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Abstract

The objective of this research is to develop a convolutional neural network

model ‘COVID-Screen-Net’ for multi-class classification of chest X-ray images

into three classes viz. COVID-19, bacterial pneumonia, and normal. The model

performs the automatic feature extraction from X-ray images and accurately

identifies the features responsible for distinguishing the X-ray images of differ-

ent classes. It plots these features on the GradCam. The authors optimized the

number of convolution and activation layers according to the size of the

dataset. They also fine-tuned the hyperparameters to minimize the computa-

tion time and to enhance the efficiency of the model. The performance of the

model has been evaluated on the anonymous chest X-ray images collected

from hospitals and the dataset available on the web. The model attains an

average accuracy of 97.71% and a maximum recall of 100%. The comparative

analysis shows that the ‘COVID-Screen-Net’ outperforms the existing systems

for screening of COVID-19. The effectiveness of the model is validated by the

radiology experts on the real-time dataset. Therefore, it may prove a useful tool

for quick and low-cost mass screening of patients of COVID-19. This tool may

reduce the burden on health experts in the present situation of the Global Pan-

demic. The copyright of this tool is registered in the names of authors under

the laws of Intellectual Property Rights in India with the registration number

‘SW-13625/2020’.
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1 | INTRODUCTION

The world is facing a serious health emergency due to
the outbreak of ‘COVID-19’ since January 2020. This
communicable disease is caused by the human coronavi-
rus “SARS-CoV-2”. The first infection notified in Wuhan,
China in December 2019, spread out in 220 countries and
lead to a global pandemic. World Health Organization
(WHO) reported the infection in 77 807 440 people. The
virus caused the death of 1 711 286 people across the
globe until December 22, 2020.1 The discussion given in

Reference 2 provides insights into the spreading trends of
COVID-19. It also provides details about the AI-based
tools available for presenting the data analytics and
predicting the COVID-19 outbreak. Timely and accurate
diagnosis is important to control this outbreak. The
teams of doctors, scientists, research communities, and
diagnostic kit manufacturers are working hard to provide
low-cost and quick methods to diagnose this disease.
They developed two types of immunodiagnostic Rapid
Diagnostic Tests (RDT) tests viz. “RDT based on antigen
detection”, and “RDT based on host antibody detection”.3
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The accuracy of ‘RDT based on antigen detection’ is
dependent on the concentration of viruses in the sample
collected from the respiratory tract. On the other hand,
the accuracy of ‘RDT based on host antibody’ is depen-
dent on the number of antibodies present in the blood of
the patient. The antibody formation is highly decided by
the age, nutrition, and prior health conditions of the per-
son.4 These tests are not reliable due to low accuracy and
dependency on other factors such as age, nutrition,
health history, etc. Therefore, the WHO does not recom-
mend the above-stated tests for diagnostic purposes. But,
the usage of these tests for research is encouraged.5

WHO recommended molecular tests such as Polymer-
ase Chain Reaction (PCR) as a confirmatory and labora-
tory test for COVID-19.6 But, the test is restricted to the
limited number of Government and Private Laboratories.
Moreover, the effectiveness of this test is dependent on
the collection, packaging, and shipment of the samples.
Its sensitivity is reported as 60%–70%.7

The low accuracy of the PCR test motivates
researchers and health experts to introduce more
ways of diagnosis. The radiological examination has
been a reliable diagnosing technique for infectious
diseases such as bacterial pneumonia, viral pneumo-
nia, and tuberculosis, etc. for many decades. The
authors in Reference 8 claimed that the abnormality
in the lungs is captured in the CXR. The changes in
the shape, size, textures, and reflection symmetry
between the lungs are examined to diagnose the
abnormality or disease.

A discussion with a senior radiology expert clarified
that there are remarkable differences in chest X-ray
images of non-infected, patients of COVID-19, and
patients infected with bacterial pneumonia. He added
that the typical bacterial pneumonia causes the opacities
or pleural effusion to a confined region. Also, there is a
regular pattern of opacities in X-ray images of a person
infected with bacterial pneumonia. The rate of spreading
of bacterial pneumonia is slow. Therefore, the X-ray
images captured after every 2 or 3 days will show a minor
variation in opacities. On the other hand, the irregular
pattern of white patches or opacities is observed through-
out the lungs in patients of COVID-19. The opacities are
bilateral and pleural effusion is observed in all the lobes

of the lungs. The opacities are more common near hila.
Also, the rate of spreading is very fast. The causing agent
of COVID-19 infects both the lungs completely within a
short period of 2–3 days. The infection shows its large
impact on both the lungs after 2–3 days. The authors in
References 9-11 also claimed that the chest X-ray images
of confirmed patients of COVID-19 show multi-lobar
opacities in the lungs. These opacities are ground glass
and mixed attenuation.

The above discussion shows that the X-ray images
can be a useful modality for the screening of ‘COVID-19’
due to remarkable differences captured for infected and
healthy lungs. But, manual reading of X-ray images is a
time-consuming task. It is difficult for health experts to
guarantee a quick response in the present situation of the
global pandemic. Therefore, it is mandatory to search for
an alternative method of screening. The Deep Learning
(DL) techniques automated the process of feature extrac-
tion and feature selection.12 There is a provision to fine-
tune the features for obtaining the desired outcome.
These techniques allow parallel computations and also
learn about the variations in the datasets. Thus, DL tech-
niques are effective in handling the huge and variegated
datasets.13 Convolutional Neural Networks (CNNs), a
class of DL networks are useful in the automatic extrac-
tion of the relevant features from images and feature
mapping.13 Their fast computations, the ability of object
detection, continuous learning, and precise classification
are the motivations for the authors to employ CNN
models in mass screening of COVID-19 from chest X-ray
images. The basic architecture of the CNN model is
shown in Figure 1.

The CNN architecture comprises of following layers
to perform different operations.

i. Convolution Layer: This layer receives the input
image as a matrix of digits. It includes another matrix
“filter” or “kernel”. The filter strides over an input
image to extract features of the image without des-
tructing the spatial relationship between the pixels.
The convolution operation calculates the dot product
of the input image and its filter.14 The operation
gives a feature map as shown in Figure 2C. Different
filters generate different feature maps, so the

FIGURE 1 Basic architecture of

CNN model [Color figure can be viewed

at wileyonlinelibrary.com]
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convolution layer acts as a feature detector. Exempli-
fied as the value of the first cell of the feature map is
calculated as the dot product of the input image and
filter striding over it as given below.

((2*1) + (1*0) (+4*(−1)) + (3*2) + (1*1) + (2*0) + (4*0)
+ (3*1) + (5*(−1))).

The input image and the filter considered for calcula-
tion of the value of the first cell of the feature map are
shown with the yellow boundary in Figure 2A, and
Figure 2B, respectively. The value obtained is shown
within the yellow boundary in Figure 2C. The filter
strides repeatedly over the input matrix to obtain all the
values of the feature map. The striding of filter over the
input matrix with a stride of ‘1’ is shown in Figure 3.

ii. Pooling Layer: A pooling layer is a form of a non-
linear function. It is applied to a convoluted image to
create a summary of the important features available
in an image. The pooling layer reduces the number
of parameters and computations on CNN. It reduces
the resolution of a feature map but it does not lose its
vital information.14 In max pooling, the maximum
value is picked from the feature map to determine

the important features as shown in Figure 4.
Selecting a subset of features finds fewer false pat-
terns. Thus, this layer helps in controlling the prob-
lem of over-fitting.

iii. Fully Connected Layer: This layer follows many con-
volutional layers and pooling layers. It represents a
feature vector for an input image. It contains connec-
tions to all activations in a previous layer. This layer
helps a network to learn the non-linear combinations
of features for classification.14

The applications of CNN in medical image analysis
and classification attracted the researchers11,15-19 to pro-
vide technological assistants to medical practitioners for

FIGURE 2 Convolution

operation [Color figure can be

viewed at

wileyonlinelibrary.com]

FIGURE 3 Striding of filter over an

input image [Color figure can be viewed

at wileyonlinelibrary.com]

FIGURE 4 Max pooling operation [Color figure can be viewed

at wileyonlinelibrary.com]
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dealing with the global pandemic of COVID-19. The
researchers in Reference 15 proposed the deep learning
model “COVID-Net” for the diagnosis of COVID-19. The
model reports the accuracy of 83.25% on X-ray images of
patients of COVID-19 and bacterial pneumonia. The
researchers in Reference 16 proposed the model
“COVIDX-Net” for the classification of non-infected and
patients of ‘COVID-19’. It reports the highest accuracy of
90% that is an improvement of 6.75% over the model pro-
posed in Reference 15.

The above-stated models face challenges such as over-
fitting, high computation complexity, and low accuracy
for multi-class classification. To minimize these chal-
lenges, the authors in Reference 17 proposed a light-
weight CNN-tailored shallow architecture for the detec-
tion of COVID-19 using CXRs. They experimented with
130 CXR of positive cases of COVID-19 and 51 CXRs of
Non-COVID cases. Their model achieved the highest sen-
sitivity and accuracy of 94.43% and 96.92%, respectively.
The authors claimed that their model outperformed the
DL tools, such as MobileNet and VGG-16. Also, their
model is computationally efficient due to less number of
parameters. A combination of the CNN model and SVM
classifier proposed in Reference 18 reports the accuracy
of 95.38% for the detection of COVID-19. The authors in
Reference 19 claimed that applying ResNet-50 on X-ray
images gives an accuracy of 98%. But they tested their
model only on the dataset of 50 images. The researchers
in Reference 11 proposed the CNN model
“DarkCovidNet” for the diagnosis of COVID-19. They
developed the model with 17 convolution layers and
trained their model with publicly available datasets.20,21

The model reported the highest accuracy of 98.08% for
the binary classification and 87.02% for the multiclass
classification. However, the proposed models reported
good accuracy in classification. But, there is a scope for
improving the accuracy of multiclass classification.

In this manuscript, the authors propose the con-
volutional neural network model “COVID-Screen-Net”
for the screening of ‘COVID-19’ using the chest X-ray
images. The design of the model is customized in such a
way that it can accurately classify the X-ray images of
COVID-19 even though trained with a small dataset. The
model employs the GradCam for visualizing the most
prominent features involved in the prediction of the
infected regions of the lungs. This may prove useful to
clinicians to validate the results of the model. The major
contributions of this manuscript are as follows.

• To collect the anonymous dataset of chest X-rays from
hospitals and different sources available online.

• The cleaning and pre-processing of the dataset.
• The validation of the labeled dataset by the radiology

experts.

• To utilize the potential of CNN in object detection and pat-
ternmatching for detection of COVID-19 in chest X-rays.

• To develop a CNN model for mass screening of non-
infected persons (normal), patients infected with
COVID-19 and bacterial pneumonia into three classes
viz. normal, COVID-19, and bacterial pneumonia.

• To optimize the hyperparameters of the CNN model
according to the training dataset.

• To provide a tool for the mass screening of COVID-19
with higher sensitivity and specificity than the tools
and techniques proposed in the literature.

• To present the visualization of the most prominent fea-
tures involved in distinguishing the X-ray images into
three classes viz. normal, COVID-19, and bacterial
pneumonia.

2 | MATERIALS AND METHODS

In this section, the authors demonstrate the data set used,
detailed architecture, and working of the proposed CNN
model “COVID-Screen-Net”.

2.1 | Dataset

The authors used the dataset of 3000 X-ray images, pub-
licly available at.20,21 The dataset contains 975 images of
non-infected persons, 950 images of patients of ‘COVID-
19’, and 950 images of patients of “Bacterial Pneumonia”.
Figure 5A–C shows the sample X-ray images of ‘COVID-
19’, normal and bacterial pneumonia respectively.

The authors divided the dataset into training, testing,
and validation datasets. The testing set comprises 80% of
the total X-ray images whereas the testing set contains
20% of the total dataset. The validation set comprises 10%
of images randomly chosen from the training dataset. The
authors also divided the dataset into 47 batches. Each
batch contains 64 images. The model receives 38 batches
in each epoch during the training and 19 batches during
the testing. The authors conducted a set of experiments to
select the appropriate batch size. This chosen batch size
allows the model to gradually learn the features of the
dataset. It minimizes the chances of making the model
familiar with the whole dataset at the beginning of the
training. Thus, it reduces the problem of generalization.22

2.2 | The architecture of “COVID-
Screen-Net”

The model ‘COVID-Screen-Net’ is an effective applica-
tion of 2-Dimensional (2-D) Convolutional Neural Net-
works (CNNs). It comprises five convolution layers. Each
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convolution layer is alternatively followed by a global
max-pooling layer. The first convolution layer uses 32 fil-
ters and a kernel size of 3 × 3. It employs the ReLU acti-
vation function.13 The next four convolution layers
consist of 64 filters and a kernel size of 2 × 2. The feature
map obtained on applying the five convolutions and
max-pooling operations is given as an input to the flat-
tened layer. The flattened layer is further connected to
the fully connected dense layer which employs the
“softmax” activation function. The overall architecture of
the model is shown in Figure 6.

2.3 | Working of “COVID-Screen-Net”

The model ‘COVID-Screen-Net’ performs a sequence of
operations for the screening of COVID-19, bacterial
pneumonia, and normal as presented in Algorithm 1.

i. Pre-processing: The model receives X-ray images of
dimensions 256 × 256 × 32 as an input. It applies the
resize and augmentation techniques for the pre-
processing of the input images. The authors applied
the techniques for changing the contrast and bright-
ness of X-ray images. Therefore, two images
corresponding to an original image are obtained.
These augmentation techniques are useful for
increasing the size of the dataset.

ii. Feature extraction: The model uses pre-processed X-
ray images for feature extraction. It extracts the fea-
tures and creates the feature maps using multiple
convolutions and pooling operations. On a sample
image of size 6 × 6, Figures 2 and 3, demonstrate the
convolution and pooling operations respectively.

iii. Visualization: The authors plotted the feature map
obtained at the last activation layer. They used the
GradCam to plot the feature map. The plotting at
each convolution and activation layer gave an idea of
how the model extracts all possible features in the
initial layers and ignores the less prominent features
in later layers.

iv. Classification: The pre-processed images are given as
input to the first convolution layer which contains a
set of 32 filters, each of kernel size 3 × 3. This layer
employs the ReLU activation function (f(x)).13 It is a
non-saturating activation function as given in Equa-
tion (1). It is applied to every pixel. It replaces nega-
tive values with zero. Thus, it eliminates negative
values from a feature map. This function brings the
non-linearity in the output of neurons of the model.
Hence, it improves the ability to learn the compli-
cated and complex forms of non-linear data. As
claimed in Reference 13, ReLU is preferred over
other activation functions such as sigmoid and tanh
as it does not activate all neurons at the same time.
This solves the problem of vanishing gradients for

FIGURE 6 Architecture of “COVID-Screen-Net” [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 5 (A) ‘COVID-19’,
(B) normal, and (C) bacterial

pneumonia
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training deep learning models and improves the per-
formance of the model.

f xð Þ=max 0,xð Þ ð1Þ

The output of the first convolution layer is given to
the first global max-pooling layer. This layer extracts the
features with the maximum value, from each feature
map. It also makes the model learn even when a small
change in data is performed. Therefore, it is useful in
improving the adaptability of the model. Now, four con-
volutions and pooling operations are applied alternatively
using the convolution layers and global max-pooling
layers. These operations reduce the dimensions of an
input image and give an output of dimensions 8 × 8 × 64.
The obtained output is given to the flattening layer which
converts the multi-dimensional feature map to a
1-Dimensional (1-D) array of size 4096. The 1-D array is
important to create one to one connection of the
extracted features with the fully connected dense layer.
Now, the dropout function is applied to reduce the num-
ber of neurons to 256. The change in the shape of output
and trainable parameters of the “COVID-Screen-Net” are
shown in Table 1. These 256 neurons establish the con-
nections with the next fully connected dense layer. The
fully connected dense layer employs the “softmax” activa-
tion function13 for predicting the probability distribution
of outputs into multiple classes namely “COVID-19”, nor-
mal, and ‘bacterial Pneumonia. Figure 7 demonstrates
the black box working of the ‘COVID-Screen-Net’.

3 | EXPERIMENTS

The authors used the memory and processing resources
available at Google Colab23 for conducting the experi-
ments. Google Colab is an online training platform freely
available for storage and processing. It provides the facil-
ity of processing the data on Tesla K80 GPU and RAM
capacity of 12 GB. It is efficient in the continuous execu-
tion of a model for 12 hr without any halt. The authors
used the dataset in References 20,21 for training the
“COVID-Screen-Net”. They fine-tuned the training
parameters given in Section 3.1 to optimize the perfor-
mance of the model.

3.1 | Training parameters

The proposed model employs the RMSProp optimizer13

at the dense layer. The model uses the following training
parameters.

i. rho: This is the exponentially weighted average
over the square of the gradients. It is the decay fac-
tor for the learning rate of the model. In this manu-
script, the authors pre-set the optimum value of
‘rho’ as 0.9. The value is determined by performing
the set of experiments. Figure 8 demonstrates the
impact of change in the value of ‘rho’, on the accu-
racy of the model. The increase in the value of
‘rho’ above 0.9 leads to a sharp decrease in the
accuracy. On the contrary, the decrease in value of
‘rho’ below 0.9 shows a gradual increase or
decrease in the accuracy. The variation in the accu-
racy, Area Under Curve(AUC), precision, recall,
and F1 measure with the change in the value of
‘rho’ is shown in Table 2.

ii. Decay rate: This is the learning rate of the model.
The model reaches close to the local minimum at the
end of the training. In this research, the authors set
the decay rate as ‘0’. The value is determined after
conducting a set of experiments. Figure 9

Algorithm 1

Screening of ‘COVID-19’
Input: X-ray images of the chest.
Output: Three classes: ‘COVID-19’, normal and
bacterial pneumonia.

1. Apply pre-processing: resize and augmenta-
tion on input X-ray images.

2. Pass the image into the Convolution layer to
create the feature map.

3. Input the feature map to the Global Max
Pooling layer for extracting the feature with
maximum value.

4. Repeat steps 2 and 3 for n = 1 to 5.
5. Apply flattening on the output obtained from

the last global max-pooling layer to get the
1-D array of features.

6. Pass the 1-D array of features obtained in
step 4 to the Dropout layer for reducing the
number of neurons.

7. Establish the connections of neurons
selected by the dropout layer to the fully con-
nected dense layer.

8. Apply the “softmax” activation function.
9. Draw activation maps to highlight the fea-

tures involved in actual decision making.
10. Obtain outputs into three classes: COVID-19,

normal and bacterial pneumonia as outputs.
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FIGURE 7 Black Box working of the ‘COVID-Screen-Net’ [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Shape of output and

number of trainable parameters of

‘COVID-Screen-Net
Name of layer Shape of output

Number of trainable
parameters

conv2d_11 (Conv2D) (None, 256, 256, 32) 896

activation_13 (Activation) (None, 256, 256, 32) 0

max_pooling2d_11 (MaxPooling) (None, 128, 128, 32) 0

conv2d_12 (Conv2D) (None, 128, 128, 64) 8256

activation_14 (Activation) (None, 128, 128, 64) 0

max_pooling2d_12 (MaxPooling) (None, 64, 64, 64) 0

conv2d_13 (Conv2D) (None, 64, 64, 64) 16 448

activation_15 (Activation) (None, 64, 64, 64) 0

max_pooling2d_13 (MaxPooling) (None, 32, 32, 64) 0

conv2d_14 (Conv2D) (None, 32, 32, 64) 16 448

activation_16 (Activation) (None, 32, 32, 64) 0

max_pooling2d_14 (MaxPooling) (None, 16, 16, 64) 0

conv2d_15 (Conv2D) (None, 16, 16, 64) 16 448

activation_17 (Activation) (None, 16, 16, 64) 0

max_pooling2d_15 (MaxPooling) (None, 8, 8, 64) 0

flatten_3 (Flatten) (None, 4096) 0

dense_5 (Dense) (None, 256) 1 048 832

activation_18 (Activation) (None, 256) 0

dropout_3 (Dropout) (None, 256) 0

FIGURE 8 Effect of “rho” on the

accuracy of ‘COVID-Screen-Net’ [Color
figure can be viewed at

wileyonlinelibrary.com]
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demonstrates the effect of the decay rate on accuracy.
At the pre-set value ‘0’, the model attains the opti-
mum value of the decay rate as 0.0001. An increase
in the decay rate sharply decreases the accuracy of
the model. Table 3 shows the variation in the perfor-
mance metrics namely accuracy, AUC, precision,
recall, and F1 measure of the “COVID-Screen-Net”
with the change in the value of decay rate.

iii. Learning Rate: This hyper-parameter determines the
rate of learning of the machine-learning model. It
decides the number of steps the model requires to
minimize the value of the loss function. Figure 10
demonstrates the effect of the learning rate on the
accuracy of the “COVID-Screen-Net”. In this
research, the authors set the value of the learning
rate as 0.0004 based on the set of experiments. The

impact of the learning rate on the performance of the
model is shown in Table 4.

iv. Epsilon: This parameter prevents the erroneous
values of gradients such as divided by zero. In this
manuscript, the authors used the default value of
epsilon as 1e-10.

3.2 | Results

The authors assigned class labels 0, 1, and 2 to the nor-
mal, bacterial pneumonia, and “COVID-19” respectively.
Table 5 shows the confusion matrix of 570 images used in
the testing dataset. The authors evaluated the perfor-
mance of the “COVID-Screen-Net” using the following
evaluation metrics.

TABLE 2 Impact of ‘rho’ on
performance of ‘COVID-Screen-Net’

rho Accuracy AUC score Precision Recall F1 score

0.1 0.977193 0.983171 0.97724 0.977193 0.977132

0.3 0.97193 0.978834 0.972215 0.97193 0.972016

0.6 0.978947 0.984122 0.978991 0.978947 0.978951

0.9 0.977193 0.982703 0.977288 0.977193 0.977152

1.2 0 0.5 0 0 0

FIGURE 9 Effect of “decay rate”
on the accuracy of ‘COVID-Screen-Net’
[Color figure can be viewed at

wileyonlinelibrary.com]

TABLE 3 Impact of decay on

performance of ‘COVID-Screen-Net’
Decay Accuracy AUC score Precision Recall F1 score

0 0.977193 0.982703 0.977288 0.977193 0.977152

1.00E-05 0.97193 0.978544 0.972835 0.97193 0.972057

1.00E-04 0.970175 0.977392 0.97074 0.970175 0.970299

1.00E-03 0.970175 0.977247 0.970755 0.970175 0.970214

1.00E-02 0.963158 0.972273 0.963365 0.963158 0.963205

1.00E-01 0.910526 0.93835 0.928938 0.910526 0.918254
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i. Sensitivity(S): This is the percentage of the total
number of correctly classified diseased instances in
their labeled class. It is defined in Equation (2) for
the class ‘COVID-19’, and Equation (4) for the class
‘bacterial pneumonia’. The “COVID-Screen-Net”
achieves the highest sensitivity of 98.34% for the
‘COVID-19’ as calculated in Equation (3). It reports
the highest sensitivity of 99.47% for bacterial pneu-
monia as calculated in Equation (5).

SCOVID =
Number of correct predictions in COVID class

Total number of samples in COVID class

ð2Þ

SCOVID =
178
181

× 100 ð3Þ

SBacterial =
Number of Correct Predictions in Bacterial Class

Total number of Samples in Bacterial Class

ð4Þ

SBacterial Pneumonia =
188
189

× 100 ð5Þ

ii. Specificity (Sp): This is the percentage of the cor-
rectly classified instances to the normal class as
defined in Equation (6). The “COVID-Screen-Net”
achieves the specificity of 95.50% as calculated in
Equation (7).

Sp=
Number of correct predictions in normal class

Total number of samples in normal class
ð6Þ

Sp=
191
200

× 100 ð7Þ

iii. Prevalence (P): This is the degree of contribution of a
class in the complete dataset. Its definition is given
in Equation (8). The dataset used for testing the
models “COVID-Screen-Net”, “DarkCovid Net”,

FIGURE 10 Impact of learning rate on accuracy of ‘COVID-
Screen-Net’ [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 4 Impact of learning rate

on performance of the ‘COVID-
Screen-Net’

Learning rate Accuracy AUC Score Precision Recall F1 score

0.00004 0.961404 0.971041 0.961547 0.961404 0.961436

0.0008 0.973684 0.979819 0.974499 0.973684 0.973728

0.0006 0.977193 0.98321 0.977268 0.977193 0.977137

0.0004 0.977193 0.982703 0.977288 0.977193 0.977152

0.004 0.975439 0.981681 0.975664 0.975439 0.975379

0.04 0 0.5 0 0 0

TABLE 5 Confusion matrix of

COVID-Screen-Net on test dataset

[Color Table can be viewed at

wileyonlinelibrary.com]
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“VGG-19”, and “ResNet-50” reports the prevalence
of 0.3175 for the COVID-19, 0.3315 for bacterial
pneumonia, and 0.3508 for the normal class as calcu-
lated in Equations (9), (10), and (11) respectively.

P=
Number of Instances of oneClass

Total number of Instances in the Dataset
ð8Þ

PCOVID =
181
570

ð9Þ

PBacterial =
189
570

ð10Þ

PNormal =
200
570

ð11Þ

iv. Average Accuracy (Avg_Acc): This is the sum of
products of prevalence with sensitivity and specificity
as defined in Equation (12). The proposed model
‘COVID-Screen-Net’ reports the average accuracy of
99.71% on the test dataset as calculated in
Equation (13).

Avg_Acc=
X

PCOVID × SCOVIDð Þ+ PBacterial × SBacterialð Þ
+ PNormal × Specificityð Þ

ð12Þ

Avg_AccCOVID−Screen−Net =
X

0:3175× 0:9834ð Þ
+ 0:3315× 0:9947ð Þ+ 0:3508× 0:9550ð Þ

ð13Þ

The accuracy of the ‘COVID-Screen-Net’ randomly
varies when it is executed from the 0th to the 120th
epoch. Figure 11 demonstrates the trends of its accuracy

until the model achieves its highest accuracy. It is clear
from Figure 11 that the accuracy sharply increases in exe-
cuting the model from 0th to 10th epochs. It achieves the
maximum accuracy of 97.71% at the 50th epoch. On fur-
ther training, the model gives a random increase and
decrease inaccuracy. The trends of increase and decrease
in the accuracy give the information that the model grad-
ually learns about the dataset and the training
parameters.

The accuracy of the model is also dependent on the
batch size. It achieves an accuracy of 94% when a batch
size of 16 images is given as an input. On the contrary,
the accuracy decreases and becomes 90.5% when the
batch size is increased to 128 images. The maximum
accuracy of 97.71% is achieved for the optimum batch
size of 32 images.

v. Categorical cross-entropy loss: It measures the degree
of dissimilarity between the actual label distribution
(y) and the predicted label distribution ŷð Þ: The defi-
nition of the categorical cross-entropy loss
(Lcross−entropy ŷ,yð ÞÞ is given in Equation (14). Here,
i denotes the epoch number.

Lcross−entropy ŷ,yð Þ= −
X

i

yilog ŷið Þ ð14Þ

On performing the set of experiments, the authors
recorded the values of loss as shown in Figure 12. There
is a random increase and decrease in the values of the
loss function when the number of epochs increases from
1 to 50. It reveals that the model is continuously learning
the training parameters using the values of loss obtained
in previous epochs. Repetitive learning is important for
training the model and improving its efficacy. The model
achieves the highest accuracy at the lowest value of the
loss. It is clear from Figure 12, that the “COVID-Screen-

FIGURE 11 Trends of accuracy

with change in number of epochs [Color

figure can be viewed at

wileyonlinelibrary.com]
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Net” gives the minimum value of the loss at the 50th
epoch. Therefore, it reports the maximum accuracy at
this epoch. On further training, the model does not make
a significant change in the value of the loss. It proves that
the model is trained successfully and hence, can correctly
predict the class of an input image.

vi. Area Under Curve (AUC): This is the area under the
Receiver Operating Characteristic curve (ROC). ROC
is the graphical representation of the number of cor-
rect predictions in a particular class against the num-
ber of wrong predictions made in that class. It
directly determines the performance of the multi-
class model. The confusion matrix given in Table 5,
shows the number of test images predicted correctly
in their labeled classes. The high values of AUC
under ROC 0.97 for the class label ‘0’ (normal),
0.99 for the class label “1” (bacterial pneumonia),
and 0.98 (COVID-19) for the class label “2” prove
that the model is effective in making the correct pre-
dictions for each class. Figure 13 demonstrates the
average ROC for all three classes.

vii. Precision: It is the ratio of the number of correct pre-
dictions in a particular class to that of the total num-
ber of correct predictions made in all the classes. The
model “COVID-Screen-Net” achieves the maximum
precision of 100% on the test dataset. The values of
the precision of each class are shown in Figure 14.
The high values of precision prove that the model is
effective in extracting the relevant instances of each
class label from the total number of extracted
instances.

viii. Recall: It is the ratio of the number of correct predic-
tions to a particular class to that of the total number

of predictions made in that class. The model
‘COVID-Screen-Net’ gives the maximum recall of
100%. The values of recall for the class label ‘1’ and
‘2’ prove that the model extracts all the relevant
instances from the given instances. Figure 14 shows
the values of recall for each class.

ix. F1 Score: This is the harmonic mean of precision and
recall. The proposed model gives an average F1
score of 99.6%. The high values of the F1 score
prove, its efficacy in classifying the test images cor-
rectly into their actual classes viz. normal, ‘bacterial
pneumonia’, and ‘COVID-19’.
The performance of the model is recorded for a dif-
ferent number of epochs while training and testing
for each class. It is observed that the model achieved

FIGURE 12 Trends of the value of loss with change in the

number of epochs [Color figure can be viewed at

wileyonlinelibrary.com]

FIGURE 13 Average ROC for all the three classes [Color

figure can be viewed at wileyonlinelibrary.com]

FIGURE 14 Performance of ‘COVID-Screen-Net’ for Normal,

Bacterial Pneumonia, and COVID-19 [Color figure can be viewed at

wileyonlinelibrary.com]
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the best performance at the 50th epoch. Figure 15
demonstrates the variation in the performance of the
model with a change in the number of epochs.

3.3 | Comparative analysis

The authors executed the “DarkCovidNet”, “VGG-19”,
and “ResNet-50” on the dataset in References 20,21. They
used the same dataset for training and testing of the pro-
posed model “COVID-Screen-Net”. The Confusion matri-
ces of “DarkCovidNet”, “VGG-19”, and “ResNet-50” are
shown in Tables 6, 7, and 8 respectively. The
“DarkCovidNet” reports a sensitivity of 96.87% for
COVID-19 and 81.54% for the bacterial pneumonia class.
The model reports the specificity of 64.94% for the nor-
mal class. This model achieves the maximum average
accuracy of 80.57% as calculated in Equation (15).

The model “VGG-19” achieves the maximum sensitiv-
ity of 97.80% for the COVID-19, 96.50% for the bacterial
pneumonia class. The model achieves the specificity of
67.95% in the normal class. This model reports the
highest average accuracy of 86.88%, as calculated in
Equation (16).

The model “ResNet-50” gave the maximum sensi-
tivity of 100% for the COVID-19 and 98.5% for the
bacterial pneumonia Class. The model achieves a
specificity of 68.85%. This model reports the maxi-
mum average accuracy of 88.55%, as calculated in
Equation (17).

Avg_AccDarkCovidNet =
X

0:3175× 0:9687ð Þ
+ 0:3315× 0:8154ð Þ+ 0:3508× 0:6494ð Þ

ð15Þ

Avg_AccVGG−19 =
X

0:3175× 0:9780ð Þ
+ 0:3315× 0:9650ð Þ+ 0:3508× 0:6795ð Þ

ð16Þ

Avg_AccResNet50 =
X

0:3175× 1:00ð Þ
+ 0:3315× 0:9850ð Þ+ 0:3508× 0:6885ð Þ

ð17Þ

FIGURE 15 Performance of ‘COVID-Screen-Net’ with a

change in the number of epochs [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE 6 Confusion matrix of ‘DarkCovidNet’ on test dataset

[Color Table can be viewed at wileyonlinelibrary.com]

TABLE 8 Confusion matrix of ‘ResNet50’ on test dataset

[Color Table can be viewed at wileyonlinelibrary.com]

TABLE 7 Confusion matrix of ‘VGG-19’ on test dataset [Color

Table can be viewed at wileyonlinelibrary.com]
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It is clear from the above discussion that the
DarkCovidNet, VGG-19, and ResNet-50 are effective in
classifying the samples of COVID-19 and bacterial pneu-
monia class. But, these prove ineffective in the correct
classification of the samples of the normal class. The high
number of miss classification of the samples of ‘normal’
class to “COVID-19” or ‘bacterial pneumonia’ classes
degrade the reliability of these models. On the contrary,
the proposed model “COVID-Screen-Net” correctly clas-
sifies the samples from each class. Thus, it achieves the
highest average accuracy of 97.71% as calculated in Equa-
tion (12). Figure 16 demonstrates the comparison in the
average accuracy of ‘COVID-Screen-Net’ with
‘DarkCovidNet’, ‘VGG-19’, and ‘ResNet-50’. The figure
clearly shows that the model ‘COVID-Screen-Net’ out-
performs the other three models.

The authors also made a comparison in the AUC
score of ‘COVID-Screen-Net’ with ‘DarkCovidNet’,
‘VGG-19’, and ‘ResNet-50’. Figure 17 demonstrates the
AUC score of these models. It is clear from Figure 17 that
the ‘COVID-Screen-Net’ gives the maximum AUC score
for the same dataset.

The execution time is an important factor to adopt
the model for medical diagnosis. Therefore, the authors
made a comparison in the execution time of the ‘COVID-
Screen-Net’ with ‘DarkCovidNet’, ‘VGG-19’, and
‘ResNet-50’. The comparison in the execution time is
shown in Figure 18. This figure shows that the ‘ResNet-
50’ takes the maximum time for computations. This is
due to the more number of convolution and pooling
layers in the model. The model ‘VGG-19’ takes lesser
time than ‘ResNet-50’ but, it requires more time than
‘DarkCovidNet’ and ‘COVID-Screen-Net’. The Model

‘COVID-Screen-Net’ takes the minimum time for execu-
tion. This is due to the use of an optimum number of
convolution and pooling layers in the network. The
authors optimized the number of layers to overcome the
problem of overfitting and to minimize the computation
time. The authors applied the augmentation techniques
to increase the size of the dataset. For training the model,
they took an equivalent number of images in each class.
Therefore, the model undergoes unbiased training. It
resolved the problem of class imbalance and improves
the average accuracy of the model.

4 | DISCUSSION

Dr. Cohen collected and compiled the X-ray images of
the patients of “COVID-19” confirmed by the RT-PCR

FIGURE 16 Comparison in the accuracy of DarkCovidNet,

ResNet50, VGG-19, and COVID-Screen-Net [Color figure can be

viewed at wileyonlinelibrary.com]

FIGURE 17 Comparison in AUC score of DarkCovidNet,

ResNet50, VGG-19, and COVID-Screen-Net [Color figure can be

viewed at wileyonlinelibrary.com]

FIGURE 18 Comparison in execution time of DarkCovidNet,

ResNet50, VGG-19, and COVID-Screen-Net [Color figure can be

viewed at wileyonlinelibrary.com]
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test. He made this data publicly available at the Github
repository20 for developing and evaluating the machine
learning or deep learning models for the detection of
‘COVID-19’. Similarly, Paul Mooney collected and com-
piled the X-ray images from different sources for the con-
firmed cases the bacterial and viral pneumonia. He made
these images available at the Kaggle repository.21 But, the
size of the dataset is small and is insufficient for the train-
ing of the deep learning models.

To provide a solution for the requirement of a huge
training dataset, the authors in24 discussed the impor-
tance of active learning in training for AI-driven tools. In
active learning, the model continuously receives the
input data, detects the anomaly in the dataset if any, and
consistently learns from it. The authors also focused that
the potential of AI-driven tools that can be utilized to
diagnose the newly identified disease such as COVID-19
by using the multitudinal and multimodel datasets for
training. This is a time-saving technique where the tools
are trained using a dataset collected from one geographi-
cal region and the trained tools may prove useful in the
diagnosis of a disease in a different region. For example,
the COVID-19 reported in China for the first time, and
later on its cases are identified in other countries of the
world. So, the dataset collected from China at an early
stage can be used to train the model. This trained model
with the feature of continuous learning may be useful in
the screening of COVID-19 across the world.

The researchers in Reference 11 proposed the deep
learning model “DarkCovidNet” comprising 17-
convolution layers for the detection of COVID-19. They
evaluated their model on the dataset comprising 127 X-
ray images of COVID-19 patients,20 500 X-ray images of
no findings, and 500 X-ray images of pneumonia.21 They
claimed an accuracy of 98.08% for the binary classifica-
tion. But, the model reported an accuracy of 87.02% for
the multi-class classification. On executing the model on
the dataset used for training and testing the “COVID-
Screen-Net”, the model achieved the maximum average
accuracy of 80.57%. This model employs a deep network
of 17 layers for the small size of the dataset. Thus, it may
lead to the problem of overfitting. Moreover, there is a
huge difference in the size of datasets of COVID-19 and
the other two classes viz. No-findings and Pneumonia.
This may cause the problem of class imbalance.

The researchers in Reference 15 proposed the deep
learning model “COVID-Net” for the detection of
COVID-19. The model consists of 4-convolution layers.
They trained and evaluated their model on X-ray images
collected from References.20,21 They used 68 X-ray images
of confirmed patients of ‘COVID-19’, 1203 cases of
healthy persons, 931 cases of bacterial pneumonia, and
660 cases of non-COVID-19 viral pneumonia. They

reported an accuracy of 83.25% for the multi-class classi-
fication. Similar to the model proposed in,11 this model
may undergo biased training due to the huge variation in
the dataset size of different classes.

The researchers in Reference 16 proposed the deep
learning framework “COVID-NetX” based on the seven
existing architectures. They compared the efficacy of
seven deep learning models viz. VGG-19, DenseNet201,
Inception, ResNetV2, Xception, ResNetV2, and
MobileNetV2 for detection of COVID-19 using 50 X-ray
images of chest. They claimed that the VGG-19 and Den-
seNet201 reported the highest accuracy of 90% on train-
ing and testing with 25 X-ray images of COVID-19
confirmed cases and 25 X-ray images of non-infected per-
sons in Reference 18. They recommended the use of
VGG-19 and DenseNet201for detection of COVID-19
using X-ray images. The model ‘VGG-19’ reported the
average accuracy of 86.88% on the same dataset20,21 as
used for testing the “COVID-Screen-Net”.

The researchers in Reference 18 proposed the combi-
nation of the CNN model and SVM classifier. They
reported an accuracy of 95.38% on training and testing
their model using 25 X-ray images of non-infected per-
sons and 25 X-ray images of “COVID-19” patients.15

The authors in Reference 19 claimed that applying
ResNet-50 on X-ray images reports an accuracy of 98% on
binary classification into class labels namely “COVID-19”
and non-infected. The evaluation of ResNet-50 on the
same dataset20,21 as used for testing the ‘COVID-Screen-
Net’ reported the average accuracy of 88.55%.

The authors in Reference 25 proposed the Truncated
Inception Net model for classification of COVID-19 posi-
tive from other non-COVID cases and/or healthy CXRs.
The model achieved an accuracy of 99.96%. The authors
compared the performance of this model with COVID-
Net,15 a combination of ResNet-50 and SVM,16 ResNet-
50,18 and Inception Net V3.19 Based on the comparison,
they claimed that the Truncated Inception Net model
outperformed these models.

The above discussion shows that the highest accuracy
of multi-class classification into normal, COVID-19, and
bacterial bneumonia is reported by the model proposed
in Reference 19 is 88.55%. Employing deep networks for
the small dataset and biased training are also limitations
observed in this model. The deep learning model
“COVID-Screen-Net” proposed in this manuscript per-
forms the multi-class classification and effective in the
automatic screening of ‘COVID-19’. The model reports
an average accuracy of 97.71% on the testing dataset of
570 X-ray images. To deal with the problem of biased
training, the authors used an equal number of images for
each class for training and testing the model. Moreover,
the authors restricted the number of convolution layers
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to avoid the problem of overfitting on the small dataset.
The model also presents the visualization of the features
used by the model for automatic prediction of “COVID-
19” and “Bacterial Pneumonia”. The visualization in the
GradCam may prove useful for clinicians in quick deci-
sion making. This model may prove an automatic and
intelligent assistant for health experts. It can minimize
the time and cost required for the screening of
‘COVID-19’.

5 | VALIDATION

The model is sent for validation to the radiology experts
of RG Stone Urology & Laparoscopy Hospital. Dr. RK
Sharma, Chief Radiologist, and Head Radio Diagnosis
Division evaluated the efficacy of the model on the differ-
ent types of chest radiographs of the patients and shared
their feedback. The authors implemented the suggestions
and improved the efficacy and reliability of the model by
training the model with different types of chest radio-
graphs such as low contrast and high contrast for each
class namely ‘COVID-19’, “bacterial pneumonia”, and
normal. They validated the sensitivity and reliability of
the model by testing the model on a real-time dataset.
The approval and recommendation are given as supple-
mentary material.

6 | CONCLUSION

The improvement in the efficacy of the health services
has become the prime objective worldwide due to the
“Global Pandemic” caused by the ‘COVID-19’. The
cost-effective and timely diagnosis of the disease is
important to reduce its outbreak. The deep learning
model ‘COVID-Screen-Net’ can provide a technological
solution for the screening of ‘COVID-19’ using the X-
ray images of the chest. The model distinguishes the X-
ray images of normal, ‘bacterial pneumonia’, and
‘COVID-19’. It reports the average accuracy of 97.71%
on the test dataset of 570 X-ray images publicly in Refer-
ences 20,21

X-ray imaging requires low cost and widely available.
It also minimizes direct contact with the patient. More-
over, it avoids the risk of sample damage as observed in
tests based on blood samples and swabs taken from the
throat. The model can be employed at remote locations
where the medical experts and lab facilities are not avail-
able. The radiographers can capture the X-rays in con-
tactless mode. They can use the model to classify normal
and abnormal cases. The abnormal cases can be rec-
ommended for further medical tests and counseling on a

priority basis. Therefore, this model may prove a useful
assistant for medical practitioners in the quick screening
of ‘COVID-19’. This model can also be customized for
the screening of ‘COVID-19’ using CT scan images. Its
applicability can be enhanced to classify the more num-
ber of diseases using chest radiographs.

A model is an effective tool for the classification of
chest radiographs. But, its performance may degrade for
the poor-quality radiographs. The performance of the
model may below in case the chest radiographs do not
show any infection.
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