TABLE 4.
Study | Year | Type of radiological images | Methods | Class labels | Overall accuracy (%) |
---|---|---|---|---|---|
Amyar et al 20 | 2020 | Chest CT | Deep learning‐based multitask model |
COVID‐19 Non‐COVID |
86 |
Ying et al 38 | 2020 | Chest CT | DRE‐Net |
COVID‐19 Pneumonia (bacterial) |
86 |
Xu et al 42 | 2020 | Chest CT | ResNet with location attention |
COVID‐19 Influenza viral pneumonia Healthy |
86.7 |
Ozturk et al 41 | 2020 | Chest X‐ray | DarkCovidNet‐19 |
COVID‐19 NO‐finding Pneumonia (non‐COVID) |
87.02 |
Li and Zhu 43 | 2020 | Chest X‐ray | DenseNet |
Pneumonia Normal COVID‐19 |
88.9 |
Hemdan et al 39 | 2020 | Chest X‐ray | COVIDX‐Net |
COVID‐positive COVID‐negative |
90 |
Zheng et al 23 | 2020 | Chest CT | 3D deep CNN |
COVID‐positive (data augmentation) COVID‐negative |
90.8 |
Wang et al 44 | 2020 | Chest X‐ray | Tailored deep CNN |
Normal Pneumonia COVID‐19 |
92.6 |
Sethy and Behera 40 | 2020 | Chest X‐ray | ResNet50 + SVM |
COVID‐positive COVID‐negative |
95.38 |
Ucar et al 21 | 2020 | Chest X‐ray | Squeeze‐Net with Bayes optimization |
Normal Pneumonia (bacterial) COVID‐19 (data augmentation) |
98.26 |
Proposed model | 2020 | Chest CT | CNN |
COVID‐positive COVID‐negative |
93.26 |
Abbreviations: CNN, convolutional neural network; DRE‐Net, detail relation extraction neural network; SVM, support vector machine.