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Abstract

The outbreak of COVID-19 coronavirus disease around the end of 2019 has

become a pandemic. The preferred method for COVID-19 detection is the

real-time polymerase chain reaction (RT-PCR)-based technique; however, it also

has certain limitations, such as sample-dependent procedures with a relatively

high false negative ratio. We propose a safe and efficient method for screening

COVID-19 based on Raman spectroscopy. A total of 177 serum samples are col-

lected from 63 confirmed COVID-19 patients, 59 suspected cases, and 55 healthy

individuals as a control group. Raman spectroscopy is adopted to analyze these

samples, and a machine learning support-vector machine (SVM) method is

applied to the spectrum dataset to build a diagnostic algorithm. Furthermore,

20 independent individuals, including 5 asymptomatic COVID-19 patients and

5 symptomatic COVID-19 patients, 5 suspected patients, and 5 healthy patients,

were sampled for external validation. In these three groups—confirmed

COVID-19, suspected, and healthy individuals—the distribution of statistically

significant points of difference showed highly consistency for intergroups after

repeated sampling processes. The classification accuracy between the COVID-19

cases and the suspected cases is 0.87 (95% confidence interval [CI]: 0.85–0.88),
and the accuracy between the COVID-19 and the healthy controls is 0.90

(95% CI: 0.89–0.91), while the accuracy between the suspected cases and the

healthy control group is 0.68 (95% CI: 0.67–0.73). For the independent test
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dataset, we apply the obtained SVM model to the classification of the indepen-

dent test dataset to have all the results correctly classified. Our model showed

that the serum-level classification results were all correct for independent test

dataset. Our results suggest that Raman spectroscopy could be a safe and

efficient technique for COVID-19 screening.

KEYWORD S

COVID-19, machine learning, Raman spectroscopy, screening, support vector machine

1 | INTRODUCTION

The severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2), causing COVID-19 coronavirus disease
in 2019, became a pandemic.[1] Clinical manifestation of
COVID-19 is highly nonspecific, including fever, fatigue,
cough, myalgia, dyspnea, and headache.[2] Unfortunately,
no effective treatment was available, until now. It already
outpaced SARS in 2003 and Middle East Respiratory Syn-
drome (MERS) in 2012 in incidence and mortality.[2,3]

The rapid and accurate detection of viruses is of great
importance in controlling SARS-CoV-2 spread. Currently,
a positive for the SARS-CoV-2 viral nucleic acid by poly-
merase chain reaction based on the technique or deep
sequencing of specimens from the respiratory tract or
serum is confirmed for COVID-19.[4,5] However, false
negative results for patients with insufficient amounts of
the virus at the site of sample collection, causing the
COVID-19 patients to spread the virus, have become a
major setback in containing viral transmission.[6] There-
fore, it is of practical significance to develop a safe and
efficient diagnostic method.

Raman spectroscopy is a method that detects molecu-
lar vibration and molecular rotation energy levels. It
detects components on the biomolecule level with a high
sensitivity for distinguishing vibrations and conforma-
tions of proteins, peptides, and nucleic acid.[7] The
characteristic peaks in Raman spectrum are called
“fingerprints,” representing the biochemical composition
of the sample, and the noncontact detection process is
fast, repeatable, specific, and highly sensitive.[8] Although
the spectrum of SARS-CoV-2 is not revealed, the activa-
tion of a humoral response by the virus may induce a
series of immune reactions, releasing the cytokines and
resulting in the change of spectrum in the serum.[9]

Machine learning has proven efficient for the data
analysis of the complicated change of Raman spectrum
in samples. Because it is a simple process of sample
preparation and it is free of sample loss, Raman
spectroscopy is highly recommended for diagnosing a
diverse range of diseases, including dengue fever,

hepatitis C virus, cancer, HIV, Alzheimer's disease, and
endometriosis.[10–16] Raman can also be used to detect
RNA viruses.[17]

In this study, we screen the serum from COVID-19
patients, suspected cases, and healthy patients
(control) by Raman spectroscopy to evaluate its detection
capability.

2 | MATERIALS AND METHOD

2.1 | Study objects

The study protocol was in accordance with principles
of the Declaration of Helsinki and approved by the
Ethics Committee of Sichuan Cancer Hospital & Insti-
tute (Chengdu, China). None of the authors had access
to information that could identify individual partici-
pants during or after data collection. In this study, all
blood samples were taken from February 10 to May
10, 2020.

The COVID-19 group contained 63 patients who
were recruited at the Chengdu Public Health Clinical
Medical Center, including 58 symptomatic patients and
5 asymptomatic COVID-19 patients. All of the COVID-
19 patients were positive using viral nucleic acid by
real-time polymerase chain reaction (RT-PCR) detection
with specimens from the respiratory tract. For the
58 symptomatic patients, the median (± standard
deviation [SD]) interval time between symptom onset
and sampling is 3.0 (±4.2) days. The suspected group
contained 59 patients with flu symptoms similar to
COVID-19. All of the investigated “suspected” patients
were also isolated in the COVID-19 designated hospital
until they were confirmed negative for COVID-19. All
of them showed negative viral nucleic acid tests at least
twice by RT-PCR detection, and the interval time
between the two detections is less than 1 week. This
group of patients was followed up until no COVID-19
patients were found in this group. The healthy control
group consisted of 55 healthy individuals recruited at
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the Sichuan Cancer Hospital and Chengdu Public
Health Clinical Medical Center. General information
for all of the investigated individuals, such as gender,
age, clinical characteristics, and detailed information, is
shown in Table 1.

All of the enrolled individuals gave informed consent
to the research purpose and have signed the informed
consent. The project was approved by the ethics commit-
tee of the participating institutes.

2.2 | Sample preparation

Blood samples were taken from the COVID-19 patients
and the suspected cases upon admission from February
10 to May 10, 2020. One-hour repose of blood sampling,
the serum was isolated from blood samples by centrifug-
ing at 3000 rpm for 10 min. All the serum samples were

stored at 4�C and measured within 36 h after the collec-
tion. For the measurement, approximately 0.5 ml of the
serum sample was prepared in cryopreservation tubes
(specification: 2 ml; material: polypropylene) and strictly
sealed for the Raman scan. Additional spectra data were
also collected from cryopreservation tubes with saline
solution inside.

2.3 | Experimental setup

The system consists of a volume-phase holographic
(VPH) spectrograph, deep-cooled CCD camera, Raman
probe, and laser, designed by the Sichuan Institute for
Brain Science and Brain-Inspired Intelligence, and
specific hardware composition and parameters; see
Supporting Information S1. A single-mode diode laser
(real-light) with wavelength 785-nm and 100-mW power

TABLE 1 Clinical characteristics of the investigated individuals

Characteristic Characteristic

COVID-19

Suspected Healthy controlSymptomatic Asymptomatic

Total 58 5 59 55

Age (media, range) 47.6 (20–78) 45.8 (21–74) 45.5 (24–65)

Gender

Male 26 2 36 24

Female 32 3 23 31

Distribution of temperature (blood sampling)

<37.5�C 27 5 13 5

37.5–38.0�C 19 17

38.1–39.0�C 7 21

>39.0�C 5 8

Symptoms

Cough 36 24

Fatigue 21 16

Myalgia or arthralgia 9 6

Headache 11 20

Shortness of breath 6 3

Disease severity

Nonsevere 51 58

Severe 7 1

Abnormalities on chest CT

Ground-glass opacity 29 19

Local patchy shadowing 21 34

Bilateral patchy shadowing 28 17

Interstitial abnormalities 9 17

Abbreviation: CT, computed tomography.
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was used for Raman excitation. The laser power on the
sample was detected around 70 mW. The spectra were
recorded in the range of 600–1800 cm−1. The Raman
spectra were collected 15 times per sample, with 3-s
accumulation taken at each sample. Collecting multiple
spectra per sample ensures an accurate representation of
the heterogeneous composition of a sample.

First, before each measurement, the ethanol spec-
trum was measured using an exposure time of 3 s for the
wavenumber calibration. Second, the cryopreservation
tubes with a 5% normal saline spectrum were acquired
using an exposure time of 3 s with five successive scans
for every beginning and completion of the experiment.
The average spectrum of the cryopreservation tubes was
used to investigate the influence of tube wall materials.
Next, the Raman spectrum of the serum samples sealed
within the cryopreservation tube was measured using
the same integration parameters as the cryopreservation
tube measurements. Three experimenters took the
Raman scan for each sample tube and repeated it five
times. The cryopreservation tube was placed in the spe-
cial card slot of the Raman spectrometer, ensuring the
laser passes through the tube wall at a certain angle.
After cosmic ray removal from the spectral data, we had
15 scans conducted by each experimenter of each serum
sample.

2.4 | Data processing steps

A total of 2355 spectra from 157 individuals were sub-
jected to preprocessing steps, including smoothing by
automatic-weighted least squares, baseline correction
based on polynomial fitting, and normalization by total
area.[18] These spectra data were used for feature selec-
tion and to build the classification model. Analysis of var-
iance (ANOVA) statistical analysis was used to select
relevant features included in the training of support-
vector machine (SVM) models.

The model predicts unknown samples and classifies
them accordingly. The performance of the proposed
model has been evaluated using a cross-validation
method, dividing the whole dataset into 70% for training
and the remaining 30% for testing. To test the robustness
of the model, we conducted a “blind” validation. Here,
70% of the random sampling of the total sample was used
to establish the model, and the remaining 30% of the
samples as hold-out set for SVM model test. To ensure
the independence of the data, the random sampling pro-
cess guaranteed that the spectra data were used to estab-
lish the model and for model test from completely
different samples.[19] The aforementioned process was
repeated 50 times.

Furthermore, 20 independent individuals, including
5 asymptomatic and 5 symptomatic COVID-19 patients,
5 suspected patients, and 5 healthy controls, were
sampled for model test. These 20 serum samples
(corresponding to 300 spectra) were set aside to create an
independent external hold-out dataset. After the predic-
tion model was built, the 20 serum samples were
preprocessed in the same way and used to validate the
SVM model. The detailed procedure of data analysis is
provided in Supporting Information S2.

3 | RESULTS

3.1 | Clinical characteristics

Among all of the COVID-19 patients, 55.6% are female,
and the median age is 47.6 years (range: 20–78). In the
suspected group, 38.9% are female, and the median age is
45.8 years (range: 21–74). Moreover, 31 (56.4%) partici-
pants in the healthy control group are female, and the
median age is 45.5 years (range: 24–65). No statistically
significant difference was observed between these three
groups in terms of gender and age.

The most common symptom is a cough (62.1%) in
symptomatic COVID-19 patients upon admission,
followed by a fever (53.4%). A fever is present in 78.0% of
all of the suspected cases upon admission, and the second
most prevalent symptom is a cough (40.1%). The com-
puted tomography (CT) scans were performed upon
admission for all COVID-19 patients and the suspected
cases. In the COVID-19 group, 76.5% showed abnormal
results. The most common patterns on the chest CT
were ground-glass opacity (50.0%) and bilateral patchy
shadowing (48.3%). In the suspected group, 65.4% of the
patients showed abnormal results, the most common pat-
terns on chest CT were local patchy shadowing (57.7%)
and ground-glass opacity (32.2%). According to our
follow-up data, these 59 suspected cases include 13 cases
of flu, 6 cases of bacterial infections, and 40 cases of
unknown causes.

3.2 | Raman spectra and statistical
analysis

Figure 1a shows the average of each group's preprocessed
spectra. The differences among the average spectrum of
the COVID-19 group, the healthy control group, and the
suspected group are depicted in Figure 1b. The difference
in the mean spectrum is shown within ±2 SDs,
suggesting that the mean difference between the groups
is statistically insignificant. To build the diagnostic
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algorithms, multivariate analysis is required to uncover
useful variability within the individual spectrum.

An ANOVA test was applied for both the intergroup
and intragroup after random sampling, and it was
repeated 100 times. In these three groups, the distribution
of statistically significant points of difference shows a
high consistency for intergroups after repeating the
sampling processes. Nevertheless, the distribution consis-
tency of statistically significant points is not found for the
intragroup.

After the ANOVA test, the difference between the
COVID-19 group, the suspected group, and the healthy
control group was in the spectra range of 600–1800 cm−1

and is observed in Figure 2a. The differences between the
healthy control group and the suspected group shown in
the spectra range are significant less than those between
the COVID-19 group and the suspected or healthy con-
trol group. However, for the intergroup, the ANOVA test
result had no apparent consistency, similar to random
noise (Figure 2b).

FIGURE 1 The total average serum Raman of the three groups and the difference between the groups. (a) The total average of the three

types of Raman, the color band represents the standard deviation. (b) The Raman difference signal between the groups (black) and the

Raman signal of the groups between ±2 standard deviations (red and blue) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 The result of the ANOVA test. The spectra range without a significant difference in the ANOVA test (p < 0.05) was

indicated in blue, while others were indicated in yellow. (a) The Raman shift spectrum of the difference in p value after a 70% random

sampling and repeated training 100 times for the intergroups. (b) The Raman shift spectrum of the difference in p value after a 70% random

sampling and repeated training 100 times intragroups [Colour figure can be viewed at wileyonlinelibrary.com]
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3.3 | Training and validation of model

In the training phase, the SVM learns the relationship
between independent and dependent variables. Specifi-
cally, it learns to make associations between intensity
values at specific wavelengths of the input spectrum data
with a sample class membership, which are the desig-
nated outputs of the SVM. Wave points with significant
differences in ANOVA test results are used as the input
of the SVM. Here, the performance parameters for each
class, determined by the SVM, are shown. The sensitivity
(true positive rate), specificity (true negative rate), and
accuracy (percentage of correctly predicted spectra
among total cases) for each group's prediction are
reported together with 95% CIs. All three groups are suc-
cessfully classified with average sensitivity, specificity,
and accuracy (Table 2). Figure 3 shows the performance
of the classifiers through a receiver operating characteris-
tic (ROC) curve. All ROC analyses are based on nonpara-
metric techniques and are conducted for the SVM
analyses. For each of the three classification tasks, the
area under curve (AUC) value is calculated and shown in
Figure 3.

Table 2 shows the results of specificity, accuracy, and
sensitivity of the SVM classification; the non-brackets
indicate the specificity, sensitivity, and accuracy of indi-
vidual spectra, and the brackets indicate the specificity,
sensitivity, and accuracy of each serum sample.

For independent test datasets, all of the unlabeled
spectra are assigned to the class with the highest proba-
bility by SVM model. The classification of each individual
spectrum from each of the serum samples is depicted in
Table 3 (left-hand side), demonstrating an overall average
accuracy of 90% for all classes.

The overall serum-level classification of each of the
20 serum samples, based on spectral-level predictions, is

shown on the right-hand side of Table 3. A serum sample
was assigned to the class (confirmed COVID-19,
suspected COVID-19, and healthy control groups) that
received the majority of spectra assigned to it. The lowest
maximum percentage was observed for sample 15 who
was assigned to the suspected class with 62.7% of spectra
correctly assigned. The true classification of the samples
was only revealed after the model had made its predic-
tions. For the independent test dataset, our model
showed that the serum-level classification results were all
correct.

TABLE 2 Performance parameters of the SVM

Class Performance parameter Value ± SD 95% CI

COVID-19 versus suspected Sensitivity 0.89 ± 0.08 (0.90 ± 0.08) 0.87–0.91 (0.87–0.92)

Specificity 0.86 ± 0.09 (0.88 ± 0.09) 0.83–0.88 (0.85–0.90)

Accuracy 0.87 ± 0.05 (0.89 ± 0.06) 0.86–0.89 (0.88–0.90)

COVID-19 versus healthy control Sensitivity 0.89 ± 0.07 (0.89 ± 0.079) 0.90–0.92 (0.87–0.91)

Specificity 0.93 ± 0.06 (0.94 ± 0.06) 0.91–0.94 (0.93–0.96)

Accuracy 0.91 ± 0.04 (0.91 ± 0.04) 0.90–0.92 (0.90–0.93)

Suspected versus healthy control Sensitivity 0.70 ± 0.09 (0.72 ± 0.11) 0.68–0.73 (0.69–0.75)

Specificity 0.66 ± 0.09 (0.71 ± 0.11) 0.64–0.69 (0.68–0.74)

Accuracy 0.69 ± 0.05 (0.71 ± 0.07) 0.68–0.70) (0.70–0.73)

Note: Brackets: serum-level classification results for each serum samples.

Abbreviations: CI, confidence interval; SVM, support-vector machine.

FIGURE 3 The ROC curve of the SVM diagnostic algorithm

for the COVID-19 group versus the suspected group, the COVID-19

group versus healthy control group, and the suspected group versus

the healthy control group [Colour figure can be viewed at

wileyonlinelibrary.com]
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4 | DISCUSSION

Early detection plays a vital role in infectious diseases
and controlling an outbreak. COVID-19 is difficult to
diagnose from the flu through clinical symptoms, proven
by clinical characteristics analysis.[2] In this study, we
analyze the Raman spectrum data of serum from 177 indi-
viduals, which consisted of confirmed COVID-19
patients, suspected COVID-19 patients, and healthy con-
trols group.

The current standard method for detecting COVID-19
is the RT-PCR.[4,20] However, the false negative rate is
high related to the time between detection and disease
onset, because of the difficulty of acquiring SARS-CoV-2
specimens from the respiratory tract in the early
phase.[21] Currently, antibodies, including IgM and IgG,
reverse transcription multiple cross displacement amplifi-
cation assay, and other techniques are under develop-
ment for diagnosing COVID-19.[22–26]

By using a laser to focus directly on the serum sam-
ple, previous studies have demonstrated that Raman

spectroscopy may differentiate virus infections from
healthy individuals by detecting the characteristic peaks
of Raman spectrum, which respond to specific carbohy-
drates of the viral glycoprotein.[10,12,27,28]

Because SARS-CoV-2 is a virus causing severe infec-
tious disease, for protection, our method seals the serum
sample in a polypropylene biological tube for preserva-
tion. The laser light goes through the transparent tube
wall before approaching the serum sample, and it greatly
reduces the signal-to-noise ratio of the Raman signal for
the serum sample. Multivariate analysis is required to
uncover useful variability within individual spectrum
and to build diagnostic algorithms. Hence, ANOVA and
SVM are used to analyze the spectrum data to obtain
qualified results. In the meantime, the nonexposed sam-
ples are maintained during the entire procedure, which is
a crucial step to ensure safety during COVID-19 detec-
tion. The difference in the mean spectrum is shown as
within ±2 SDs in Figure 1b, suggesting that the mean dif-
ference between the groups is statistically insignificant.
High intergroup consistency is shown after the ANOVA

TABLE 3 Results of 20 samples for the independent verification

Individual spectra predictions

Sample #

Predicted class External validation results

COVID-19 Suspected Healthy control Sample # Predicted class True class

1 2771 / 529 1 COVID-19 COVID-19

2 2570 / 730 2 COVID-19 COVID-19

3 2642 / 658 3 COVID-19 COVID-19

4 2424 / 876 4 COVID-19 COVID-19

5 2631 / 669 5 COVID-19 COVID-19

6a 3300 0 / 6a COVID-19 COVID-19

7a 3271 29 / 7a COVID-19 COVID-19

8a 3300 0 / 8a COVID-19 COVID-19

9a 2811 489 / 9a COVID-19 COVID-19

10a 3300 0 / 10a COVID-19 COVID-19

11a 76 3224 / 11a Suspected Suspected

12a 196 3104 / 12a Suspected Suspected

13a 891 2409 / 13a Suspected Suspected

14a 93 3207 / 14a Suspected Suspected

15a 1229 2071 / 15a Suspected Suspected

16 / 5 3295 16 Healthy controls Healthy controls

17 / 115 3185 17 Healthy controls Healthy controls

18 / 0 3300 18 Healthy controls Healthy controls

19 / 0 3300 19 Healthy controls Healthy controls

20 / 16 3284 20 Healthy controls Healthy controls

aSymptomatic.
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analysis, while the differences in the intragroups are ran-
dom. Additionally, the data of the spectrum include the
signal detected from the tubes and are also in accordance
with previous studies.[29]

The feature extraction is one significant procedure of
machine learning. State-of-art feature extraction
methods, such as filer, wrapper, and embedding, train
the models and determine the performance of features.
In this study, we use ANOVAL analysis to select the fea-
tures. Furthermore, a low p value does not necessarily
mean that a strong feature and conversely a high p value
do not mean a weak feature. Furthermore, the feature
extraction methods may increase classification accuracy.
Also, we can use deep learning to avoid feature extraction
problems when we accumulate more data.

To prevent the virus from spreading, it is rec-
ommended that suspected cases should be isolated and
diagnosed. This group consists of patients with flu symp-
toms or individuals in tight contact with COVID-19
patients. Therefore, we recruit three groups, namely,
the COVID-19 group, the suspected cases group, and the
healthy control group. In this study, compared to
the healthy control group and the suspected group, the
COVID-19 group shows a significant difference in the
same spectrum range of 600–1800 cm−1. The suspected
cases were experiencing flu-like symptoms during the
blood draw, a similar clinical manifestation to COVID-
19. However, they showed a negative result for the SARS-
CoV-2 viral nucleic acid through RT-PCR detection. The
spectrum range of 600–1800 cm−1 is previously reported
to have a variety of proteins in the serum.[30,31]

Interestingly, the spectrum results are consistent with
a recent study conducted to determine potential bio-
marker panels for diagnosing COVID-19.[32] Additionally,
the difference between the healthy control individuals
and the suspected cases shows a lower significance, other
than the difference between the COVID-19 and the
suspected or healthy control groups. The following are
possible reasons for the difference detected by Raman
spectroscopy in the serum of COVID-19 patients.

To begin with, SARS CoV-2 may express a specific
protein that differs from the healthy samples or other dis-
eases.[33] Meanwhile, during the pathological process of
COVID-19, activation of the humoral response leads to
the generation of certain antibodies,[9,32] suggesting the
biochemical composition changed in the serum of
COVID-19 patients and is specific and detectable by
Raman spectroscopy.

Second, most of the patients in the COVID-19 group
are non-severe (57 in 63) when drawing blood, indicating
that Raman spectroscopy has a high specificity for
detecting COVID-19. Moreover, asymptomatic infections
currently account for approximately 20% of all COVID-19

cases, which is important for prevention measures.[34] In
this study, the results of the independent test dataset
showed that this model has a high sensitivity for
asymptomatic infection detection. Recommending serum
Raman spectroscopy may contribute to pandemic preven-
tion because of its high sensitivity for both asymptomatic
and symptomatic patients.

Because of the complicated biochemical components
within the serum, the single spectrum collected from
each sample is not identical, and it contains information
for local concentrations of biomarkers and biochemical
components. This increases the possibility for individual
spectrum to be misclassified. Bo et al. collected the data
from 28 healthy subjects, 25 patients with negative
COVID-19 PCR test result but have similar clinic features
with COVID-19, and 25 COVID-19 patients. They found
the severity of the diseases is highly related with
204 serum metabolites from COVID-19 patients, and
there are 105 protein difference expressions in serum of
COVID-19 patients and subjects without COVID-19
(Shen et al.[9]). Liu et al. demonstrated that COVID-19
patients have increasing inflammatory cytokines level in
their serum. The cytokine storm is known as one impor-
tant reason on death of heavy and critical COVID-19
patients.[35] Hence, the difference on serum composition
of COVID-19 patients comparison to no-COVID-19 is
exists and can be detected. Raman spectrum has high
accuracy and high sensitivity. Hence, Raman spectrum is
one powerful tool for COVID-19 testing. Additionally, the
relatively small sample size only represents a tiny frac-
tion of the Chinese population. The detected data for a
larger, independent population of different races would
help build a better model and standard, which may pro-
foundly improve the accuracy of Raman spectroscopy for
screening.

False negative results may occur due to the influence
of COVID-19 nucleic acid detection extraction method,
kit sensitivity, variation in detection rate from different
manufacturers, insufficient viral material in the speci-
men, low patient viral load, and other factors.[36,37]

Researches of Lauren et al. show that on the day of symp-
tom onset, the median false negative rate for initial RT-
PCR was 38% (CI, 18% to 65%), And 3 days after symp-
tom onset, the median false negative rate decreased to
20% (CI, 12% to 30%), and then increased again, from
21% (CI, 13% to 31%) on day 4 days after symptom onset
to 66% (CI, 54% to 77%) on 16 days after symptom
onset.[21] Another research find that 21.4% patients expe-
rienced a “turn positive” of nucleic acid detection by RT-
PCR test for SARS-CoV-2 after two consecutive negative
result. Although the false negative rate of our model is
lower than RT-PCR, our model is based on the gold stan-
dard of RT-PCR and the detection performance cannot
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be higher than the gold standard. This is because the con-
firmed cases and the suspected cases are all determined
with many times RT-PCR tests in our study, while the
false negative rate of RT-PCR test from literature reports
is usually based on the first-time RT-PCR test.

The large-scale global epidemic of COVID-19 has
brought tremendous pressure to medical institutions. As
the gold standard, RT-PCR requires a lot of manpower
and material resources. The serum detection based on
Raman spectroscopy proposed in this paper is low-cost,
fast, and low manpower requirements. Doctors are
provided with more testing methods. Serum testing, as a
routine testing item in medical institutions, can provide
low-cost and rapid screening of patients in hospitals. In
applications, medical institutions perform Raman testing
in routine serum testing items. Once high-risk patients
are found, they are immediately quarantined and then
further tested with RT-PCR, thereby reducing the risk of
infection in medical institutions.

With the spread of SARS-CoV-2, an increasing num-
ber of covert patients could seed new outbreaks.[8] To
contain the virus, tests for more individuals without strict
limitations may generate a massive demand for screen-
ing. Sealing the serum sample in a cryopreservation tube,
portable detection devices, and a simple procedure for
testing indicates that Raman spectroscopy is a safe and
convenient detection method. Moreover, the accuracy
will be higher with additional screening data for input
into the SVM, making this a promising method for appli-
cation in the future.

5 | CONCLUSION

In conclusion, our results suggest that Raman spectros-
copy may be powerful, effective, and convenient for
COVID-19 screening. Additional studies with a larger
independent population are needed to verify our findings
and to investigate the particular spectrum bands of the
serum spectrum that corresponds to the suspected bio-
markers of COVID-19.
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