; Jaramillo J; Gomperts R; Stratmann RE; 
Yazyev O; Austin AJ; Cammi R; Pomelli C; Ochterski JW; Martin RL; Morokuma K; Zakrzewski 
VG; Voth GA; Salvador P; Dannenberg JJ; Dapprich S; Daniels AD; Farkas O; Foresman JB; Ortiz 
JV; Cioslowski J; Fox DJ Gaussian 09, Gaussian Inc.: Wallingford, CT, 2009.

80. Butina D Unsupervised Data Base Clustering Based on Daylight’s Fingerprint and Tanimoto 
Similarity: A Fast and Automated Way To Cluster Small and Large Data Sets. J Chem Inf Comp 
Sci 1999, 39, 747–750. 10.1021/ci9803381.

81. Temelso B; Mabey JM; Kubota T; Appiah-Padi N; Shields GC ArbAlign: A Tool for Optimal 
Alignment of Arbitrarily Ordered Isomers Using the Kuhn–Munkres Algorithm. J Chem Inf 
Model 2017, 57, 1045–1054. 10.1021/acs.jcim.6b00546. [PubMed: 28398732] 

82. Schütt KT; Sauceda HE; Kindermans P-J; Tkatchenko A; Müller K-R SchNet – A Deep Learning 
Architecture for Molecules and Materials. J Chem Phys 2018, 148, 241722. 10.1063/1.5019779. 
[PubMed: 29960322] 

83. Ryu S; Kwon Y; Kim WY A Bayesian Graph Convolutional Network for Reliable Prediction of 
Molecular Properties with Uncertainty Quantification. Chem Sci 2019, 10, 8438–8446. 10.1039/
c9sc01992h. [PubMed: 31803423] 

84. Zhang Y; Lee AA Bayesian Semi-Supervised Learning for Uncertainty-Calibrated Prediction of 
Molecular Properties and Active Learning. Chem Sci 2019, 10, 8154–8163. 10.1039/c9sc00616h. 
[PubMed: 31857882] 

85. Paszke A; Gross S; Massa F; Lerer A; Bradbury J; Chanan G; Killeen T; Lin Z; Gimelshein N; 
Antiga L; Desmaison A; Köpf A; Yang E; DeVito Z; Raison M; Tejani A; Chilamkurthy S; Steiner 
B; Fang L; Bai J; Chintala S PyTorch: An Imperative Style, High-Performance Deep Learning 
Library 2019. arXiv:1912.01703. arXiv.org e-Print archive. https://arxiv.org/abs/1912.01703

Lu et al. Page 15

J Chem Inf Model. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.emolecules.com/
http://www.rdkit.org
http://arXiv.org
https://arxiv.org/abs/1912.01703


86. Abadi M; Agarwal A; Barham P; Brevdo E; Chen Z; Citro C; Corrado GS; Davis A; Dean J; Devin 
M; Ghemawat S; Goodfellow I; Harp A; Irving G; Isard M; Jia Y; Jozefowicz R; Kaiser L; Kudlur 
M; Levenberg J; Mane D; Monga R; Moore S; Murray D; Olah C; Schuster M; Shlens J; Steiner 
B; Sutskever I; Talwar K; Tucker P; Vanhoucke V; Vasudevan V; Viegas F; Vinyals O; Warden P; 
Wattenberg M; Wicke M; Yu Y; Zheng X TensorFlow: Large-Scale Machine Learning on 
Heterogeneous Distributed Systems 2016. arXiv:1603.04467. arXiv.org e-Print archive. https://
arxiv.org/abs/1603.04467

87. Reddi SJ; Kale S; Kumar S On the Convergence of Adam and Beyond 2019. arXiv:1904.09237. 
arXiv.org e-Print archive. https://arxiv.org/abs/1904.09237

88. Ertl P An Algorithm to Identify Functional Groups in Organic Molecules. J Cheminformatics 
2017, 9, 36. 10.1186/s13321-017-0225-z.

89. Exponential Moving Average from TensorFlow (We reimplemented it in PyTorch). https://
www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage (accessed Jan 2021)

90. Gilmer J; Schoenholz SS; Riley PF; Vinyals O; Dahl GE Neural Message Passing for Quantum 
Chemistry 2017. arXiv:1704.01212. arXiv.org e-Print archive. https://arxiv.org/abs/1704.01212

91. John P. C. St.; Guan Y; Kim Y; Etz BD; Kim S; Paton RS Quantum Chemical Calculations for over 
200,000 Organic Radical Species and 40,000 Associated Closed-Shell Molecules. Sci Data 2020, 
7, 244. 10.1038/s41597-020-00588-x. [PubMed: 32694541] 

Lu et al. Page 16

J Chem Inf Model. Author manuscript; available in PMC 2022 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://arXiv.org
https://arxiv.org/abs/1603.04467
https://arxiv.org/abs/1603.04467
http://arXiv.org
https://arxiv.org/abs/1904.09237
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
https://www.tensorflow.org/api_docs/python/tf/train/ExponentialMovingAverage
http://arXiv.org
https://arxiv.org/abs/1704.01212


Figure 1. 
Data Preparation Protocol for Frag20. Frag20 is built based on ZINC and PubChem, and 

after data preprocessing, we first created Mol20. In molecule fragmentation, each molecule 

was cut into scaffold and side chains which are colored differently. To select molecules, 

extended functional group (EFG) library has been generated based on Mol20. EFG can be 

used to fully describe a molecule through chemical groups. Here, different color means 

different EFGs. Molecule selection is based on the number of heavy atoms, EFG, and 

fragment frequency. After 1D (SMILES) to 3D (geometry) labeling, we finally built Frag20.
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Figure 2. 
1D (SMILES) to 3D (Geometry) Labeling Pipeline.
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Figure 3. 
Overview of PhysNet47 and sPhysNet Architecture. (A) Original PhysNet architecture. (B) 

sPhyNet architecture, noted that the number of modules decreased to 3 and only the last 

module (Module 3) contributes to the output. (C) A single PhysNet module, consists of an 

interaction module, residual module(s), and an output module. (D), (E) and (F) are 

interaction module, residual module and output module, respectively.
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Table 1.

Datasets
a
 Used for Machine Learning Model Development and Evaluation. Frag20, Plati20 and CSD20 

datasets are newly developed in this work.

Name Source #Heavy 
Atoms Atom Type #Mols/Confs Geometry Property

QM9
a

GDB-9 [1, 9] H, C, O, N, F 133,885
B3LYP/6-31G(2df,p)

B3LYP/
6-31G(2df,p)

QM9M
b MMFF

Frag20 ZINC & 
PubChem [1, 20] H, B, C, O, N, F, P, S, 

Cl, Br 565,438/566,296

MMFF & B3LYP/
6-31G* B3LYP/6-31G*

eMol9
b eMolecules & 

GDB-9 [1, 9] H, C, O, N, F 9959/88,234

Plati20 Platinum [10, 20] H, C, O, N, F 401/20,972

CSD20 CSD [2, 20] H, C, O, N, F, P, S, Cl, 
Br 33,572/39,816

a
QM9 is constructed by Ramakrishnan et al.59

b
In our recent work, we built QM9M and eMol9 datasets. QM9M provides MMFF optimized geometry for each molecule in QM9. eMol9 dataset 

is a conformation dataset built using overlapping molecules of QM9 and eMolecules74. Detailed information can be found in Ref 38.
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Table 2.

RMSD Information for Datasets.

Dataset S1
a S2 ≤0.2

b (0.2, 0.5] (0.5, 1.0] (1.0, 1.5] (1.5, 2.0] >2.0

Frag20 DFT MMFF 325954 155923 70873 11717 1598 231

Plati20
c

Cry MMFF 95 140 129 36 1 0

Cry DFT 75 131 157 37 1 0

CSD20

Cry MMFF 21888 12527 4590 710 90 11

Cry DFT 26678 8855 3245 834 180 24

DFT MMFF 27487 9292 2731 261 39 6

a
S1 is the abbreviation of structure 1 and S2 is the abbreviation of structure 2. Here, RMSD is between S1 and S2.

b
RMSD Unit is Å.

c
The RMSD for the crystal structure of protein-bound ligand conformation and optimized structure of Plati20 is the smallest RMSD achieved by all 

generated conformations of corresponding molecule.
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Table 3.

Difference in Hyperparameters of PhysNet and sPhysNet.

Name PhysNet sPhysNet

num_feature
a 128 160

Nmodule 5 3

Nresidual 
atomic  2 1

Nresidual 
interaction  3 1

Nresidual 
output 

1 1

Total trainable params 1.29M 0.74M

a
num_feature is the length of the atom vector.
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Table 4.

Performance on QM9 and QM9M Datasets (Training Set Size is 100k)
a
.

Architecture DTNN_7ib PhysNet sPhysNet

Geometry DFT MMFF DFT MMFF MMFF DFT MMFF MMFF

Training ETE
b

TL
c ETE TL FT

d ETE TL FT
c

MAE (kcal/mol) 0.34 0.79 0.21 0.50 0.34 0.19 0.57 0.35

RMSE (kcal/mol) 0.86 1.44 0.52 1.01 0.79 0.49 1.03 0.81

Error > 1kcal/mol - - 1.72% 11.08% 6.12% 4.41% 14.16% 6.42%

Error > 10kcal/mol - - 0.03% 0.09% 0.06% 0.05% 0.09% 0.07%

a
Performance of other state-of-the-art models (kcal/mol) as reference: SchNet82: 0.26; HIP-NN28: 0.26; MPNN90: 0.42; DimeNet56: 0.18

b
ETE refers to end to end training;

c
TL represents transfer learning;

d
FT refers to fine-tuning.
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Table 5. (A)

sPhysNet Performance on Molecular Datasets (Training Set Size is ~590k).

Test set Metric DFT-optimized MMFF-optimized

Frag20

MAE (kcal/mol) 0.34 0.63

RMSE (kcal/mol) 0.72 1.23

Error > 1kcal/mol 5.54% 16.96%

Error > 10kcal/mol 0.04% 0.14%

CSD20

MAE (kcal/mol) 0.82 1.36

RMSE (kcal/mol) 1.57 2.33

Error > 1kcal/mol 24.91% 42.04%

Error > 10kcal/mol 0.37% 0.70%
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Table 5. (B)

sPhysNet Performance on Plati20 (Training Set Size is ~590k).

DFT-optimized MMFF-optimized

ErrorA MAE (kcal/mol) 0.72 1.40

RMSE (kcal/mol) 1.01 2.09

Error > 1kcal/mol 26.67% 47.34%

Error > 10kcal/mol 0% 0.25%

ErrorR

MAE (kcal/mol) 0.41 0.80

RMSE (kcal/mol) 0.50 1.00

Success Rate 67.49% 53.10%
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