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Abstract

COVID-19 was first reported as an unknown group of pneumonia in Wuhan

City, Hubei province of China in late December of 2019. The rapid increase in

the number of cases diagnosed with COVID-19 and the lack of experienced

radiologists can cause diagnostic errors in the interpretation of the images

along with the exceptional workload occurring in this process. Therefore, the

urgent development of automated diagnostic systems that can scan radiologi-

cal images quickly and accurately is important in combating the pandemic.

With this motivation, a deep convolutional neural network (CNN)-based

model that can automatically detect patterns related to lesions caused by

COVID-19 from chest computed tomography (CT) images is proposed in this

study. In this context, the image ground-truth regarding the COVID-19 lesions

scanned by the radiologist was evaluated as the main criteria of the segmenta-

tion process. A total of 16 040 CT image segments were obtained by applying

segmentation to the raw 102 CT images. Then, 10 420 CT image segments

related to healthy lung regions were labeled as COVID-negative, and 5620 CT

image segments, in which the findings related to the lesions were detected in

various forms, were labeled as COVID-positive. With the proposed CNN archi-

tecture, 93.26% diagnostic accuracy performance was achieved. The sensitivity

and specificity performance metrics for the proposed automatic diagnosis

model were 93.27% and 93.24%, respectively. Additionally, it has been shown

that by scanning the small regions of the lungs, COVID-19 pneumonia can be

localized automatically with high resolution and the lesion densities can be

successfully evaluated quantitatively.
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1 | INTRODUCTION

In late December 2019, a new type of coronavirus
mutated from the SARS-CoV family has first reported an

unknown group of pneumonia in Wuhan City, Hubei
province of China.1,2 The gene sequence of this new
unknown virus, leading to a severe acute respiratory syn-
drome, was found to be 70% similar to the SARS-CoV
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virus and was named SARS-CoV-2 by the International
Virus Taxonomy Committee.3 The same symptoms in
healthcare professionals interacting with patients rev-
ealed that SARS-CoV-2 can be infected from one person
to another. Within a short period, the virus spread to dif-
ferent parts of China and showed intercontinental spread
within a few weeks. This outbreak, which spread rapidly
and has a rarity in human history, was declared as a pan-
demic by the World Health Organization (WHO) on
February 11, 2020 and was named the new coronavirus
disease 2019 (COVID-19). As of May 6, 2020, WHO con-
firmed that there are approximately 3.5 million positive
cases worldwide. Unfortunately, 247 503 positive cases
resulted in death.4 The fact that the mortality rate in posi-
tive cases worldwide remaining at a high level of mortal-
ity as 6.89% reveals the importance of developing speed
diagnosis and treatment methods for COVID-19 in a
short time.

COVID-19 symptoms, which may differ from person
to person, generally appear as severe respiratory failure
syndromes such as high fever, sore throat, shortness of
breath, and dry cough.5 In the clinical area, reverse
transcription-polymerase chain reaction (RT-PCR) testing
is used as a key indicator for people who are suspected of
having these symptoms. In the detection of nucleic acid
forms from COVID-19, test outputs must be confirmed
by gene sequencing for blood and respiratory samples.6

However, the difficulty of the application of the PCR test,
limitations arising from production dynamics, and low
sensitivity increase the interest in radiological imaging
methods as an alternative. Studies have demonstrated
that radiology imaging methods have specific features
related to the COVID-19 outbreak. X-ray and computed
tomography (CT) technics are the most effective imaging
methods used by physicians. COVID-19 lesions can be
diagnosed by analyzing them with radiography tech-
niques.7 Additionally, the damage caused by the pan-
demic in the lung, and the changes in abnormalities with
the treatment applied can be followed from CT images
and evaluations can be made about the condition of the
patient. Therefore, it is of great importance to compre-
hensively handle radiological imaging methods.

The main finding of COVID-19 is pneumonia. Bilat-
eral pneumonia accompanies 75% of cases related to the
disease. Pneumonia-induced abnormalities occur in CT
images as ground-glass opacities (GGO), paving-stone
appearance, ground glass, and consolidation, vascular
enlargement in the lesion, traction bronchiectasis, and
pleural thickening.8,9 The course of the disease can be
evaluated by examining the abnormalities caused by
COVID-19 lesions from CT images by radiologists. In par-
ticular, GGO is one of the main parameters considered in
the detection and evaluation of COVID-19. Changes

occur as the disease increases or decreases in these
abnormalities. An increase in the number and size of
GGO, an increase in the number of lobes held, paving
stone appearances, the development of multifocal consol-
idations, interlobular septal thickening and pleural effu-
sion can be observed with the disease progression.10,11 In
patients with a tendency to heal, naturally decreases
occur in GGO numbers and sizes, number of lesions, and
lobes held. Due to the extraordinary rate of increase in
the number of patients and the lack of specialists in radi-
ology, one-to-one manual examination of the changes in
these abnormalities can lead to remarkable time con-
sumption and human-induced errors. Therefore, auto-
matic analysis of COVID-19 pneumonia and the course
of the disease with changes in lesions from CT or X-ray
images by computer-aided diagnosis (CAD) systems can
alleviate the burden of health centers suffering from a
lack of radiologists. In this study, the successful perfor-
mance of deep learning algorithms, which have been one
of the artificial intelligence technologies in the diagnosis
of various diseases from biomedical images, has been the
main source of motivation for the detection and localiza-
tion of lesions from CT images related to COVID-19
pneumonia.

Studies related to the automatic diagnosis and evalua-
tion of various diseases with a machine learning
approach from biomedical images have been the focus of
attention in recent years. Since the deep learning
approach can successfully deliver the desired outputs
without the need for a separate feature extraction
increases its popularity in the field of biomedical image
processing day by day. Moreover, feature extraction that
forms the backbone of conventional methods and the
ability to overcome the time and effort spent in its selec-
tion with deep learning makes deep learning algorithms
more advantageous than other conventional methods. It
is known from the literature that deep learning performs
successfully in the screening of diabetic retinopathy from
fundoscopic images,12 metastatic breast cancer cells from
pathological images,13 and brain tumors from magnetic
resonance imaging.14 Automatic detection of lung nod-
ules from X-ray and CT images for early diagnosis of lung
cancer,15,16 detection of interstitial lung disease patterns
from high-resolution CT images,17 and characterization
and detection of different levels of tuberculosis findings
are the application areas where the deep learning-based
models achieve superior success in chest radiological
images.18 The performance of deep learning-based CAD
systems is the driving force for researchers to move
toward this approach for automatic early detection and
evaluation of COVID-19.

For the COVID-19 pandemic, which only spreads
across all world within weeks, it is essential to develop
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CAD systems that can assist clinicians in their diagnosis
and follow-up. Inspired by the performance of deep
learning in biomedical images in the past, researchers
have attempted to demonstrate the functionality of deep
learning-based algorithms in the early diagnosis of
COVID-19. In this context, many successful deep
learning-based CAD models have been introduced to the
literature in a short period of time. Ardakani et al19 pro-
posed 10 different CNN models for the diagnosis of
COVID-19 from CT images. Researchers demonstrated
that the deep learning technique can be a supporting tool
for physicians. They achieved the highest success for
ResNet-101 and Xception architectures. Thus, they gave
the researchers an idea about which architecture can be
preferred. Amyar et al20 tried to perform multitask learn-
ing based COVID-19 lesion detection and segmentation
from CT images. They obtained the classification accu-
racy as 86%. Ucar and Korkmaz21 implemented a multi-
class classification using deep Bayes-SqueezeNet
architecture. They demonstrated that COVID-19, normal,
and non-COVID-19 pneumonia can be classified from
X-ray images with their proposed model. Chen et al22

used data replication for the segmentation of lesion pat-
terns originated by COVID-19 formed as GGO, consolida-
tion, and pleural thickening. They observed that it
effectively changed the classification performance. Zheng
et al23 proposed a unique model for the automatic early
diagnosis of COVID-19 and called it DeCovNET. With
their proposed model, they obtained 90.8% classification
accuracy from CT images. In the literature, it is seen that
CT and X-ray images have been used in early diagnosis
and segmentation studies based on deep learning.
Contrary to X-ray images, CT images were used for the
automatic detection and high-resolution localization of
COVID-19 pneumonia lesions in this study, since CT
images provide three-dimensional visualization of the
anatomical structure and have high sensitivity and low
inter-interpretive differences in lesion detection in the
lungs.24

The important subjects that will contribute to the lit-
erature in engineering and clinical fields with this study
are highlighted below:

1. A novel deep convolutional neural network (CNN)
that can automatically detect patterns of lesions cau-
sed by COVID-19 from chest CT images was pres-
ented. In the deep learning-based automatic diagnosis
models recommended in the literature, the lungs are
usually handled with full or large-scale clipped
regions. Unlike the literature, this study shows that
lesion patterns can be detected for very small lung
regions.

2. Detection of lesions in the lungs by radiologists is a
tiring activity that requires a lot of effort. These chal-
lenges can be overcome with the proposed high preci-
sion deep learning-based scanning system.

3. It is demonstrated that by taking into consideration
small lung regions, pneumonic infiltration lesions in
the CT of patients with COVID-19 can be localized
with high accuracy and advanced resolution than the
literature by using the proposed model.

4. The patient's response to the treatment is evaluated by
the attentive examination of the lesion density by radi-
ologists. It is possible to add quantitative values to the
qualitative evaluations made by radiologists with the
proposed model.

The remainder of this article is structured as follows: In
the material and method section, details of CT images
collected on COVID-19 pneumonia, pretreatment steps
applied to CT images and proposed CNN model are
described. The performance of the deep learning-based
model proposed for automatic diagnosis and localization
of lesions is explained in detail in the experimental result
section with model performance criteria. In this context,
the results of the deep learning-based state-of-the-art
models proposed in the literature are compared with the
results obtained in this study and significant differences
are interpreted in the discussion section with a different
perspective. Finally, the study is concluded with the con-
clusion section.

2 | MATERIALS AND METHODS

2.1 | Axial CT image acquisition

In this study, CT images used for training and testing of
the proposed model were taken from two different pub-
licly available sources. One of the sources is the platform
shared by researchers from different regions of the
world.25 It is an updateable data source where researchers
from different regions are constantly adding new images.
From this accessible database, 19 axial CT images of
9 patients were obtained. The other source includes the
majority of the radiological images we used in the study.
This resource contains accessible axial CT images shared
by the Italian Society of Medical and Interventional Radi-
ology.26 110 axial CT images taken from 60 patients diag-
nosed with COVID-19 were included in this study and an
image data pool containing 129 COVID-19 pneumonia
lesion-related abnormalities in total was formed. As a
result, 102 CT images were approved by the expert radiol-
ogist for evaluation. Figure 1 shows axial CT images
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taken from three patients diagnosed with COVID-19 ran-
domly selected from the collected data set.

2.2 | Data preprocessing

An experienced radiologist marked the lesions before the
researchers processed the COVID-19 lesions findings.
Thus, the training and testing processes of CNN-based
automatic diagnostic models can be carried out success-
fully and reliably. In this context, the marking of COVID-
19 lesions from axial CT images collected in this study
was performed by a specialist radiologist. Accordingly,
abnormalities originated from COVID-19 pneumonia
such as GGO, a paving stone appearance, ground-glass
and consolidation, vascular enlargement in the lesion,
traction bronchiectasis, and pleural thickening were care-
fully marked on the CT images. Figure 2 shows three
sample CT images with lesion findings marked by the
radiologist.

For the automatic detection and localization of abnor-
malities such as GGO and consolidation or pleural effu-
sion caused by COVID-19 pneumonia in CT images, data
sets of different classes must be created with the proposed
deep CNN model. In this context, all CT images obtained
in different sizes were resized to 1200 × 800 pixels and
standardized for segmentation. The regions scanned for
the lesions by the radiologist were labeled as COVID-
positive and other regions without any lung lesion were
labeled as COVID-negative. Given the densities of the
shaded regions related to the lesions, it was decided that
28 × 28 size segmentation would be suitable for capturing
both COVID-positive and COVID-negative characteristic
features. The segmentation process provided a detailed
analysis of the regions where COVID-19 lesions spread in
CT images. From the CT images scanned by the radiolo-
gist, a total of 16 040 CT image segments belonging to the
10 420 COVID-negative and 5620 COVID-positive classes
with a size of 28 × 28 pixels were obtained. A sufficient
number of images were obtained for efficient training of

FIGURE 1 Axial computed tomography (CT) images of patients diagnosed with COVID-19: A, Ground-glass opacities (red arrow) and

consolidation (blue arrow) in the right lobe, B, ground-glass and consolidation in the left lobe, ground-glass opacity in the right lobe, C,

pleural effusion in the left lobe (yellow arrow ground-glass opacities and consolidation appear in both lobes)26 [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 2 COVID-19 lesions manually scanned by the radiologist: A, Ground-glass opacities and consolidation, B, ground-glass and

consolidation, and C, pleural effusion, ground-glass opacities, and consolidation in the left lobe [Color figure can be viewed at

wileyonlinelibrary.com]
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the deep learning-based model. Furthermore, the analysis
made for 28 × 28 pixels patterns allowed the localization
process to be performed more specifically. The segmenta-
tion process of CT images diagnosed with COVID-19 is
demonstrated in Figure 3.

2.3 | Deep CNNs

The conventional classifier algorithm based CAD systems
consists of hierarchical methodologies, including the
detection of patterns related to the problem from any bio-
medical image, the process of feature extraction, which
usually requires intense labor and time, and then the
classification of the extracted features. However, in
recent studies, it has been accepted that the most distinc-
tive features of patterns can be extracted with multilay-
ered systems.27,28 Deep learning algorithms take part in
this structure by being distinguished from conventional
classifiers, in terms of both architectural structure and
layer types. In this study, the CNN model, which is one
of the deep learning techniques and has an effective
potential especially in computer vision, was used to
detect and localize lesions caused by COVID-19 from
axial CT images. CNN's ability to successfully extract
complex image features and perform nearly perfect in
the medical area has been our primary source of
motivation.

The CNN tries to learn high-level hidden information
in data using hierarchical architectures.29 By training the
convolutional layers quickly, they can successfully adapt
to the biomedical image classification process. The train-
ing process of the proposed network structure plays a key
role in achieving the desired outcomes. The training of
the CNN algorithm, which is a powerful tool in image
processing, takes two steps. These stages are described as
forward and backward oriented processes. In the CNN
algorithm, the raw image given to the input of the net-
work is tried to be expressed as weight and bias value in
each layer. Then, the gradient values of each parameter
are calculated according to the chain rule. The parame-
ters considered as a result of these processes are updated
according to their gradient values. The update of each
weight and bias value in the CNN model during the
training process is given in Equations (1) and (2),
respectively.

ΔWl t+1ð Þ= −
xλ
r
Wl−

x
n
∂C
∂Wl

+mΔWl tð Þ ð1Þ

ΔBl t+1ð Þ= −
x
n
∂C
∂Bl

+mΔBl tð Þ ð2Þ

The decision-making process for the final output in the
CNN algorithm is similar to the artificial neural network.
Here, W, B, l, λ, x, n, m, t, and C correspond to weight,

FIGURE 3 The segmentation process of computed tomography (CT) images diagnosed with COVID-19 pneumonia: Scanned regions

related to lesions on 1200 × 800 CT images (COVID-positive), obtaining 28 × 28 sub-CT images for other regions (COVID-negative) without

any findings of lesions [Color figure can be viewed at wileyonlinelibrary.com]
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bias, number of layers, regulation parameter, learning
coefficient, the total number of training samples, momen-
tum coefficient, update step, and cost function, respec-
tively.30 Although the CNN architecture, which is based
on the feed-forward network structure, has many varia-
tions, it generally consists of three basic layers. These are
convolutional, pooling, and fully connected layers.

2.3.1 | Convolutional layer

It is the main part of the CNN structure, and the algo-
rithm derives its real power from convolution processing.
In this layer, it creates new feature maps from input
images or previous feature maps.31 The convolutional
layer consists of a series of convolution kernels. The con-
volution kernel slides over the image to take the
weighted sum of the pixels it touches and calculates the
outputs that make up the feature map. Each neuron in
the feature map establishes a series of weighted connec-
tions with neighboring neurons in the previous layer.32

The mathematical expression of the operations carried
out in the convolutional layer is given as follows;

y=
XJ−1

j=0

XI−1

i=0

wijxm+1,n+ j + b, 0≤m≤M,O≤n≤Nð Þ ð3Þ

where the input image given to the convolutional layer is
the w JxI dimension convolutional kernel, b is bias, and
y is the feature map resulting from convolutional. All
neurons in a feature map have constrained weights equal.
However, different feature maps in the same con-
volutional layer have different weights. So, many features
can be extracted from each region.33

2.3.2 | Pooling layer

The pooling layer generally follows the convolutional
layer.28,29 The purpose of this layer is to reduce the spatial
size and complexity of feature maps. In this way, it speeds
up the training of the network and enables the decision
mechanism to work efficiently. In addition, the pooling
process can overcome possible overfitting problems by
better generalizing the learning phase of the deep model.
It is often stated in the literature that max-pooling layer
gives more successful result.34 Maximum pooling, which
captures invariances efficiently, is considered the most
commonly used layer in ESA architectures. Therefore, in
this study, the max-pooling operator was chosen to
reduce the size and complexity of feature maps extracted
from CT image segments in the convolutional layer.

2.3.3 | Fully connected layer

This layer generally comes after the last convolutional or
pooling layer. The working principle of fully connected
layers is like conventional artificial neural networks.29,35

During the learning of the network, approximately 90% of
the parameters are located in this layer. In ESA algorithms,
feature maps generated after the last pooling or convolution
layer are transformed into vectors of the column. Feature
vectors obtained by flatten process are given as input to
fully connected layer. Thus, decision-making is achieved.

2.3.4 | Activation functions

Rectified linear units (ReLUs) and softmax functions were
used in this study for the automatic detection and localiza-
tion of COVID-19 lesions. The activation functions in the
deep structure keep the outputs in the predetermined limit
so that the proposed models offer desired and accurate out-
puts. In the CNN approach proposed for COVID-19 auto-
matic detection, ReLU and softmax activation functions are
used instead of sigmoid functions. The mathematical
expression of the ReLU activation function is given in
Equation (4). In the ReLU activation function, if the input
value is less than zero, the output is zero, if it is greater than
zero, the output is equal to the input. ReLU activation func-
tion is very similar to biological nerve cells with this ability.

f xð Þ= 0 if x <0

x if x≥0

�
ð4Þ

The softmax function creates a probability distribu-
tion function for k outputs. It is preferred in very prob-
lematic classification processes. In this study, the softmax
function was used to distinguish the findings of COVID-
19 lesions from healthy lung region (Equation (5)).

Pj =
exj

Pk
1
exk

for j=1,2,3…k ð5Þ

where k is the total number of classes and j is classes.

2.4 | The CNN architecture for diagnosis
and localization of COVID-19 pneumonia

In this study, a six-layer CNN architecture is proposed for
the detection of COVID-19 pneumonia lesions from CT
images of lung region. In architecture, there are two
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convolutional and two max-pooling layers as the structure
that captures the characteristic features from the images.
Feature maps produced by these layers, inspired by the
visual cortex, are subjected to flatten. One-dimensional fea-
ture vectors produced by the flatten process are classified
through fully connected layers that work like a typical
feed-forward neural network. In the first convolutional
layer, 32 convolution kernels of 5 × 5 dimensions and in
the second convolutional layer, 64 convolution kernels of
5 × 5 dimensions were used. In the pooling layers follow-
ing the convolutional layers, the max-pooling operator was
chosen, and its kernel dimension was set as 2 × 2 size.
Accordingly, the dimensions of the feature maps made in
the convolutional layers were halved and the spatially
invariant was increased. The optimum performance in
diagnosing lesions related to COVID-19 was determined
by trial and error method. Considering many combina-
tions, the most effective hierarchical architecture decided
in detection and localization is given in Table 1.

In the pre-processing step, 1200 × 800 pixels axial CT
images evaluated by an experienced radiologist were divided
into two sections as regions where lesions are observed and
not observed. The segregated lung regions were taken into
account as sub-CT image segments in 28 × 28 pixels. As a
result of the first convolutional layer from each image seg-
ment related to the COVID-positive and COVID-negative
classes, 24 × 24 dimensions feature maps were produced
and then resized to 12 × 12 with the applied maximum
pooling layer. In the second convolutional layer, new feature
maps in size 8 × 8 were generated from the feature maps of
12 × 12 size and were resized to 4 × 4 in the last pooling
layer. Thus, the approximation and detail features of lesion
findings from the lung CT image segments were attempted
to be captured. Figure 4 shows the graphical representation
of the proposed CNN structure.

2.5 | Training and testing process of the
proposed CNN-based CAD system

Classification of 16 040 CT image segments obtained dur-
ing the pre-processing, 10 420 of which were COVID-neg

ative and 5620 of which were COVID-positive, was car-
ried out by considering a certain methodology with the
proposed deep learning model. The CT images of the two
classes were divided into 80% for the network training
and 20% for the network testing. Then, 25% of the images
allocated to training were used as a validation data set so
that the network does not overfitting and can make a
good generalization. To reliably evaluate the ability of the
network to automatically detect patterns related to
lesions, fivefold cross-validation was applied. Thus, all
images in the COVID-negative and COVID-positive clus-
ters were included in both the training and testing pro-
cesses. Evaluation of the performance of the network by
applying the fivefold cross-validation is given in
Equation (6).

Overall evaluation=
1
5

X5
i=1

fold ið Þ ð6Þ

In the training of the model proposed for the automatic
detection and localization of COVID-19 lesions, the sto-
chastic gradient descent with momentum (SGDM) opti-
mization method was preferred. As is known from the
literature, it can give more successful results than other
adaptive optimization methods.36 In the training of the
network, the appropriate initial learning rate was deter-
mined as 0.001 to avoid a long period in which the net-
work can get stuck during learning or rapid learning
without optimal weight values. Momentum coefficient
was taken as 0.9 to reduce possible oscillations and
shorten the time to reach the target with the SGDM
method. For the proposed model to perform successful
learning, mini-batch size 128 and maximum epoch num-
ber 10 are the other parameter values selected.

Successful training of CNN architectures in image
processing problems is associated with determining
hyperparameters for the network. In this study, parame-
ters such as the number of filters and filter size used in
the convolution layer, pooling type, dropout rate, initial
learning rate, and the number of neurons in the fully
connected layer were determined by trial and error. The

TABLE 1 The proposed CNN

architecture Layers
Kernel
size

Numbers of
kernels

Number
of neurons Stride

1. Convolution 5 × 5 32 — 1

Max-pooling 2 × 2 32 — 2

2. Convolution 5 × 5 64 — 1

Max-pooling 2 × 2 64 — 2

Fully connected — — 2048 —

Fully connected — — 2 —

Abbreviation: CNN, convolutional neural network.
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evaluation process was made based on combinations of
different values of these parameters. The combination
that offers the most successful results is considered as
optimum hyperparameters.

2.6 | Evaluation criteria of the proposed
model

The success of the model proposed in this study for the
automatic detection and localization of COVID-19 lesions
was evaluated in terms of the accuracy, sensitivity, speci-
ficity, precision, and F1-score criteria. These criteria are
often preferred to evaluate the performance of automatic
diagnostic systems. Accuracy is the success of the pro-
posed model in the classification of lung CT image seg-
ments labeled COVID-positive and COVID-negative,
sensitivity represents the accuracy of the findings it
detects as COVID-19, and specificity indicates the accu-
racy of the image segments that it perceives as COVID-
negative. In this study, the accuracy of the data tested
was determined using the F1-score criterion.

3 | RESULTS

In this study, all of the methods based on deep learning
suggested for the automatic diagnosis and localization of
COVID-19 lesions were implemented in MATLAB
(MathWorks, Natick, Massachusetts) programming envi-
ronment running on Intel Core i7 8700, NVIDIA GeForce
ROG-STRIX 256 bit 8GB GPU and 16 GB RAM memory.
Experimental findings on the ability of the proposed
model to diagnose lesions and quantitatively interpret
their density by showing the lung sections where the
lesions spread are discussed under two separate
headings.

3.1 | Detection of patterns related
to COVID-19 lesions

Regions of the lungs, where no lesion related findings
were observed during pre-processing of the CT images
and regions observed as GGO, consolidation and pleural
effusion of lesions were separated into distinct segments.
The regions related to healthy and lesions were epoched
to two-dimensional 28 × 28 pixels subimage segments,
taking into account the lesion pattern volumes manually
scanned by the radiologist. Then, 10 420 CT image seg-
ments without any findings were labeled as COVID-
negative and 5620 CT image segments where the findings
related to the lesions observed in various forms were
labeled as COVID-positive. In this way, by performing
binary classification, the diagnostic performance of the
proposed model was evaluated.

The unbalanced distribution between data sets to be
classified in conventional machine learning or deep
learning algorithms negatively affects classification per-
formance.37 The overfitting problem may occur for the
class, which constitutes the majority in the data distribu-
tion by the proposed classifier model. This possibility is
undesirable and can be observed by inconsistencies in
model performance metrics. Taking into consideration
the mentioned handicaps, the classification process in
this study was carried out by following two different data
distribution strategies. Due to the existing unbalanced
distribution of the number of image segments between
classes, the first strategy aimed to balance the data distri-
bution. In this strategy, 5620 images belonging to the
COVID-positive class and 5620 image segments randomly
selected from the COVID-negative class were used. Thus,
an equal number of CT image samples were obtained for
the two classes. In the second classification strategy, all
image segments of both classes were used, and the classi-
fication performance offered by the proposed model

FIGURE 4 Graphical representation of the proposed convolutional neural network (CNN) model [Color figure can be viewed at

wileyonlinelibrary.com]
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against both conditions was compared. Table 2 shows the
number of images reserved for training, validation, and
testing for both classification strategies.

The CT images data were randomly divided into five
equal portions. Four out of five portions of the image
segments were used to train CNN while the remaining
one-fifth of the images used to test the performance of
the system. This strategy was repeated five times by
shifting the test and training dataset. In order to reliably
evaluate the ability of the network to automatically detect
patterns related to lesions, fivefold cross-validation was
applied. Confusion matrices for the classification perfor-
mance obtained for the two strategies applied in the
image data distribution are demonstrated in Figure 5 for
overall and each folding stage.

The performance of the proposed model was evalu-
ated considering the frequently used model performance
criteria. The results obtained for both data distributions
are given in Table 3.

As can be seen in Table 3, the proposed model per-
formed more efficiently in the strategy in which the dis-
tribution between classes was balanced. It was able to
classify CT image patterns related to COVID-19 lesions
with 93.26% accuracy. In the strategy in which all data
were included in the classification process and an unbal-
anced distribution observed, the proposed model pro-
vided a classification accuracy of 90.38%. Given the
number and size of images considered, it is clear that the
proposed model works quite efficiently. The sensitivity
and specificity model performance criteria are indicators
to understand that the deep learning-based model can
make a good generalization for any class. The sensitivity
and specificity criteria obtained in the balanced distribu-
tion of classes were 93.27% and 93.24%, respectively. For
the strategy in which all images are included in the pro-
cess, sensitivity and specificity were observed as 90.50%
and 90.32%, respectively. In general, it can be observed
that the performance is at a more successful level for a
balanced distribution. For the balanced distribution strat-
egy, the relevant ROC curves and area under the ROC
curve (AUC) values for each fold process are shown in
Figure 6.

As seen in Figure 6, the average AUC value obtained
with the fivefold cross-validation was 97.58%. The

learning curves of the proposed model related to the
training and validation data sets used for each fold are
shown in Figure 7.

3.2 | Automatic localization of COVID-19
findings

In this section, it is showed that the advanced model can
localize abnormalities with a higher resolution than the
literature, taking into account approximately 0.63%
smaller regions from the lungs and scanning COVID-19
pneumonia lesions for these regions. For all CT images,
considering all lung regions and 28 × 28 pixels images
taken into consideration, the image segments used corre-
spond to an average of 0.63% slices of the lungs. The
mathematical equation is defined as follows;

Slice size %ð Þ= 1

1
N

PN
n=1

covp+ covnð Þn
� � × 100 ð7Þ

where N represents the raw CT images taken from the
patient, and convp and convn represent the COVID-
positive and COVID-negative image segments, respectively.

Abnormalities such as GGO, paving stone, ground
glass and consolidation, vascular enlargement in the
lesion, traction bronchiectasis, and pleural effusion have
been shown to be localized correctly from the CT
images. For six samples randomly selected from CT
images taken from patients diagnosed with COVID-19,
the localization of lesion findings done by a radiologist
manually and automatic localization performed by the
proposed model in this study were compared in
Figure 8. The localization process was applied to differ-
ent images that were not previously used in training and
testing the network.

As shown in Figure 8, the localization of the findings
made by applying the proposed model overlaps with
those made by the radiologist. With the correct automatic
localization process used in this study, it was shown that
time loss and a huge workload caused by manual exami-
nation of radiologists can be overcome with this system.
Furthermore, the quantitative evaluation of the density

TABLE 2 Different distribution

strategies for the image segments that

form the classes

Balanced distribution The all data

Train Validation Test Train Validation Test

COVID-positive 3372 1124 1124 3372 1124 1124

COVID-negative 3372 1124 1124 6252 2084 2084

Total 6744 2248 2248 9624 3208 3208
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of the lesions in the lung can successfully be carried out
by localization. The quantitative evaluation of the density
of the lesions was applied according to the formula given
below.

Lesion density =

P
covid p0ð ÞP

covid pð Þ+covid nð Þ ð8Þ

where covid(p) and covid(n) represent the reel COVID-
positive and COVID-negative image segments, respectively.
covid(p

0
) represents the COIVD positive lesion segments

marked by the proposed model. Lesion densities are shown
in Figure 9, quantitatively for six randomly selected sam-
ples from CT images from patients diagnosed with
COVID-19.

FIGURE 5 Overall and test confusion matrices for each fold in COVID-19 detection with the proposed model: A, Balanced distribution,

and, B, Unbalanced distribution [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 3 Model performance

values of the proposed model

performance related to different data

distribution strategies

Accuracy Sensitivity Specificity Precision F1-score

Balanced distribution 0.9326 0.9327 0.9324 0.9387 0.9331

The all data 0.9038 0.9050 0.9032 0.8551 0.8714

FIGURE 6 The ROC curves and area under the ROC curve (AUC) values for each fold related to a balanced distribution [Color figure

can be viewed at wileyonlinelibrary.com]
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FIGURE 7 The learning curves of the proposed model related to the training and validation data sets used for each fold [Color figure

can be viewed at wileyonlinelibrary.com]

FIGURE 8 Automatic localization of COVID-19 pneumonia findings with the model proposed: Raw computed tomography (CT) images

without any processing, manual screening of COVID-19 findings by an expert radiologist (red borders), visualization of the findings by

automatically scanning the same images with the proposed model (the findings are represented in purple) [Color figure can be viewed at

wileyonlinelibrary.com]
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4 | DISCUSSION

The main tools used in the diagnosis of COVID-19 are
the developed RT-PCR and radiological images. It is inev-
itable to include radiological imaging techniques such as
CT and X-ray imaging in the diagnosis process, to make
the correct diagnosis to patients who display suspicious
symptoms but whose other tests may show false negativ-
ity. Although the RT-PCR test was negative in the first
attempts, there are also examples that CT images have
positive findings and the diagnosis reached by CT imag-
ing technique appears to be accurate. Therefore, this situ-
ation puts an important responsibility to the experienced
and competent experts in the field of CT in radiology dur-
ing the pandemic process. The rapid increase in the num-
ber of cases diagnosed with COVID-19 increases the need
for radiologists experienced in the medical area.23,38 Man-
ual examination of the chest radiology images by a rela-
tively small number of radiologists will inevitably lead to
human-induced errors in the interpretation of the CT
images, along with the heavy workload. Due to the hand-
icaps mentioned above in the medical area, the develop-
ment of the CAD system that can automatically diagnose
COVID-19 lesions from lung CT images has been our pri-
mary motivation. Based on this motivation, a deep learn-
ing model was developed that can automatically detect
and localize COVID-19 findings using CT images. Unlike
the literature, it was possible to detect COVID-19 lesions

even in very small regions of the lungs. In this context,
10 420 CT image segments without any lesions were clas-
sified as COVID-negative, and 5620 CT image segments,
in which the findings related to the lesions were detected
in various forms, were classified as COVID-positive. In
this way, a large and comprehensive data set was consid-
ered, unlike small data sets handled in the automatic
diagnosis models proposed in the literature. CNN archi-
tecture recommended in the literature was used as the
classification algorithm. The 93.26% classification accu-
racy of the model developed shows that the steps
followed in automatic detection of lesion findings are
correct.

It is known from the literature that the proposed deep
learning architectures give successful results on the
images obtained by the radiography method in the early
and accurate diagnosis of COVID-19. However, there are
some remarkable issues in these studies. The first one
that stands out is that the radiological images or image
segments of images used are limited. In this context,
Hemdan et al39 proposed a deep learning-based CAD sys-
tem that can assist radiologists in the diagnosis of
COVID-19. They tried to classify 25 COVID-negative and
25 COVID-positive labeled X-ray images using seven dif-
ferent deep convolutional network architectures and
compare the performances obtained for different archi-
tectures. They achieved the highest success as 90%. Sethy
and Behera40 proposed a hybrid model for automatic

FIGURE 9 Quantitative display of lesion densities for six randomly selected samples from patients diagnosed with COVID-19 [Color

figure can be viewed at wileyonlinelibrary.com]
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detection of COVID-19 from X-ray images. In their strat-
egy, they first extracted the feature using the ResNet-50
architecture, one of the deep learning algorithms and
tried to classify the extracted feature vectors with a sup-
port vector machine, one of the conventional classifica-
tion algorithms. With the hybrid model they proposed,
they achieved a 95.38% success in binary classification.
The classification process was carried out by considering
50 radiological images. Ozturk et al41 proposed the
DarkCovidNet-19 deep architecture with 17 convolutional
layers for automatic diagnosis of COVID-19 cases from
X-ray images. The deep architecture they proposed for
500 images related to any finding, 500 pneumonia (non-
COVID), and 125 COVID-19 positive image groups
showed 87.02% classification success. With our trained
model for a total of 16 040 image segments, it can be said
that a deep network with better-generalized weight
values was designed for automatic detection of COVID-
19 findings, considering the number of images examined
in the mentioned studies.

As in this study, there are many studies where the
segmentation approach is applied to detect COVID-19
lesions automatically from CT images. With the segmen-
tation process, a large number of images can be obtained
from CT or X-ray images, and the findings of the lesions
can be scanned in small regions of the lungs. Accord-
ingly, more data can be provided for the training of the
developed deep learning architectures. However, the
most outstanding deficiency in studies, which this
approach applied, is that the segmentation process is
done for large lung regions. In this context, Butt et al42

aimed early imaging of COVID-19 lesions in CT images
with their proposed deep learning-based model. It was
tried to increase the segmentation of CT image data sets
in the size of 60 × 60. With the model they recommend
based on ResNeT and location attention, they achieved a
diagnostic success of 86.7%. Ying et al38 proposed a model
that can detect COVID-19 findings from CT images with
detail relation extraction neural network (DRE-Net)
architecture. Segmentation was performed by dividing
CT images into 15 equal parts, and image segments for
777 slices of COVID-19 and 708 slices with no lesion find-
ings were obtained. They achieved a classification accu-
racy of 86% by using DRE-Net. Ardakani et al19 collected
CT images from 108 patients diagnosed with COVID-19
and 86 different viral pneumonia and achieved a total
of 1020 image segments for both classes by epoching in
60 × 60 pixels subimages. They achieved 99.51%
accuracy. Considering that image sizes before the seg-
mentation in the mentioned studies were 368 × 368 and
512 × 512 pixels, it can be understood that the CT image
segments taken into account in the classification process
correspond to the large lung regions. However, CT

images of 1200 × 800 pixels size were separated into
28 × 28 pixels size segments in our study. Thus, auto-
matic detection of COVID-19 lesions was made possible
for very small regions of the lungs. With this aspect of
our study, scanning at a higher resolution than the litera-
ture can be made. Although there are data sets extended
by segmentation in current studies, it can be said that
they are still far behind the number of image segments
achieved in this study.

Since COVID-19 is yet a new disease, there are
classification-based studies conducted in the literature
where data sets for the COVID-19 class have been
enlarged by obtaining artificial images from the original
images by several data augmentation methods. However,
it is noteworthy that the classification achievements have
changed significantly with the increase of COVID-19
image segments by the addition of artificial images by
researchers in these studies. As an example of these stud-
ies, Ucar and Korkmaz21 proposed a deep learning-based
model that can automatically diagnose COVID-19 from
X-ray images. With their proposed SqueezeNet with
Bayes optimization-based deep architecture, they classi-
fied X-ray images from healthy individuals and X-ray
images where pneumonia (bacterial, non-COVID-19) and
COVID-19 findings were observed. Data augmentation
was applied to overcome the imbalance between classes
due to the small number of COVID-19 related images.
Along with mirroring the original images, artificial
images were obtained by techniques such as adding
noise, increasing, and decreasing brightness. While
they offered a classification accuracy of 76.37% for the
model they proposed using original data, they achieved
an accuracy of 98.26% with artificial augmented images.
COVID-19 classification success was increased from 70%
for original images to 100% with data augmentation.
Chen et al22 suggested a U-Net based architecture for seg-
mentation of COVID-19 infections from CT images. To
increase the number of patterns, they generated artificial
images by rotating the original CT images at different
angles. While the success achieved using raw images was
79%, it was increased to 89% by the addition of artificial
images. The imbalance in the number of patterns that
form the classes will certainly affect the classification per-
formance. However, the application of various data aug-
mentation methods to achieve a balanced distribution
has directly affected the performance of the models pro-
posed in these studies. This situation negatively affects
the reliability of the performances of the proposed
models. In our proposed model, original image segments
were used in the unbalanced and balanced distribution of
the patterns that form the classes. Classification models
made with original images can be said to be more consis-
tent and reliable, with 90.38% and 93.26% classification
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successes for both unbalanced and balanced distribution,
respectively. The automated COVID-19 diagnostic model
proposed in this study and other deep learning-based
state-of-the-art models are compared in Table 4.

As seen in Table 4, the model proposed in this study
provides more successful results in comparison to the lit-
erature in the detection of COVID-19 lesions from radio-
logical images. In rare studies in the literature where
better classification accuracy is obtained in the diagnosis
of COVID-19, handicaps are predominant due to the use
of artificial image segments or very few radiological
images. Therefore, it is clear that the proposed model will
contribute to the literature in the early and accurate diag-
nosis of COVID-19.

In patients diagnosed with COVID-19, lesions occur-
ring in the lungs over time are examined by qualitative
evaluations from CT images by radiologists. It has been
shown that quantitative evaluation of the intensity of
COVID-19 lesions in the lungs over time can be

successfully made with the proposed deep learning-based
model. Thus, qualitative reports prepared by radiologists
can be enriched by including quantitative data in the pro-
posed model. The segmentation process is based on a pro-
posed original approach, eliminating the need to use
separate algorithms such as U-net. Also, the location of
the detected segments as well as their quantitative mea-
surement makes this approach a powerful method.

5 | CONCLUSION

In this study, it has been shown that lesions caused by
COVID-19 pneumonia can be detected from the proposed
CNN-based model CT images. The developed model
managed to detect patterns related to COVID-19 lesions
with an accuracy of 93.26%. In addition to this success,
the detection of very small regions in the lungs caused by
lesions from chest CT images is one of the most

TABLE 4 Comparison of the proposed automatic COVID-19 diagnostic model with other deep learning-based state-of-the-art models

Study Year
Type of radiological
images Methods Class labels

Overall
accuracy (%)

Amyar et al20 2020 Chest CT Deep learning-based
multitask model

COVID-19
Non-COVID

86

Ying et al38 2020 Chest CT DRE-Net COVID-19
Pneumonia (bacterial)

86

Xu et al42 2020 Chest CT ResNet with location
attention

COVID-19
Influenza viral pneumonia
Healthy

86.7

Ozturk et al41 2020 Chest X-ray DarkCovidNet-19 COVID-19
NO-finding Pneumonia
(non-COVID)

87.02

Li and Zhu43 2020 Chest X-ray DenseNet Pneumonia
Normal COVID-19

88.9

Hemdan
et al39

2020 Chest X-ray COVIDX-Net COVID-positive
COVID-negative

90

Zheng et al23 2020 Chest CT 3D deep CNN COVID-positive (data
augmentation)

COVID-negative

90.8

Wang et al44 2020 Chest X-ray Tailored deep CNN Normal
Pneumonia
COVID-19

92.6

Sethy and
Behera40

2020 Chest X-ray ResNet50 + SVM COVID-positive
COVID-negative

95.38

Ucar et al21 2020 Chest X-ray Squeeze-Net with Bayes
optimization

Normal
Pneumonia (bacterial)
COVID-19 (data
augmentation)

98.26

Proposed
model

2020 Chest CT CNN COVID-positive
COVID-negative

93.26

Abbreviations: CNN, convolutional neural network; DRE-Net, detail relation extraction neural network; SVM, support vector machine.
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important outputs of the proposed model. With the deter-
mination of the lesions correctly for very small lung
regions, the change of COVID-19 lesion densities over
time in the lungs of infected patients can quantitatively
be evaluated. The proposed model can be used as an aux-
iliary system by clinicians in the diagnosis and evaluation
of the disease with high accuracy in health centers,
where other molecular diagnostic tests are insufficient
during the outbreak.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are
openly available in covid-chestxray-datase at https://
github.com/ieee8023/covid-chestxray-dataset/, reference
number 25 and Italian Society of Medical and Interven-
tional Radiology at https://www.sirm.org/en/2020/03/
30/covid-19-management-strategy-in-radiology/, reference
number 26.

ORCID
Hasan Polat https://orcid.org/0000-0001-5535-4832

REFERENCES
1. To�gaçar M, Ergen B, Cömert Z. COVID-19 detection using

deep learning models to exploit social mimic optimization and
structured chest X-ray images using fuzzy color and stacking
approaches. Comput Biol Med. 2020;121:103805. https://doi.
org/10.1016/j.compbiomed.2020.103805.

2. Pereira RM, Bertolini D, Teixeira LO, Silla CN Jr, Costa YMG.
Covid-19 identification in chest X-ray images on flat and hierar-
chical classification scenarios. Comput Methods Programs Biomed.
2020;194:105532. https://doi.org/10.1016/j.cmpb.2020.105532.

3. International Committee on Taxonomy of Viruses (ICTV)
Website. https://talk.ictvonline.org/. Accessed February 14, 2020.

4. World Health Organization (WHO) Website. https://www.who.
int/emergencies/diseases/novel-coronavirus-2019/. Accessed May
6, 2020.

5. Al-Balas M, Al-Balas HI, Al-Balas H. Surgery during the
COVID-19 pandemic: a comprehensive overview and perioper-
ative care. Am J Surg. 2020;219(6):903-906. https://doi.org/10.
1016/j.amjsurg.2020.04.018.

6. Huang C, Wang Y, Li X, et al. Clinical features of patients
infected with 2019 novel coronavirus in Wuhan, China. Lancet.
2020;395:497-506. https://doi.org/10.1016/S0140-6736(20)30183-5.

7. Bernheim A, Mei X, Huang M, et al. Chest CT findings in coro-
navirus disease-19 (COVID-19): relationship to duration of
infection. Radiology. 2020;295(3):200463. https://doi.org/10.
1148/radiol.2020200463.

8. Zhao W, Zhong Z, Xie X, Yu Q, Liu J. Relation between chest CT
findings and clinical conditions of coronavirus disease (COVID-
19) pneumonia: a multicenter study. AJR Am J Roentgenol. 2020;
214(5):1072-1077. https://doi.org/10.2214/AJR.20.22976.

9. Salehi S, Abedi A, Balakrishnan S, Gholamrezanezhad A.
Coronavirus disease 2019 (COVID-19): a systematic review of
imaging findings in 919 patients. AJR Am J Roentgenol. 2019;
215:1-7. https://doi.org/10.2214/AJR.20.23034.

10. Pan Y, Guan H, Zhou S, et al. Initial CT findings and temporal
changes in patients with the novel coronavirus pneumonia
(2019-nCoV): a study of 63 patients in Wuhan, China. Eur
Radiol. 2020;30(6):3306-3309. https://doi.org/10.1007/s00330-
020-06731-x.

11. Pan F, Ye T, Sun P, et al. Time course of lung changes on chest
CT during recovery from 2019 novel coronavirus (COVID-19)
pneumonia. Radiology. 2020;295(3):200370-200721. https://doi.
org/10.1148/radiol.2020200370.

12. Islam MM, Yang HC, Poly TN, Jian WS, Li YC. Deep learning
algorithms for detection of diabetic retinopathy in retinal fun-
dus photographs: a systematic review and meta-analysis. Com-
put Methods Programs Biomed. 2020;191:105320. https://doi.
org/10.1016/j.cmpb.2020.105320.

13. Yang X, Wu L, Zhou K, et al. Deep learning signature based on
staging CT for preoperative prediction of sentinel lymph node
metastasis in breast cancer. Acad Radiol. 2019;27(9):1226-1233.
https://doi.org/10.1016/j.acra.2019.11.007.

14. Deepak S, Ameer PM. Brain tumor classification using deep
CNN features via transfer learning. Comput Biol Med. 2019;111:
103345. https://doi.org/10.1016/j.compbiomed.2019.103345.

15. Li X, Shen L, Xie X, et al. Multi-resolution convolutional net-
works for chest X-ray radiograph based lung nodule detection.
Artif Intell Med. 2019;103:101744.

16. Shariaty F, Mousavi M. Application of CAD systems for the
automatic detection of lung nodules. Inform Med Unlocked.
2019;15:100173. https://doi.org/10.1016/j.imu.2019.100173.

17. Agarwala S, Kale M, Kumar D, et al. Deep learning for screen-
ing of interstitial lung disease patterns in high-resolution CT
images. Clin Radiol. 2020;75(6):481.e1-481.e8. https://doi.org/
10.1016/j.crad.2020.01.010.

18. Gao XW, James-Reynolds C, Currie E. Analysis of tuberculo-
sis severity levels from CT pulmonary images based on
enhanced residual deep learning architecture. Neuro-
computing. 2020;392:233-244. https://doi.org/10.1016/j.
neucom.2018.12.086.

19. Ardakani AA, Kanafi AR, Acharya UR, Khadem N,
Mohammadi A. Application of deep learning technique to man-
age COVID-19 in routine clinical practice using CT images: results
of 10 convolutional neural networks. Comput Biol Med. 2020;121:
103795. https://doi.org/10.1016/j.compbiomed.2020.103795.

20. Amyar A, Modzelewski R, Ruan S. Multi-task deep learning
based CT imaging analysis for covid-19: classification and seg-
mentation. medRxiv preprint. 2020;126:104037. https://doi.org/
10.1101/2020.04.16.20064709.

21. Ucar F, Korkmaz D. COVIDiagnosis-Net: deep Bayes-
SqueezeNet based diagnosis of the coronavirus disease 2019
(COVID-19) from X-ray images. Med Hypotheses. 2020;140:
109761. https://doi.org/10.1016/j.mehy.2020.109761.

22. Chen X, Yao L, Zhang Y. Residual attention U-net for auto-
mated multi-class segmentation of COVID-19 chest CT images.
arXiv Preprint arXiv. 2020.

23. Zheng C, Deng X, Fu Q, et al. A weakly-supervised framework
for COVID-19 classification and lesion localization from chest
CT. IEEE Trans Med Imaging. 2020;39(8):2615-2625. https://
doi.org/10.1109/TMI.2020.2995965.

24. Lee SM, Seo JB, Yun J, et al. Deep learning applications in chest
radiography and computed tomography. J Thorac Imaging. 2019;
34(2):75-85. https://doi.org/10.1097/RTI.0000000000000387.

POLAT ET AL. 523

https://github.com/ieee8023/covid-chestxray-dataset/
https://github.com/ieee8023/covid-chestxray-dataset/
https://www.sirm.org/en/2020/03/30/covid-19-management-strategy-in-radiology/
https://www.sirm.org/en/2020/03/30/covid-19-management-strategy-in-radiology/
https://orcid.org/0000-0001-5535-4832
https://orcid.org/0000-0001-5535-4832
https://doi.org/10.1016/j.compbiomed.2020.103805
https://doi.org/10.1016/j.compbiomed.2020.103805
https://doi.org/10.1016/j.cmpb.2020.105532
https://talk.ictvonline.org/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/
https://doi.org/10.1016/j.amjsurg.2020.04.018
https://doi.org/10.1016/j.amjsurg.2020.04.018
https://doi.org/10.1016/S0140-6736(20)30183-5
https://doi.org/10.1148/radiol.2020200463
https://doi.org/10.1148/radiol.2020200463
https://doi.org/10.2214/AJR.20.22976
https://doi.org/10.2214/AJR.20.23034
https://doi.org/10.1007/s00330-020-06731-x
https://doi.org/10.1007/s00330-020-06731-x
https://doi.org/10.1148/radiol.2020200370
https://doi.org/10.1148/radiol.2020200370
https://doi.org/10.1016/j.cmpb.2020.105320
https://doi.org/10.1016/j.cmpb.2020.105320
https://doi.org/10.1016/j.acra.2019.11.007
https://doi.org/10.1016/j.compbiomed.2019.103345
https://doi.org/10.1016/j.imu.2019.100173
https://doi.org/10.1016/j.crad.2020.01.010
https://doi.org/10.1016/j.crad.2020.01.010
https://doi.org/10.1016/j.neucom.2018.12.086
https://doi.org/10.1016/j.neucom.2018.12.086
https://doi.org/10.1016/j.compbiomed.2020.103795
https://doi.org/10.1101/2020.04.16.20064709
https://doi.org/10.1101/2020.04.16.20064709
https://doi.org/10.1016/j.mehy.2020.109761
https://doi.org/10.1109/TMI.2020.2995965
https://doi.org/10.1109/TMI.2020.2995965
https://doi.org/10.1097/RTI.0000000000000387


25. Covid-chestxray-dataset. https://github.com/ieee8023/covid-
chestxray-dataset/. Accessed April 18, 2020.

26. Italian Society of Medical and Interventional Radiology.
https://www.sirm.org/en/2020/03/30/covid-19-management-
strategy-in-radiology/. Accessed April 18, 2020.

27. Raghavendra U, Fujita H, Bhandary SV, Gudigar A, Tan JH,
Acharya UR. Deep convolution neural network for accurate
diagnosis of glaucoma using digital fundus images. Inform Sci.
2018;441:41-49. https://doi.org/10.1016/j.ins.2018.01.051.

28. Amorim WP, Tetila EC, Pistori H, Papa JP. Semi-supervised
learning with convolutional neural networks for UAV images
automatic recognition. Comput Electron Agric. 2019;164:
104932. https://doi.org/10.1016/j.compag.2019.104932.

29. Sharma H, Zerbe N, Klempert I, Hellwich O, Hufnagl P. Deep
convolutional neural networks for automatic classification of
gastric carcinoma using whole slide images in digital histopa-
thology. Comput Med Imaging Graph. 2017;61:2-13. https://doi.
org/10.1016/j.compmedimag.2017.06.001.

30. Acharya UR, Oh SL, Hagiwara Y, Tan JH, Adeli H. Deep con-
volutional neural network for the automated detection and
diagnosis of seizure using EEG signals. Comput Biol Med. 2018;
100:270-278. https://doi.org/10.1016/j.compbiomed.2017.
09.017.

31. Li P, Zhao W. Image fire detection algorithms based on con-
volutional neural networks. Case Stud Therm Eng. 2020;19:
100625. https://doi.org/10.1016/j.csite.2020.100625.

32. LeCun Y, Kavukcuoglu K, Farabet C. Convolutional networks
and applications in vision. In: ISCAS 2010–IEEE International
Symposium on Circuits and Systems. Nano-Bio Circuit Fabrics
and Systems, 2010. https://doi.org/10.1109/ISCAS.2010.
5537907

33. Rawat W, Wang Z. Deep convolutional neural networks for
image classification: a comprehensive review. Neural Comput.
2017;29(9):2352-2449. https://doi.org/10.1162/NECO_a_00990.

34. Scherer D, Müller A, Behnke S. Evaluation of pooling opera-
tions in convolutional architectures for object recognition. Lect
Notes Comp Sci. 2010;6354:92-101. https://doi.org/10.1007/978-
3-642-15825-4_10.

35. Traore BB, Kamsu-Foguem B, Tangara F. Deep convolution
neural network for image recognition. Eco Inform. 2018;48:257-
268. https://doi.org/10.1016/j.ecoinf.2018.10.002.

36. Wilson A, Roelofs R, Stern M, Srebro N, Recht B. The marginal
value of adaptive gradient methods in machine learning.
NIPS'17: Proceedings of the 31st International Conference on
Neural Information Processing Systems, 2017.

37. Buda M, Maki A, Mazurowski MA. A systematic study of the
class imbalance problem in convolutional neural networks. Neu-
ral Netw. 2018;106:249-259. https://doi.org/10.1016/j.neunet.2018.
07.011.

38. Ying S, Zheng S, Li L, et al. Deep learning enables accurate
diagnosis of novel coronavirus (COVID-19) with CT images.
MedRxiv. 2020. https://doi.org/10.1101/2020.02.23.20026930.

39. Hemdan EED, Shouman MA, Karar ME. COVIDX-net: a
framework of deep learning classifiers to diagnose COVID-19
in X-ray images. arXiv Preprint arXiv. 2020.

40. Sethy PK, Behera SK. Detection of Coronavirus Disease (COVID-
19) Based on Deep Features, 2020. https://doi.org/10.20944/
preprints202003.0300.v1

41. Ozturk T, Talo M, Yildirim EA, Baloglu UB, Yildirim O,
Acharya UR. Automated detection of covid-19 cases using deep
neural networks with X-ray images. Comput Biol Med. 2020;
121:103792. https://doi.org/10.1016/j.compbiomed.2020.103792.

42. Butt C, Gill J, Chun D, Babu BA. Deep learning system to
screen coronavirus disease 2019 pneumonia. Appl Intell. 2020;
220:1-7. https://doi.org/10.1007/s10489-020-01714-3.

43. Li X, Li C, Zhu D. COVID-Xpert: an AI powered population
screening of COVID-19 cases using chest radiography images.
ArXiv. 2020.

44. Wang L, Wong A. COVID-net: a tailored deep convolutional
neural network design for detection of COVID-19 cases from
chest radiography images. ArXiv. 2020; arXiv:2003.09871.

How to cite this article: Polat H, Özerdem MS,
Ekici F, Akpolat V. Automatic detection and
localization of COVID-19 pneumonia using axial
computed tomography images and deep
convolutional neural networks. Int J Imaging Syst
Technol. 2021;31:509–524. https://doi.org/10.1002/
ima.22558

524 POLAT ET AL.

https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset
https://www.sirm.org/en/2020/03/30/covid-19-management-strategy-in-radiology/
https://www.sirm.org/en/2020/03/30/covid-19-management-strategy-in-radiology/
https://doi.org/10.1016/j.ins.2018.01.051
https://doi.org/10.1016/j.compag.2019.104932
https://doi.org/10.1016/j.compmedimag.2017.06.001
https://doi.org/10.1016/j.compmedimag.2017.06.001
https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1016/j.compbiomed.2017.09.017
https://doi.org/10.1016/j.csite.2020.100625
https://doi.org/10.1109/ISCAS.2010.5537907
https://doi.org/10.1109/ISCAS.2010.5537907
https://doi.org/10.1162/NECO_a_00990
https://doi.org/10.1007/978-3-642-15825-4_10
https://doi.org/10.1007/978-3-642-15825-4_10
https://doi.org/10.1016/j.ecoinf.2018.10.002
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1016/j.neunet.2018.07.011
https://doi.org/10.1101/2020.02.23.20026930
https://doi.org/10.20944/preprints202003.0300.v1
https://doi.org/10.20944/preprints202003.0300.v1
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1007/s10489-020-01714-3
https://doi.org/10.1002/ima.22558
https://doi.org/10.1002/ima.22558

	Automatic detection and localization of COVID-19 pneumonia using axial computed tomography images and deep convolutional ne...
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Axial CT image acquisition
	2.2  Data preprocessing
	2.3  Deep CNNs
	2.3.1  Convolutional layer
	2.3.2  Pooling layer
	2.3.3  Fully connected layer
	2.3.4  Activation functions

	2.4  The CNN architecture for diagnosis and localization of COVID-19 pneumonia
	2.5  Training and testing process of the proposed CNN-based CAD system
	2.6  Evaluation criteria of the proposed model

	3  RESULTS
	3.1  Detection of patterns related to COVID-19 lesions
	3.2  Automatic localization of COVID-19 findings

	4  DISCUSSION
	5  CONCLUSION
	  DATA AVAILABILITY STATEMENT

	REFERENCES


