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Abstract
The COVID- 19 recession that started in March 2020 led to 
an unprecedented decline in economic activity across the 
globe. To fight this recession, policy makers in central banks 
engaged in expansionary monetary policy. This paper asks 
whether the measures adopted by the US Federal Reserve 
(Fed) have been effective in boosting real activity and calm-
ing financial markets. To measure these effects at high 
frequencies, we propose a novel mixed frequency vector 
autoregressive (MF- VAR) model. This model allows us to 
combine weekly and monthly information within a unified 
framework. Our model combines a set of macroeconomic 
aggregates such as industrial production, unemployment 
rates, and inflation with high- frequency information from 
financial markets such as stock prices, interest rate spreads, 
and weekly information on the Fed's balance sheet size. The 
latter set of high- frequency time series is used to dynami-
cally interpolate the monthly time series to obtain weekly 
macroeconomic measures. We use this setup to simulate 
counterfactuals in absence of monetary stimulus. The re-
sults show that the monetary expansion caused higher 
output growth and stock market returns, more favorable 
long- term financing conditions and a depreciation of the US 
dollar compared with a no- policy benchmark scenario.
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1  | INTRODUC TION

Worldwide restrictions to contain the spread of the novel coronavirus (COVID- 19) triggered a sharp drop in global 
economic activity, a collapse in trade, and a severe rise in unemployment. First estimates for 2020 point at consid-
erable contractions of gross domestic product (GDP) in most advanced economies (McKibbin & Fernando, 2020). 
As of now, the severity of the crisis for the US economy is comparable to that of the Great Depression in the 
1930s. Policy makers responded swiftly, with unprecedented fiscal stimulus packages in the magnitude of nearly 
15% of global GDP.1 In the same vein, central banks provided stimulus by loosening their policy stance consider-
ably. In many emerging economies, central banks successfully introduced forms of quantitative easing for the first 
time (Arslan et al., 2020; Hartley & Rebucci, 2020), while in advanced economies with policy space, easings took 
mostly the form of rate cuts, which further facilitated the use of fiscal stimulus packages.

In the United States, the economic impact of the pandemic was felt strongly on labor markets: employment 
dropped sharply and wages were cut (Cajner et al., 2020; Kurmann et al., 2020). This weakened demand and infla-
tion considerably. To put these numbers into perspective, by most economic indicators, the contraction in the US 
economy is comparable to that of the Great Depression of the 1930s which constitutes the largest and longest 
slump in economic activity in US history.2

The negative business climate also deterred financial markets, with equity prices collapsing more strongly 
than in any previous crises triggered by infectious disease outbreaks (Baker et al., 2020). Relatedly, US Treasury 
markets experienced a sharp sell- off, leading to spikes in long- term yields (Schrimpf et al., 2020). The US Federal 
Reserve (Fed) responded with several measures including the opening of credit facilities to support malfunction-
ing markets and actions aimed at relieving cash- flow stress for small and medium- sized businesses, as well as mu-
nicipalities. The most prominent actions, however, were moving the policy rate back toward the zero lower bound 
and resuming the monthly purchase of massive amounts of securities (80 billion US dollars immediately and up to 
700 billion US dollars in total over the coming months).

This paper tries to give a first assessment of how successful the monetary easing in the United States was 
in stabilizing prices and providing stimulus to the economy. One concern when assessing effectiveness of pol-
icy responses in real time is the low- frequency nature of many macroeconomic aggregates (with most of them 
available on a monthly or quarterly frequency, at best). Even if we rely on monthly data, we are left with only 
very few observations that we can use to infer the effects of monetary policy during the COVID- 19 crisis on 
several key quantities of interest for policy makers. For this purpose, we borrow strength from data which are 
available at higher frequencies. These time series are often sampled at daily or weekly frequency and allow us 
to construct weekly measures of industrial production, inflation, and unemployment. This is achieved within a 
coherent multivariate framework that allows for dynamic interactions between the macroeconomic and financial 
quantities considered.

 1For an overview of these policy measures, see bruegel.org/publications/datasets/covid- national- dataset.

 2Direct comparisons in terms of GDP are, however, fraught with measurement difficulties. Nevertheless, some rough comparisons can be made. 
First, current projections for the US economy point at a severe recession with a contraction of GDP of similar magnitude to that during the Great 
Depression but point at a quick recovery thereafter. By contrast, the Great Depression was a very persistent recession reaching a trough of 
economic activity after four years. The US unemployment rate, rose during 2020 from 3.5% in February to nearly 15% in April before declining in 
the subsequent months, to about 7.9% in September. During the Great Depression, unemployment did not rise as sharply in the early months of the 
recession, but gradually rose to 25% in 1933 and stayed above 10% throughout the 1930s (Wheelock, 2020).
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The proposed econometric framework is a mixed frequency vector autoregression (MF- VAR, see Schorfheide 
& Song, 2015) which models all variables on a weekly frequency. Using a state- space representation of the multi-
variate system, we recast the lower- frequency quantities in terms of a weekly component with missings between 
monthly observed values. These missing observations are subsequently estimated by taking into account the 
properties of the model and using the higher- frequency time series dynamically. Such methods have been used 
heavily in recent years for improving predictive accuracy of nowcasts or forecasts, mostly by linking series such 
as gross domestic product to several higher- frequency series that possess predictive power for the low- frequency 
quantity (see Cimadomo & D'Agostino, 2015; Cimadomo et al., 2020; Schorfheide & Song, 2015, among many 
others).

Related econometric frameworks have also been used for structural analyses (see, for instance, Ferrara & 
Guerin, 2018; Foroni & Marcellino, 2014; Ghysels, 2016; Marcellino & Sivec, 2016; McCracken et al., 2015). 
Ghysels (2016) provides a comprehensive discussion of structural inference using mixed frequency data. He ar-
gues that using higher and lower frequencies simultaneously introduces several interesting cases of potential 
timing restrictions regarding latent and observed shocks and relates VAR- based approaches to mixed data sam-
pling (MIDAS) regressions. McCracken et al. (2015), for instance, consider differences in the effects of monetary 
policy shocks conditional on which month during the quarter they have occurred. Foroni and Marcellino (2014) 
ask whether mixed frequency data help tracing the effects of monetary policy shocks in the context of dynamic 
stochastic general equilibrium (DSGE) models and answer this question in the affirmative.

Our approach is closest in spirit to Marcellino and Sivec (2016), in the sense that we rely on established struc-
tural methods in the context of a mixed frequency data environment. We use our model to simulate the effects 
of monetary policy shocks. Using these shocks, we can compute weekly historical decompositions and perform 
counterfactual scenarios to investigate the effects the monetary policy measures had on the US economy. The 
results indicate that without a monetary expansion, US economic activity would have been significantly lower. In 
other words, the US Fed, so far, has been successful in cushioning the economic consequences of the COVID- 19 
crisis. Positive effects on output growth are underpinned by a rise in stock market returns, an easing of long- term 
financing conditions and a depreciation of the US dollar. By contrast, effects on inflation and the unemployment 
rate are statistically insignificant.

The remainder of this paper is structured as follows. Section 2 briefly describes the dataset and economet-
ric model used while Section 3 shows the main results. In this section, we discuss the dynamic reactions to a 
monetary policy shock and discuss the historical decompositions. Finally, the last section briefly summarizes and 
concludes the paper.

2  | EMPIRIC AL FR AME WORK

2.1 | A mixed frequency VAR model

As stated in the introductory section, one key issue with adequately assessing the impacts of COVID- 19 related 
monetary policy measures is the extremely short time span of available data. To provide a timely estimate, one 
could focus on high- frequency variables such as interest rate spreads or stock prices. But these are typically not 
of direct interest for policy makers. In policy making circles, assessing the effects of monetary policy interventions 
on output, inflation, and labor markets is pertinent. Unfortunately, for all these variables we only have a handful 
of observations, rendering an adequate assessment of policy effectiveness difficult.

As a solution, we propose pairing a panel of weekly indicators, contained in an MW- dimensional vector y (W )

t
, 

with monthly indicators stored in an MM- dimensional vector y (W )

t
 in a MF- VAR. These vectors run from t = 1, …, T, 

with T denoting the number of weeks in our sample. Following Schorfheide and Song (2015), we assume that y (W )

t
 

is a latent weekly measure of the low- frequency indicator.
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One key objective is to infer y (W )

t
 to obtain weekly measures of the low- frequency variables.

This is achieved by defining yt = (y (M )

t
, y (W )

t
) �, which is an M ( = MM +MW )- dimensional vector, and assuming 

that it follows a VAR(P) process:

where c is an M × 1- vector of intercepts, and Ap = (p = 1,…,P ) are M ×M coefficient matrices associated with the p
th lag of yt.�t is a white noise Gaussian process with time- varying variance– covariance matrix Σt. To speed up compu-
tation and assume that the COVID- 19 shock led to a sharp increase in the conditional variance of all elements in yt, we 
introduce a common stochastic volatility (CSV) model originally proposed in Carriero et al. (2016).

Several papers discuss methods for estimating VAR models in light of huge- variance shocks such as during 
the pandemic (Huber et al., 2021; Lenza & Primiceri, 2020; Schorfheide & Song, 2020). Our approach is closest 
to Lenza and Primiceri (2020), who find that overall macroeconomic dynamics and cross- variable relationships 
during the pandemic months are consistent with those of the pre- pandemic period. They propose the variance- 
covariance matrix of the VAR to follow a mixture distribution, downweighting outlying observations to allow for 
stable estimation of the coefficient matrices.

We assume that Σt is driven by a scalar factor such that:

and ht evolves according to an AR(1) process:

Here, µh denotes the unconditional mean, ρh the autoregressive parameter and �2
h
 the error variance. ht sim-

ply scales the time- invariant variance- covariance matrix Σ. This allows us to capture sudden common shifts in 
variances while leaving the contemporaneous relations unchanged over time. The common scaling factor eht acts 
similarly compared with the framework proposed in Lenza and Primiceri (2020) and shows a large spike during the 
pandemic. This reduces the weight of the pandemic observations in the posterior of all other coefficients, thereby 
allowing for estimating the MF- VAR with constant coefficients (without affecting estimates significantly) even 
when facing the large outliers produced by the pandemic. Equation (1) can be cast in its companion form:

with zt = (y �
t
,…, y �

t−P+ 1
, 1 ) � and F being the K × K companion matrix (for K = PM) with the first M rows given by 

(A1,…,AP, c ). The remaining rows are defined to return an identity such that yt−j = yt−j for j = 1,…,P − 1. The first M 
elements of ηt are equal to εt, while all other elements are equal to zero.

The missing values in yt can be obtained by interpreting Equation (2) as a state evolution equation that provides 
information on how the elements in zt (and thus yt) are related over time.

Consistent with Mariano and Murasawa (2003), we assume that the observed monthly values of y (M )

t
, which 

we denote by x̃ (M )

t
, are related to y (M )

t
 as follows:

This is the so- called intertemporal restriction. The specific restriction is inherently tied a priori transformations 
of the underlying data. Data in log- levels often use a restriction via averages as in Schorfheide and Song (2015), 
while this translates to a triangular scheme for data modeled in period- by- period log- differences, see Mariano 
and Murasawa (2003) for details. For our empirical analysis, all variables enter the model as year- on- year log 

(1)yt = c + A1yt−1 +… + APyt−P + �t, �t ∼ � (0M,Σt )

Σt = eht × Σ,

ht = �h + �h (ht−1 − �h ) + �h�t, �t ∼ � (0, 1 ) .

(2)zt = Fzt−1 + �t,

(3)x̃
(M )

t
=
(
y
(M )

t
+ y

(M )

t− 1
+ y

(M )

t− 2
+ y

(M )

t− 3

)
∕4.
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differences. Restriction Equation (3) is derived by assuming that the monthly observations on the log- level are the 
average of the corresponding latent weekly observations of the respective month (for details, see Appendix A).

Notice that this assumption implies that each month features exactly four weeks (and thus we drop four weeks 
per year to arrive at 48 weeks).3 Define a selection matrix S (M )

t
 that equals an identity matrix in time t only in the 

last week of a month while being equal to a zero matrix for the initial three weeks, and Λ(M) is a matrix such that:

For the weekly indicators, we assume that the identity x (W )

t
= y

(W )

t
 holds if the dataset is balanced. If 

some weekly values are missing, we introduce a separate selection matrix S (N )

t
 with x (N )

t
= S

(N )

t
y
(N )

t
. Following 

Schorfheide and Song (2015), the observation equation that relates the observed to the latent quantities is:

Here, xt = (x (M ) �

t
, x (W ) �

t
) � , is a selection matrix and Λ is composed of Λ(M) and appropriate selection vectors 

to single out the high- frequency quantities in zt.
Following the related literature on medium to large- scale VARs and MF- VARs, we estimate the model 

using well- established Bayesian methods (Bańbura et al., 2010; Carriero et al., 2015, 2016; Koop et al., 2020; 
Schorfheide & Song, 2015). This implies that we need to specify priors on all parameters of the model. Let s2

m
 for 

m = 1,…,M denote the residual variances of independent AR(4) regressions of the variables in yt. In this paper, we 
use the following prior setup:

• For the VAR coefficients, we rely on a conjugate Minnesota- type prior (similar to Schorfheide & Song, 2015). 
We stack the coefficients in A = (A1,…,AP, c ) � in an M (Mp + 1) × 1- vector a = vec(A ) . The prior takes the form 
a ∼ �

(
a,Σ⊗ Ξ

)
, with a, Ξ denoting hyperparameters. The prior mean is a = 0[M(Mp+1)]. The diagonal elements 

of Ξ = diag ( {�i }
Mp+ 1

i= 1
) , are set as follows:

The hyperparameters are �1 = 0.2 (governing overall tightness of the prior), �2 = 1 (lag- decay) and �3 = 10 
(intercept).

• On the parameters of the state equation of ht, we use a Beta prior on the transformed autoregressive coef-
ficient (�h + 1)∕2 ∼ ℬ (5, 1.5), a normally distributed prior on the unconditional mean �h ∼ � (0, 100) and a 
Gamma prior on �2

h
∼ � (1∕2, 1∕2) .

• Finally, we use a weakly informative inverse Wishart prior on Σ ∼ ℐ𝒲 ( S, v ) , with prior moments given by 
S = ( v −M − 1) × diag ( s2

1
,…, s2

M
) and v = M + 2.

Estimation is carried out using the Markov chain Monte Carlo (MCMC) algorithm discussed in Schorfheide and 
Song (2015) and efficiently implemented in the R package mfbvar (Ankargren & Yang, 2019).

 3We use this practicable solution to obtain a balanced weekly- dataset by using data on the first four weeks of each month and drop additional 
weeks afterwards. Due to the fact that weeks sometimes cover two months, we allocate them based on the assigned weekday at the time of 
publication of the respective series. For aggregated daily series per week, we allocate weeks overlapping two months based on into which month 
the majority of weekdays fall.

x
(M )

t
= S

(M )

t
x̃
(M )

t
= S

(M )

t
Λ (M ) zt.

(4)xt = ℳtΛzt.

�i =

⎧
⎪⎨⎪⎩

�2
1
∕(p�2 ×sm)

2,

�2
3
,

for lag p of variablem, i=M(p−1)+m�i

forMp+1 (intercept).
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2.2 | Data

Our analysis focuses on the reaction of the consumer price index (CPIAUCSL), the unemployment rate (UNRATE) 
and industrial production (INDPRO) to a monetary policy easing. All of these focal variables are on a monthly 
frequency. Higher- frequency variables consist mainly of financial indicators. In particular, we include the money 
supply (M2) as the policy variable, the five- year forward inflation expectation rate (T5YIFR) to gauge market- based 
inflation expectations, the NASDAQ composite indicator (NASDAQCOM), the US dollar/euro foreign exchange rate 
(DEXUSEU) and the ten- year treasury constant maturity rate (WGS10YR). As measures of financial stress, we rely 
on the CBOE volatility index (VIX, VIXCLS).

The sample period runs from the first week of 2011 to week 24 of 2020 (end of week: June 8, 2020) and is 
taken from the FRED database of the Federal Reserve Bank of St. Louis. If the raw data for financial variables is 
on a higher frequency than weekly (that is, daily for T5YIFR, NASDAQCOM, DEXUSEU, VIXCLS), we take end- 
of- week values. All variables enter the model as year- on- year log- differences. We choose p = 12 lags (3 months’ 
worth of weekly lags).

3  | SCENARIO AND COUNTERFAC TUAL ANALYSIS

In this section, we examine the effects of an expansion of the US money supply on output, inflation, the unem-
ployment rate and several financial indicators. In what follows, we proceed in two steps.

First, we look at the overall plausibility of our model by examining impulse response functions. For that pur-
pose, we rely on a simple recursive identification scheme with ordering the monthly variables first, followed by 
M2. Last, we put all other weekly indicators. Note that this simple recursive scheme implies zero restrictions on 
the low- frequency variables. In particular, in our application the Cholesky decomposition states that there are no 
contemporaneous effects of the high- frequency indicators on inflation, output and the unemployment rate, an 
assumption with which most economists would agree upon. This also relates to our previous discussion of struc-
tural inference in mixed frequency data models. Ghysels (2016) states that high- frequency shocks are typically 
well- identified in mixed frequency VAR models, but identifying impacts of low- frequency series is harder. Our 
focus is on identifying shocks to a high- frequency series, and the restrictions we impose imply that shocks to the 
low- frequency variables induce contemporaneous responses in high- frequency variables.4 This is consistent with 
the notion that latent series can be interpreted as capturing expectations of the low- frequency variables with re-
spect to the high- frequency dataset in real time.

We take a broad stance on how monetary policy is measured in our model by looking at an expansion of M2. 
This captures both measures the Fed has recently undertaken, a massive cut in interest rates accompanied by a 
commencement of their asset purchase program. While conventional monetary policy mainly works through stim-
ulating aggregate demand, the latter affects the economy through the portfolio re- balancing channel. In a nutshell, 
if the central bank buys financial assets from the market, the yields on these assets decline and investors with the 
aim to restore the duration of their portfolio will seek assets from other markets. This results in a broad easing 
of overall financing conditions which boosts firm and household investment, aggregate demand and hence price 
growth. For an excellent summary, see Joyce et al. (2012). Indeed, the empirical literature examining the effects 
of quantitative easing during the global financial crisis suggest positive effects on equity prices, mainly because 
they reduce term or risk premia through portfolio balance effects (Gagnon et al., 2011; Rogers et al., 2014), market 
liquidity (Christensen & Gillan, 2013; Christensen & Krogstrup, 2015), real GDP and inflation (Chung et al., 2012).

 4Note that shocks to other series than the high- frequency measures of M2 are only of indirect interest. It is, however, worth mentioning that relying 
on MF- VARs with latent shocks may result in potential issues with timing restrictions, which may alter impulse response functions (for a discussion 
and alternative approaches, see Ghysels, 2016).
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The results are depicted in Figure 1 which shows the posterior median (solid line) along with 90% credible 
intervals. The figure demonstrates that the expansionary shock to the money supply (M2) significantly drives up 
output growth and lowers the unemployment rate. These effects are rather persistent and take place with a lag. 
We do not find a significant upward effect on inflation, although we have included inflation expectations which in 
general should help mitigating the price puzzle (Castelnuovo & Surico, 2010) often encountered in empirical stud-
ies. This finding can be explained by the time period under consideration, which was characterized by low interest 
and inflation rates. As regards financial variables, we see a significant and persistent upward effect on equity 
returns, a front- loaded depreciation of the US dollar and a decrease of long- term yields. Also the VIX increases 
immediately, which could be related to the positive and pronounced shoot- up of equity returns. Summing up, the 
mixed- frequency approach generates impulse response functions that are in line with predictions of the bulk of 
empirical studies on the effects of monetary policy.

Next, we generate counterfactual scenarios. For that purpose, we construct historical decompositions that 
explain deviations of time series from their trend by shocks to the equations in the system. Neutralizing shocks to 
money supply after the onset of the COVID- 19 crisis thus yields a counterfactual scenario to answer the question 
how output growth, unemployment, and inflation would have evolved without the Fed having provided monetary 
stimulus. We choose the last week of February (week eight of 2020) as the first observation in the pandemic 
period.

The results are depicted in Figure 2. In the upper panels, we show the evolution of actual series (black thick 
lines) and responses under the counterfactual scenario (gray shaded area, dashed line) along with 90% credible 
intervals. Since high- frequency movements of low- frequency variables are estimated within the MF- VAR frame-
work, we also depict credible intervals for the historical weekly evolution of inflation, the unemployment rate and 
output growth (black thin lines).

The results indicate that output growth would have been weaker without monetary policy stimulus provided 
by the US Fed. This finding could be driven by the strong effect monetary policy exerted on financial variables: 
equity returns would have been considerably lower and long- term yields higher under the no- policy scenario. The 
analysis also suggests that monetary policy triggered a stronger depreciation of the exchange rate and hence a 
boost to external competitiveness of the US economy. By contrast, the counterfactuals show no significant effect 
on unemployment and inflation. Considering the delayed response of unemployment discussed in the context of 
the impulse response functions, this might be an artifact of the considered counterfactual period being too short 
to detect effects of the expansion yet.

To investigate the significance more systematically, the bottom panel of Figure 2 presents the differences 
of the responses under the no- policy and the policy scenario along with 90% credible intervals. That analysis 

F I G U R E  1   Impulse response functions to a one- standard deviation shock to M2. Notes: Median response 
alongside the 90 percent posterior credible set. The black horizontal line marks zero
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corroborates the findings from above that monetary policy led to higher output growth, a pick up in equity returns 
and an easing in long- term financing conditions. It also led to a significantly lower value of the US dollar.

4  | CLOSING REMARKS

In this note, we gave a first empirical investigation of the effects of US monetary policy to stimulate growth in 
response to COVID- 19. For that purpose, we have estimated a MF- VAR on monthly and weekly data. This model 
allows us to estimate weekly measures of industrial production, inflation, and the unemployment rate. We then 
simulate the effects of expansionary monetary policy and assess its effects on the endogenous variables in the 
model.

The results suggest that the US Fed was successful in stimulating growth on the back of higher equity prices 
and more favorable long- term financing conditions. Also, monetary policy triggered a depreciation of the US dollar 
supporting external competitiveness of the US economy. By contrast, we do not find significant effects on unem-
ployment and inflation, both variables that typically react more sluggishly to economic stimulus.

F I G U R E  2   Counterfactual analysis for 2020 based on setting identified shocks to M2 after the onset of 
the COVID- 19 crisis (last week of February 2020, week eight) to zero. Notes: The black solid lines depict the 
actual evolution of the series (alongside the 90 percent posterior credible set for monthly variables), the dashed 
line alongside the gray shaded area (90 percent posterior credible set) shows the counterfactual (upper panel). 
Posterior of the differences between the actual and counterfactual scenario (lower panel). The horizontal black 
line marks zero, and the vertical red line is the beginning of the pandemic period [Colour figure can be viewed at 
wileyonlinelibrary.com]

Series (solid, black) and counterfactual (dashed, grey)

Differences (actual counterfactual scenario)

www.wileyonlinelibrary.com
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APPENDIX A

DERIVATION OF THE INTERTEMPOR AL RE S TRIC TION
Let log ( �̃ (M )

t
) denote the log- level of the respective lower- frequency quantities that are observed each month 

and denote the latent weekly process that is never observed (in log- levels) by log (Y (M )

t
).

The log- levels of the observed weekly series are collected in the vector log (Y (W )

t
). All of these series are in-

cluded in our model as year- on- year differences. Recall that we assume that each year is composed of 48 weeks. 
This implies that x̃ (W )

t
= log ( �̃

(W )

t
) − log ( �̃

(W )

t− 48
) = Δ48log ( �̃

(W )

t
), and accordingly, y (W )

t
= Δ48log (Y

(W )

t
) and 

y
(M )

t
= Δ48log (Y

(M )

t
) .

Consistent with the restriction assumptions for log- level data in Schorfheide and Song (2015) and the deriva-
tions in Mariano and Murasawa (2003), our restriction is as follows:

that is, the monthly measures are linked to the unobserved weekly measures by averaging over the respective weeks 
in the month. Taking year- on- year differences results in

Using the notation for year- on- year growth rates introduced above, this results in the exact specification of the 
intertemporal restriction in Equation (3):

log�̃
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t
=
(
logY (M )

t
+ logY (M )

t− 1
+ logY (M )

t− 2
+ logY (M )

t− 3

)
∕4,
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t
− log�̃

(M )

t− 48
=
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t
− logY (M )
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)
+
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t− 1
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t− 49

)
+
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t− 2
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t− 50

)
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