Skip to main content
. 2021 Feb 16;31(2):509–524. doi: 10.1002/ima.22558

TABLE 4.

Comparison of the proposed automatic COVID‐19 diagnostic model with other deep learning‐based state‐of‐the‐art models

Study Year Type of radiological images Methods Class labels Overall accuracy (%)
Amyar et al 20 2020 Chest CT Deep learning‐based multitask model

COVID‐19

Non‐COVID

86
Ying et al 38 2020 Chest CT DRE‐Net

COVID‐19

Pneumonia (bacterial)

86
Xu et al 42 2020 Chest CT ResNet with location attention

COVID‐19

Influenza viral pneumonia

Healthy

86.7
Ozturk et al 41 2020 Chest X‐ray DarkCovidNet‐19

COVID‐19

NO‐finding Pneumonia (non‐COVID)

87.02
Li and Zhu 43 2020 Chest X‐ray DenseNet

Pneumonia

Normal COVID‐19

88.9
Hemdan et al 39 2020 Chest X‐ray COVIDX‐Net

COVID‐positive

COVID‐negative

90
Zheng et al 23 2020 Chest CT 3D deep CNN

COVID‐positive (data augmentation)

COVID‐negative

90.8
Wang et al 44 2020 Chest X‐ray Tailored deep CNN

Normal

Pneumonia

COVID‐19

92.6
Sethy and Behera 40 2020 Chest X‐ray ResNet50 + SVM

COVID‐positive

COVID‐negative

95.38
Ucar et al 21 2020 Chest X‐ray Squeeze‐Net with Bayes optimization

Normal

Pneumonia (bacterial)

COVID‐19 (data augmentation)

98.26
Proposed model 2020 Chest CT CNN

COVID‐positive

COVID‐negative

93.26

Abbreviations: CNN, convolutional neural network; DRE‐Net, detail relation extraction neural network; SVM, support vector machine.