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Summary.

Longitudinal studies typically collect information on the timing of key clinical events and on 

specific characteristics that describe those events. Random variables that measure qualitative or 

quantitative aspects associated with the occurrence of an event are known as marks. Recurrent 

marked point process data consist of possibly recurrent events, with the mark (and possibly 

exposure) measured if and only if an event occurs. Analysis choices depend on which aspect of the 

data is of primary scientific interest. First, factors that influence the occurrence or timing of the 

event may be characterized using recurrent event analysis methods. Second, if there is more than 

one event per subject, then the association between exposure and the mark may be quantified using 

repeated measures regression methods. We detail assumptions required of any time-dependent 

exposure process and the event time process to ensure that linear or generalized linear mixed 

models and generalized estimating equations provide valid estimates. We provide theoretical and 

empirical evidence that if these conditions are not satisfied, then an independence estimating 

equation should be used for consistent estimation of association. We conclude with the 

recommendation that analysts carefully explore both the exposure and event time processes prior 

to implementing a repeated measures analysis of recurrent marked point process data.
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1. Introduction

A point process may be defined as a random system of events that occur in space and time 

(Cox and Isham, 1980). Specific examples include a Poisson process, a Markov process, and 

a marked point process. Historically, the study of point processes developed from renewal 

theory; application focused on life tables (Daley and Vere-Jones, 2002). Recent applications 

include telecommunications, image analysis, and stereology. Modern theoretical research of 

marked point processes has centered on model construction via a conditional intensity. 

Current methodological research focuses on testing the underlying assumptions of a marked 

point process, such as independence (Guan, 2006) and separability (Schoenberg, 2004).
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Longitudinal marked point process data consist of possibly recurrent events, with the 

outcome (or mark) and possibly exposure measured only when an event occurs. These types 

of data are common in the current biomedical literature. Examples include determining the 

effect of patient characteristics on total cost following hospitalization for pediatric injury 

(Yang et al., 2007) and evaluating the effect of surgeon experience on patient mortality 

following coronary artery bypass graft (Glance et al., 2005). In our motivating example the 

recurrent event is a live birth and the relationship between maternal exposures such as 

cigarette smoking and infant characteristics such as birth weight is of primary scientific 

interest (Hardy, 2003).

The defining characteristic of recurrent marked point process data is that the outcome exists 

if and only if an event occurs. For example, birth weight exists if and only if a birth occurs. 

In a traditional repeated measures analysis the times at which exposure and outcome are 

measured are usually specified in advance by the study protocol and often comprise a 

limited number of equally spaced observation times common to all participants. This 

conventional design assumes that each subject has a potential measurement at each 

observation time, although attrition may lead to missing data. In a marked point process 

setting measurement times are not specified in advance and may vary substantially between 

subjects. In addition, subjects may not have more than one observation time and the outcome 

is not defined for subjects who do not experience an event. A secondary characteristic is that 

a time-dependent exposure of interest may be either available throughout follow-up or 

collected if and only if an event occurs.

There are several features of longitudinal marked point process data that present interesting 

challenges. First, correlation may be induced within subjects by repeatedly collecting 

information on the same subjects over time. This requires application of appropriate 

longitudinal data analysis methods, which account for within-subject dependence. Second, 

endogeneity may exist between past outcomes and current exposure. For example, giving 

birth to an infant with low birth weight may cause a mother to cease cigarette smoking. 

Third, endogeneity may exist between past outcomes and occurrence of a subsequent event. 

For example, a mother may reconsider or delay a future pregnancy if she gave birth to a low 

birth weight infant. Ignoring these endogenous processes may lead to spurious conclusions 

(Louis et al., 2006). Therefore, analysts must consider these relationships prior to 

implementing an analysis of recurrent marked point process data.

The seminal work of Liang and Zeger (1986) introduced estimating equations as a general 

method to obtain inference from either continuous or discrete longitudinal data. Their 

generalized estimating equation (GEE) approach adopts a semiparametric model by 

specifying only the marginal mean and covariance of repeated measurements. A complete 

multivariate probability model is not uniquely identified and therefore a likelihood function 

is not available. Semiparametric methods are attractive because estimates of regression 

coefficients and standard errors are valid under minimal model assumptions.

An estimator for the effect of a time-independent exposure obtained via a GEE is consistent 

regardless of the assumed covariance structure (Liang and Zeger, 1986). However, care is 

required when evaluating the effect of a time-dependent exposure and attention must be 
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given to factors that lead to inclusion or exclusion of observations (Pepe and Anderson, 

1994; Pan, Louis, and Connett, 2000). Pepe and Anderson commented that an independence 

estimating equation (IEE) is assured to provide a consistent estimate of the marginal 

regression coefficient for a time-dependent exposure. However, a covariance-weighted 

estimating equation or linear mixed model (LMM) analysis requires an additional 

assumption regarding the association between current outcome and past, current, and future 

exposure. Substantial bias may result if this assumption is not satisfied and a 

nonindependence working covariance structure is used (Diggle et al., 2002). Furthermore, 

endogenous exposures may require specialized causal methods if cross-sectional 

associations are not of interest.

A large amount of literature exists that discusses missing data for predetermined observation 

times (Little and Rubin, 2002). Recent research has focused on mechanisms that influence 

observing data, i.e., a stochastic measurement process that determines if and when outcomes 

are to be recorded (Lipsitz et al., 2002; Lin, Scharfstein, and Rosenheck, 2004; Fitzmaurice 

et al., 2006; Sun, Tong, and He, 2007). The statistical issue is similar between the “missing 

data” and “observing data” setting and essentially reduces to an assumption regarding 

ignorable missing data mechanisms. In these situations an IEE may provide biased 

estimates, whereas a properly specified likelihood analysis is valid. Taken together these 

examples illustrate that situation-specific assumptions determine whether simple unweighted 

methods are appropriate, or whether more elaborate likelihood-based methods are required.

In this article, we consider situations in which the primary target of inference is a marginal 

mean regression model that quantifies the association between a time-dependent exposure 

and an outcome of interest among individuals who experience an event. Our goal is to 

articulate the assumptions required for consistent marginal regression analysis of recurrent 

marked point process data. We detail conditions required of the exposure and event time 

processes to ensure that commonly used repeated measures regression methods such as 

LMMs and GEEs provide valid cross-sectional estimation. We relax these assumptions so 

that they can be evaluated whether exposure is available throughout follow-up or collected if 

and only if an event occurs. In addition, we explore the potential for bias if these conditions 

are not satisfied.

In Section 2, we motivate and detail requisite assumptions for generating valid inference 

from recurrent marked point process data. In Section 3, we evaluate via simulation the 

potential for bias if these assumptions are not satisfied. In Section 4, we describe a 

motivating example, the Collaborative Perinatal Project (Hardy, 2003), and illustrate an 

analysis of recurrent marked point process data. The analysis goal is to quantify the effect of 

maternal cigarette smoking on infant birth weight. We provide concluding discussion in 

Section 5. In the Appendix, we weaken the assumption of “joint exogeneity” required by the 

assumptions in Section 2.
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2. Statistical Methods

We assume that an outcome exists if and only if an event occurs and therefore limit our 

focus to observations collected in discrete time. However, it is straightforward to generalize 

the model to allow continuous times (Lipsitz et al., 2002; Tsiatis and Davidian, 2004).

2.1 Notation

Let Xi (t) and Yi (t) denote the exposure and outcome, respectively, observed for 

independent subjects i = 1, … , n at discrete calendar times t = 1, … , T. Note that T 
represents the end of follow-up. Similarly let Ni (t) denote the total number of events for 

subject i through time t. We use the following notation to denote the complete history of 

each variable ascertained retrospectively at time t: Xi(t) = Xi(s) s ≤ t , Ni(t) = Ni(s) s ≤ t , 

and Yi(t) = Y i(s) s ≤ t . In addition we use the notation dNi (t) = Ni (t) − Ni (t − 1) such that 

dNi (t) = 1 indicates an event at time t.

2.2 Framework

We adopt assumptions regarding time ordering to characterize the underlying biological 

process for Xi (t), Ni (t), and Yi (t). Specifically, we assume that Xi (t) ≺ Ni (t) ≺ Yi (t), 
where ≺ denotes time ordering (Tsiatis and Davidian, 2004). Figure 1 presents the 

underlying framework for recurrent marked point process data for a single subject i (Louis et 

al., 2006). The process Xi (t) depicts a quantitative time-dependent exposure of interest and 

the process Ni (t) depicts the total number of events through time t. Note that Yi (t) is 

observed only when Ni (t) increases, which indicates an event.

In Figure 1, the relationships Xi (3) → Yi (3) and Xi (8) → Yi (8) represent the cross-

sectional association of interest. Other relationships represented in Figure 1 may bias 

estimation of this association or its significance. First, the relationship Yi (3) → Yi (8) 

represents the correlation that may be induced between observations collected on the same 

subject. Second, the relationship Yi (3) → Xi (8) represents the endogeneity that may exist 

between past outcomes and current exposure. Third, the relationship Yi (3) → Ni (8) 

represents the endogeneity that may exist between past outcomes and occurrence of a 

subsequent event.

2.3 Target of Inference

For regression modeling of longitudinal data with a time-dependent exposure, the primary 

consideration is specifying a target of inference. We focus on situations in which interest lies 

in a marginal model that quantifies the association between exposure and the average 

outcome among individuals who experience an event:

μi(t) = E Yi(t) dNi(t) = 1, Xi(t), Ni(t) = xitβ .

Note that xit includes the relevant components of the exposure and event time processes. 

Parameters β quantify the association between these components and the average outcome. 

Note also that dNi (t) = 1 is explicitly required in μi (t) because otherwise Yi (t) would not 

exist. Because μi (t) does not condition on the entire exposure and event time processes, or 
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on past outcomes, it is known as a partly conditional mean (Pepe and Couper, 1997). 

However, μi (t) does condition on the history of the exposure and event time processes, 

which may specify a lag relationship between these processes and the mark process. This 

specification may be required to more accurately characterize the latency in the underlying 

biological process. Depending on the biological context μi (t) may also condition on a partial 

history of the exposure or event time processes. In this case the model would focus on E[Yi 

(t) | dNi (t) = 1, zit], where zit denotes a user-chosen subset of Xi(t), Ni(t) .

This target of inference is useful when primary interest lies in describing the marginal 

association between a full or partial history of the exposure process and the mark process 

among those who experience an event. It may also be used to predict a future outcome as a 

function of the observed exposure and event time processes. In addition, this model may be 

reduced to a cross-sectional model to characterize the cross-sectional association between 

exposure at a single time point and the average outcome among individuals who experience 

an event.

2.4 Assumptions

As one aspect of model checking, we detail two conditions required of the exposure and 

event time processes. Suppose that primary scientific interest lies in estimating the marginal 

association between a time-dependent exposure Xi (t) and an outcome Yi (t) among 

individuals who experience an event, i.e., dNi (t) = 1. To ensure consistency of a GEE 

estimator or a likelihood-based estimator, it is sufficient to assume that for all t′ > t:

Y i(t) ⊥ Ni t′ Xi(t), Ni(t), dNi(t) = 1, (1)

Y i(t) ⊥ Xi t′ Xi(t), Ni(t′), dNi(t) = 1. (2)

If either of these conditions is not satisfied, then an IEE is the only estimating equation 

option that may be used for consistent estimation of β.

The main idea behind these assumptions is to factor the joint distribution of the exposure 

and event time processes given the mark process:

Ni t′ , Xi t′ Y i(t) = Ni t′ Y i(t) × Xi t′ Ni t′ , Y i(t) .

Assumption (1) implies that the event time process is exogenous with respect to the mark 

process. Assumption (2) implies that the exposure process is exogenous with respect to the 

mark process given the event time process. This is similar to a full covariate conditional 

mean assumption (Pepe and Anderson, 1994; Pepe and Couper, 1997). The similarity 

between these assumptions is intuitive because both Xi (t) and Ni (t) may be conditioned on 

as covariates in the analysis of Yi (t).
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We illustrate the importance of these assumptions by examining the estimating function for 

estimation of β. Let witt′ denote the (t, t′) element of the inverse of a working covariance 

matrix Vi. In a recurrent marked point process setting the estimating function is:

Uβ(β) = ∑
i = 1

n
Xi

TV i
−1 Y i − μi dNi

= ∑
i = 1

n
∑

t′ = 1

T
∑
t = 1

T
xit′witt′ Y i(t) − μi(t) dNi(t)dNi t′ .

(3)

Consistency of β relies on the assumption that the estimating function is unbiased, i.e., 

E Uβ(β) = 0. Examine the expectation of each summand of Uβ(β) via iterated expectation:

E xit′witt′ Y i(t) − μi(t) dNi(t)dNi t′
= EX, N EY xit′witt′ Y i(t)−μi(t) dNi(t)dNi t′ Xi(T), Ni(T)
= EX, N xit′witt′ EY Yi(t) dNi(t) = 1, dNi t′ = 1, Xi(T), Ni(T) − μi(t) dNi(t)dNi t′ .

Note that witt′ may be nonzero and xit′ may include future exposures and events. Therefore, 

conditioning on the entire exposure and event time processes may be required to bring 

xit′witt′ outside the conditional expectation above. If assumptions (1) and (2) are satisfied, 

then the partly conditional mean μi (t) is equivalent to a full conditional mean:

μi(t) = E Yi(t) dNi(t) = 1, Xi(t), Ni(t)
= E Yi(t) dNi(t) = 1, Xi(T), Ni(T) .

Therefore, the estimating function is unbiased provided that the regression model for μi (t) is 

correctly specified and that assumptions (1) and (2) are satisfied. If working independence is 

assumed, then Vi is a diagonal matrix, i.e., witt′ = 0 (t ≠ t′). Hence the estimating function 

reduces to:

Uβ(β) = ∑
i = 1

n
∑
t = 1

T
xitwitt Y i(t) − μi(t) dNi(t) . (4)

In this case E Uβ(β) = 0 if the assumed marginal regression model is correctly specified; 

assumptions (1) and (2) are not required. To generalize the model to allow continuous times, 

the sums indexed by calendar time in equations (3) and (4) need only be replaced by 

integrals.

2.5 Empirical Evaluation of Assumptions

Empirically evaluating assumptions (1) and (2) is generally possible using the observed data. 

Suppose that t′ > t. To evaluate assumption (1) analysts may use standard recurrent event 

methods to assess the relationship between past outcomes and occurrence of a subsequent 

event. Let λi (t′) denote the hazard of an event by time t′ for subject i. Analysts may model 

λi (t′) given Yi (t) using a Cox regression model:
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logλi t′ dNi(t) = 1, Y i(t), Xi(t), Ni(t)
= logλ0 t′ + η1Y i(t) + η2Xi(t) + η3Ni(t) . (5)

Note that η1 quantifies the association between past outcomes and the hazard of a 

subsequent event. Therefore, a hypothesis test of η1 = 0 may be used to formally evaluate 

assumption (1). This test is valid because it directly evaluates the conditional dependence 

between past outcomes and occurrence of a subsequent event (see Figure 2).

To evaluate assumption (2) analysts may use standard regression methods to assess the 

relationship between past outcomes and current exposure. Specifically, analysts may model 

Xi (t′) given Yi (t) using a regression model that is appropriate for the distribution of Xi (t′). 

Let g denote the link function specified by this regression model:

g E Xi t′ dNi(t) = 1, Y i(t), Xi(t), Ni t′
= θ0 + θ1Y i(t) + θ2Xi(t) + θ3Ni t′ . (6)

Because past exposures are likely associated with both past outcomes and current exposure, 

past exposures confound the association between past outcomes and current exposure. 

Therefore, in this model it is important to adjust for Xi(t). Note that θ1 quantifies the 

association between past outcomes and current exposure. Therefore, a hypothesis test of θ1 

= 0 may be used to formally evaluate assumption (2). This test is valid because it directly 

evaluates the conditional dependence between past outcomes and current exposure (see 

Figure 2).

Model (6) requires that Xi (t′) be ascertained for all subjects, including those who do not 

experience an event at time t′, i.e., dNi (t′) = 0. In the Appendix, we detail assumption (2★), 

which is a weaker assumption that can be evaluated in situations in which Xi (t′) is 

ascertained only when dNi (t′) = 1. In our application maternal cigarette smoking was 

ascertained if and only if a birth occurred. Hence in our application we empirically evaluate 

assumption (2★).

3. Simulation Study

We performed a simulation study to evaluate the potential for bias if assumption (1) is not 

satisfied. We did not exclusively examine departures from assumption (2) because it is well 

known that if the exposure process is endogenous, then covariance-weighting methods do 

not provide a consistent estimate of the cross-sectional parameter (Pepe and Anderson, 

1994). We designed our simulation study to emulate our motivating example: a continuous 

exposure process to represent a maternal exposure, an event time process to represent a live 

birth, and a continuous mark process to represent an infant birth outcome.

3.1 Parameters

At each of 1000 iterations we generated an exposure, event time, and mark process for a 

population of 10,000 individuals at t = 1, … , 5 discrete calendar times. We specified an 
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autoregressive exposure process: Xi (t) ~ N(θ0Xi (t − 1), v2 1 − θ0
2 ), where Xi (0) = 0. The 

parameter θ0 quantifies the amount of autocorrelation in the exposure process. We generated 

a binary variable to indicate an event at time t such that the probability of an event depended 

on the previous outcome and current exposure: dNi (t) ~ B(expit(η0 + η1Ri (t − 1) + 

η2Xi(t))). Instead of simply using Yi (t − 1) to specify the probability of an event, we used a 

residual centered by the conditional expectation of Yi (t − 1):

Ri(t − 1) = Yi(t − 1) − E Yi(t − 1) dNi(t − 1) = 1, Xi(t − 1), γi ,

where Ri (0) = 0. Under this specification an event was likely to occur if the difference 

between the observed and expected previous outcome was large. The parameter η1 

quantifies the extent to which assumption (1) is violated. We considered three values for η1: 

log 1, log 2, and log 4 such that a standard deviation increase in Ri (t) corresponded to an 

event odds ratio of 1.0, 2.2, and 4.8, respectively. In each scenario η2 = −η1.

To generate the mark process we specified a marginal mean μi (t) = β0 + β1Xi (t). In each 

scenario β0 = 1 and β1 = − 1. We also specified unit-specific random intercepts and slopes γi 

= {γi0, γi1} ~ N2(0, D), serial correlation Wi (t) ~ N(ρWi(t − 1), τ2(1 – ρ2)), and 

measurement error ϵi(t) ~ N(0, σ2), where Wi (0) = 0. Therefore, the mark process was:

Yi(t) = β0 + β1Xi(t) + γi0(t) + γi1(t)Xi(t) + W i(t) + ϵi(t),

where γi0(t), γi1(t), and W i(t) were sequentially centered by their conditional expectation 

given dNi (t) = 1. This was required so that the marginal expectation of Yi (t) was correctly 

specified given dNi (t) = 1.

From each simulated population we sampled n = 300 units and fit an ordinary least squares 

regression model using first events, an IEE, a GEE assuming an exchangeable correlation 

structure, and a LMM with random intercepts. We selected the following values for the 

nuisance parameters: θ0 = ρ = 0.9, υ2 = τ2 = 1.5, D00 = 0.52, D11 = 0.22, and σ2 = 1.

Figure 2 presents a graphical summary of our simulation study. Boxes enclose observed 

variables and ovals enclose unobserved variables Zi (t) = {γi, Wi (t)}. Directed arrows 

represent causal relationships and bold directed arrows represent the cross-sectional 

association of interest. Bold segments between the event time and mark process indicate that 

an outcome is observed if and only if an event occurs. The arrows labeled (1) and (2) 

indicate the relationships that violate assumptions (1) and (2), respectively.

3.2 Results

Table 1 provides mean intercept and slope estimates across 1000 iterations, mean squared 

error (MSE), and estimated coverage of 95% confidence intervals for each scenario. If 

assumption (1) is satisfied (η1 = log 1), then every method provides approximately unbiased 

parameter estimates with appropriate confidence interval coverage. However, ordinary least 

squares using first events has a higher MSE due to reduced sample size. If assumption (1) is 

not satisfied (η1 ≠ log 1), then an IEE provides approximately unbiased parameter estimates 
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with appropriate confidence interval coverage. However, covariance-weighting methods 

provide biased parameter estimates with reduced confidence interval coverage. Restricting to 

first events also performs poorly if assumption (1) is not satisfied.

Although bias is not substantial for GEE and LMM slope estimates if assumption (1) is 

violated, it increases if assumption (2) is also violated. We performed a second simulation 

study in which we included Ri (t − 1) in the autoregressive exposure process: Xi (t) ~ N(θ0Xi 

(t – 1) + θ1Ri (t − 1), v2 1 − θ0
2 ). The parameter θ1 quantifies the extent to which assumption 

(2) is violated. For η1 = log 4 and θ1 = 0.1 the mean slope estimate obtained via GEE and 

LMM was −1.206 and −1.196, respectively. For both methods the estimated confidence 

interval coverage of β1 was 10%. Therefore, if both assumptions are violated, then 

covariance-weighting methods provide substantially biased parameter estimates with poor 

confidence interval coverage. We did not observe an interaction effect on the performance of 

these methods resulting from a violation of both assumptions.

4. Application

The Collaborative Perinatal Project was a landmark national prospective epidemiological 

study conducted between 1959 and 1965 (Hardy, 2003). Motivation for launching the study 

included unacceptably high levels of maternal and infant mortality and interest in linking 

maternal lifestyle and pregnancy exposures to infant neurological conditions such as cerebral 

palsy, epilepsy, and mental retardation. Epidemiological analyses focused on risk factors for 

poor pregnancy outcomes, including the effects of specific drugs and other exposures such 

as cigarette smoking. At the conclusion of the study, the sample consisted of 48,197 women 

with up to six births per woman.

We limited our focus to the cross-sectional association between maternal cigarette smoking 

and infant birth weight. We restricted our analysis to births that were recorded prospectively 

at sites that selected 100% of eligible women, which yielded four sites for analysis: Harvard, 

Buffalo, Minnesota, and Philadelphia. Our sample consisted of 8403 women with up to three 

births per woman. Among all infants in our sample, approximately 10% were of low birth 

weight, defined as birth weight less than 2500 g.

4.1 Evaluating the Scientific Question

We obtained cross-sectional point estimates by fitting a separate ordinary least squares 

regression model to first (n1 = 8403), second (n2 = 1951), and third (n3 = 527) births. In each 

model, we adjusted for site such that Harvard served as the reference group and for maternal 

race such that white mothers served as the reference group. We also obtained longitudinal 

point estimates by including all births in a single regression model and specifying various 

structures for within-subject correlation. We considered an IEE, a GEE assuming an 

exchangeable correlation structure, and a LMM with random intercepts. In these models we 

also adjusted for birth order such that first births served as the reference group.

Table 2 provides cross-sectional and longitudinal point estimates and standard errors. 

According to each cross-sectional model maternal cigarette smoking is associated with a 

significant decrease in infant birth weight. The difference in mean infant birth weight of 
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babies born to smokers and that of babies born to nonsmokers among women with a first, 

second, and third birth is: −163 g, 95% CI: (−187, −140); −174 g, 95% CI: (−222, −125); 

and −179 g, 95% CI: (−277, −82), respectively. A weighted average of these point estimates 

(weighted by number of births ηt★) is −166 g. The IEE reveals that the difference in mean 

infant birth weight of babies born to smokers and that of babies born to nonsmokers is −165 

g, 95% CI: (−187, −143). This estimate corresponds well to the cross-sectional point 

estimates and is consistent with the weighted average of the cross-sectional estimates. 

However, results obtained via GEE and LMM are surprisingly not consistent with the cross-

sectional results. These methods estimate the effect of maternal cigarette smoking on infant 

birth weight to be −158 g, 95% CI: (−180, −136). This estimate is greater than every cross-

sectional point estimate and is more than a half standard deviation greater than the IEE point 

estimate.

4.2 Evaluating Assumptions

This disparity in the longitudinal results may exist because assumptions (1) and (2★) may 

not be satisfied. To evaluate assumption (1) we fit a Cox regression model for time from first 

until second birth. We censored women who did not experience a second birth. In this 

model, we included an indicator of low birth weight for first births. We adjusted for cigarette 

smoking at their first birth, site, and maternal race. This model revealed that mothers who 

initially gave birth to a low birth weight infant delayed a second pregnancy. The hazard of a 

second birth among women who initially gave birth to a low birth weight infant was 

approximately 16% lower than that among women who initially gave birth to an infant of 

normal birth weight, 95% CI: (1.7%, 28%). This difference was statistically significant (p = 

0.03). Therefore, there is evidence to suggest that assumption (1) is violated.

We fit a logistic regression model for cigarette smoking among women who experienced a 

second birth to evaluate assumption (2★). In this model, we included an indicator of low 

birth weight for their first birth. We adjusted for cigarette smoking at their first birth because 

previous smoking status may confound the association between previous birth weight and 

current smoking status. We also adjusted for site and maternal race. This model revealed that 

among mothers with identical smoking status at their first birth, those who initially gave 

birth to a low birth weight infant were more likely to subsequently smoke cigarettes. Among 

women who experienced a second birth, the odds of cigarette smoking for women who 

initially gave birth to a low birth weight infant were approximately 21% higher than that for 

women who initially gave birth to an infant of normal birth weight, although this difference 

was not statistically significant (p = 0.41). Therefore, there is evidence to suggest that 

assumption (2★) is violated.

5. Discussion

In this article, we presented recurrent marked point process data and its defining 

characteristic: an outcome exists if and only if an event occurs. We also described the 

challenging features of recurrent marked point process data: correlation may be induced 

within subjects, endogeneity may exist between past outcomes and current exposure, and 

endogeneity may exist between past outcomes and occurrence of a subsequent event. To 
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overcome these challenges we detailed assumptions required of the exposure and event time 

processes to ensure that existing longitudinal analysis methods provide a valid estimate of 

the marginal association between a time-dependent exposure and outcome of interest among 

individuals who experience an event. Our theoretical and empirical results showed that 

covariance-weighting methods such as GEEs and LMMs provide biased parameter estimates 

if these assumptions are not satisfied. In our motivating example to quantify the effect of 

maternal cigarette smoking on infant birth weight, we demonstrated that inappropriate 

application of these methods may lead to spurious results.

Our simulation results are in contrast to previously published results (Lipsitz et al., 2002). 

Lipsitz and colleagues found that if measurement times depend on past outcomes, then 

incorrectly specifying the covariance between clustered outcomes results in biased 

regression estimates and hence recommend caution when using an IEE. We found that an 

IEE provides consistent regression estimates and recommend caution when using 

covariance-weighting methods. This difference arises because there is an important 

distinction between our setting and that of Lipsitz and colleagues. They assume that subjects 

have a potential measurement at every time. Conversely, we assume that a measurement is 

available if and only if an event occurs. The implication of this distinction is that the target 

of inference differs between our setting and that of Lipsitz and colleagues. They seek to 

generate inference regarding an average response in a population of individuals, i.e., E[Yi (t) 
| Xi (t)], whereas we seek to generalize to a population of individuals who experience an 

event, i.e., E[Yi (t) | dNi (t) = 1, Xi(t)]. Analysts must decide which target of inference is 

appropriate to their specific context to ensure valid application of the estimation method they 

select.

In certain simulation scenarios we found that although an IEE provides consistent parameter 

estimates, it may be less efficient than a GEE (see Table 1). This is not surprising given that 

it is well known that an IEE may be inefficient relative to a covariance-weighted GEE under 

nonindependence correlation structures (Liang and Zeger, 1986; Mancl and Leroux, 1996). 

Therefore our results illustrate the bias/efficiency tradeoff. For example, analysts may decide 

to implement a GEE and accept a small amount of bias due to departures from assumptions 

(1) and (2) if the efficiency gain is large. An alternative method is a generalized method of 

moments estimator (Lai and Small, 2007). This estimator retains the attractive consistency 

of an IEE for a time-dependent exposure and may be substantially more efficient than an 

IEE given an additional assumption regarding the type of time-dependent exposure.

Although the methods we presented are not specifically designed to generate causal 

inference, a longitudinal data analysis may provide evidence of a causal association by 

establishing the temporal association between exposure and outcome. However, there are 

several challenges associated with generating causal inference from observational data. A 

challenge specific to recurrent marked point process data is that modification of the exposure 

may impact not only the outcome of interest, but also occurrence of an event. In a recurrent 

marked point process setting an outcome is measured if and only if an event occurs. 

Therefore, it may be difficult to disentangle the causal effect of exposure on outcome from 

the effect of exposure on occurrence of an event. A g-computation algorithm (Robins, 

Greenland, and Hu, 1999) could be used to provide causal estimates of the effect of exposure 
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on outcome, but would require specification of additional assumptions regarding the effect 

of exposure on occurrence of an event.

We recommend that analysts who undertake a repeated measures analysis of recurrent 

marked point process data carefully identify any factors that may influence the exposure and 

event time processes. Identification of these factors may be based on prior scientific 

knowledge. Alternatively, it may be based on the observed data. In Section 2.6, we outlined 

several approaches to empirically explore these factors; we provided an example in Section 

4.2. Only after these factors have been identified may analysts choose appropriate statistical 

techniques to validly answer their scientific questions.
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Appendix

In this Appendix, we show that we can weaken the assumption of “joint exogeneity” 

required by assumptions (1) and (2) given in Section 2.4. Let xit = Xi(t), Ni(t)  (or a partial 

history, as appropriate) and recall that 

μi(t) = E Y i(t)dNi(t) = 1, Xi(t), Ni(t) = E Y i(t) dNi(t) = 1, xit . Examine the expectation of 

each summand of Uβ(β) given in equation (3):

E xit′witt′ Y i(t) − μi(t) dNi(t)dNi t′
= P dNi(t) = 1, dNi t′ = 1 × E xit′witt′ Y i(t) − μi(t) dNi(t) = 1, dNi t′ = 1
∝ E xit′witt′ Y i(t) − μi(t) dNi(t) = 1, dNi t′ = 1
= Exit Exit′, Y i(t) xit xit′witt′ Y i(t) − μi(t) dNi(t) = 1, dNi t′ = 1, xit
= Exit Exit′ xit EYi(t) xit′, xit × xit′witt′ Y i(t) − μi(t) dNi(t) = 1, dNi t′ = 1, xit, xit′
= Exit Exit′ xit xit′witt′ EY i(t) xit′, xit × Yi(t) dNi(t) = 1, dNi t′ = 1, xit, xit′ − μi(t)

Assume (2★): Yi(t) ⊥ xit′ | xit, dNi (t) = 1, dNi (t′) = 1 :

= Exit Exit′ xit xit′witt′ EY i(t) xit × Yi(t) dNi(t) = 1, dNi t′ = 1, xit − μi(t) .

Using assumption (1) we obtain:

= Exit Exit′ xit xit′witt′ EY i(t) xit Y i(t) dNi(t) = 1, xit −μi(t)
= 0 by definition of μi(t) .

In assumption (2★) we assume that Yi (t) ⊥ xit′ | xit′, dNi (t) = 1, dNi (t′) = 1. This is a 

weaker assumption regarding the endogeneity between past outcomes and current exposure 

than assumption (2). In particular, assumption (2★) can be evaluated in situations in which 

xit′ is ascertained only when dNi (t′) = 1, whereas evaluation of assumption (2) requires xit′ 
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be ascertained for all strata defined by Ni (t′). This includes subjects who have not been 

observed to experience an event at time t′, i.e., dNi (t′) = 0.
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Figure 1. 
Underlying framework for recurrent marked point process data.
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Figure 2. 
Directed acyclic graph representing conditional dependence relationships for the data 

generated in our simulation study; Zi (t) represents unmeasured error for the longitudinal 

process Yi (t).

French and Heagerty Page 16

Biometrics. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

French and Heagerty Page 17

Table 1

Simulation results evaluating departures from assumption (1)

η1 Method

Mean estimate MSE × 10 Coverage (%)

β0 β1 β0 β1 β0 β1

log l First 0.999 −1.002 0.081 0.057 95 94

IEE 1.000 −1.002 0.071 0.044 95 95

GEE 0.999 −1.000 0.065 0.031 95 96

LMM 0.999 −1.000 0.065 0.031 95 94

log 2 First 0.879 −1.043 0.234 0.081 74 92

IEE 0.996 −1.000 0.076 0.053 94 94

GEE 0.778 −1.030 0.564 0.046 24 91

LMM 0.785 −1.029 0.530 0.045 26 89

log 4 First 0.806 −1.099 0.479 0.188 53 82

IEE 0.995 −1.002 0.095 0.072 93 93

GEE 0.673 −1.075 1.156 0.105 4 78

LMM 0.688 −1.072 1.056 0.099 5 76
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