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a b s t r a c t 

The current COVID-19 pandemic overloads healthcare systems, including radiology departments. Though 

several deep learning approaches were developed to assist in CT analysis, nobody considered study triage 

directly as a computer science problem. We describe two basic setups: Identification of COVID-19 to pri- 

oritize studies of potentially infected patients to isolate them as early as possible; Severity quantification 

to highlight patients with severe COVID-19, thus direct them to a hospital or provide emergency med- 

ical care. We formalize these tasks as binary classification and estimation of affected lung percentage. 

Though similar problems were well-studied separately, we show that existing methods could provide rea- 

sonable quality only for one of these setups. We employ a multitask approach to consolidate both triage 

approaches and propose a convolutional neural network to leverage all available labels within a single 

model. In contrast with the related multitask approaches, we show the benefit from applying the classi- 

fication layers to the most spatially detailed feature map at the upper part of U-Net instead of the less 

detailed latent representation at the bottom. We train our model on approximately 1500 publicly avail- 

able CT studies and test it on the holdout dataset that consists of 123 chest CT studies of patients drawn 

from the same healthcare system, specifically 32 COVID-19 and 30 bacterial pneumonia cases, 30 cases 

with cancerous nodules, and 31 healthy controls. The proposed multitask model outperforms the other 

approaches and achieves ROC AUC scores of 0 . 87 ± 0 . 01 vs. bacterial pneumonia, 0 . 93 ± 0 . 01 vs. cancer- 

ous nodules, and 0 . 97 ± 0 . 01 vs. healthy controls in Identification of COVID-19, and achieves 0 . 97 ± 0 . 01 

Spearman Correlation in Severity quantification . We have released our code and shared the annotated le- 

sions masks for 32 CT images of patients with COVID-19 from the test dataset. 

© 2021 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

During the first months of 2020, COVID-19 infection spread 

orldwide and affected millions of people ( Li et al., 2020b ). 

hough a virus-specific reverse transcription-polymerase chain 

eaction (RT-PCR) testing remains the gold standard ( World Health 

rganization et al., 2020 ), chest imaging, including computed 

omography (CT), is helpful in diagnosis and patient management 

 Bernheim et al., 2020; Akl et al., 2020; Rubin et al., 2020 ).
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oreover, compared to RT-PCR, CT has higher sensitivity (98% 

ompared to 71% at p ≤ . 001 ) for some cohorts Fang et al. (2020) .

leischner Society has addressed the role of thoracic imaging in 

OVID-19, providing recommendations intended to guide med- 

cal practitioners with one scenario including medical triage in 

oderate-to-severe clinical features and a high pretest probability 

f disease ( Rubin et al., 2020 ). Radiology departments can re- 

pond to the pandemic by division into four areas (contaminated, 

emi-contaminated, buffer, and clean), strict disinfection and man- 

gement criteria ( Huang et al., 2020b ). The International Society 

f Radiology surveyed current practices in managing patients with 

OVID-19 in 50 radiology departments representing 33 countries 

cross all continents. In symptomatic patients with suspected 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. A schematic representation of the automatic triage process. Left: the chronological order of the studies. Center: re-prioritized order to highlight findings requiring 

radiologist’s attention ( P denotes COVID-19 Identification probability). Right: accompanying algorithm-generated X-ray-like series to assist the radiologist in fast decision 

making (color bar from green to red denotes Severity of local COVID-19-related changes). 
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OVID-19, imaging was performed in 89% of cases, in 34% of cases 

 chest CT. Faster results than molecular tests (51%) and easy access 

39%) were the main reasons for imaging use ( Blaži ́c et al., 2020 ) 

The pandemic dramatically increased the need for medical care 

nd resulted in the overloading of healthcare systems ( Tanne et al., 

020 ). Many classification and segmentation algorithms were de- 

eloped to assist radiologists in COVID-19 identification and sever- 

ty quantification, see Section 1.1.1 . However, little research has 

een conducted to investigate automatic image analysis for triage, 

.e. ranking of CT studies. During an outbreak, many CT scans re- 

uire rapid decision-making to sort patients into those who need 

are right now and those who will need scheduled care ( Mei et al.,

020 ). Therefore, the study list triage is relevant and may shorten 

he report turnaround time by increasing the priority of CT scans 

ith suspected pathology for faster interpretation by a radiologist 

ompared to other studies, see Fig. 1 . 

The triage differs from other medical image analysis tasks, as in 

his case, automatic programs provide the first reading. The radiol- 

gist then becomes the second reading. Technically, many of the 

eveloped methods may provide a priority score for triage, e.g., 

utput probability of a classifier or the total lesion volume ex- 

racted from a binary segmentation mask. However, these scores 

ust be properly used. We assume that there are two different 

riage problems: 

1. Identification . The first challenging task is to identify studies 

of patients with COVID-19 and prioritize them so the physi- 

cian can isolate potentially infected patients as early as pos- 

sible ( Sverzellati et al., 2020 ). 

2. Severity quantification . Second, within COVID-19 patients, 

a triage algorithm must prioritize those who will require 

emergency medical care ( Kherad et al., 2020 ). 

Binary classification provides a direct way to formalize Identi- 

cation , but the optimal computer science approach to estimate 

everity is not as obvious. It was shown that human-based quan- 

itative analysis of chest CT helps assess the clinical severity of 

OVID-19. ( Colombi et al., 2020 ) had quantified affected pulmonary 

issue and established a high correlation between the healthy pul- 

onary tissue volume and the outcomes (transfer to an intensive 

are unit or death). The threshold value for the volume of healthy 

ulmonary tissue was 73%. This result and similar ones motivate 

linical recommendations in several countries: COVID-19 patients 

eed to be sorted based on quantitative evaluation of lung lesions. 

In particular, the Russian Federation adopted the following ap- 

roach ( Morozov et al., 2020c ): the volume ratio of lesions in each

ung is calculated separately and the maximal ratio is treated as 

he overall severity score . However, manual binary segmentation 
2 
f the affected lung tissue is extremely time-consuming and may 

ake several hours ( Shan et al., 2020 ). For this reason, a visual

emi-quantitative scale was implemented rather than a fully quan- 

itative one. The original continuous score is split up into five cate- 

ories: from CT-0 to CT-4 with a 25% step so that CT-0 corresponds 

o normal cohort and CT-4 - to 75%-100% of damaged lung tissue. 

atients with CT-3 (severe pneumonia) are hospitalized, and CT- 

 (critical pneumonia) are admitted to an intensive care unit. The 

cale is based on a visual evaluation of approximate lesion volume 

n both lungs (regardless of postoperative changes). 

A retrospective study ( Morozov et al., 2020b ) analyzed the CT 

–4 scores and lethal outcomes in 13,003 COVID-19 patients. The 

hance of a lethal outcome increased from CT-0 to CT-4 by 38% 

n the average (95% CI 17.1–62.6%). Another retrospective analy- 

is ( Petrikov et al., 2020 ) found a significant correlation between 

n increase of CT grade and clinical condition deterioration ( r = 

 . 577 ). 

These two triage strategies, Identification and Severity quantifica- 

ion , are not mutually exclusive, and their priority may change de- 

ending on the patient population structure and current epidemi- 

logical situation. 

• An outpatient hospital in an area with a small number of in- 

fected patients may rely on Identification solely. 
• An infectious diseases hospital may use Severity quantification 

to predict the need for artificial pulmonary ventilation and in- 

tensive care units. 
• Finally, an outpatient hospital during an outbreak needs both 

systems to identify and isolate COVID-19 patients as well as 

quantify disease severity and route severe cases accordingly. 

This paper explores the automation of both Identification and 

everity quantification intending to create a robust system for all 

cenarios, see Fig. 2 . 

.1. Related work 

.1.1. CT Analysis for COVID-19 identification and severity estimation 

As briefly discussed above, we consider two problems: COVID- 

9 identification and severity quantification in chest CTs. In both 

ases, researchers usually calculate a continuous score of COVID- 

9 presence or severity, depending on their task. An overview of 

he existing indices can be found in Tab. 1 . Below, we present only 

ome of the existing CT-based algorithms for a more comprehen- 

ive review we refer to ( Shi et al., 2020a ). 

The majority of reviewed works use a pre-trained network for 

ung extraction or bounding box estimation as a necessary prepro- 
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Fig. 2. An example of joint COVID-19 identification and severity estimation by the proposed method for several studies. 

Table 1 

Overview of continuous output indices proposed in previous works. The Type column denotes score type: COVID-19 

identification , COVID-19 severity or both . Type of the Identification is given in brackets COVID vs. : P - Pneumonia, 

NP - non-Pneumonia, HC - Healthy controls, N - Nodules, C - Cancer. The Metric column contains reported ROC 

AUC values unless otherwise indicated. Remarks . 1. Accuracy because ROC AUC was not reported. 2. The metric was 

provided for the identification problem only. 3. Pearson correlation. 4. The average volume error, measured in cm 

3 . 

5. The paper does not provide a score, Dice score for the output masks is reported. 

Paper Ranking score description Type Metric 

Bai et al. (2020) Probabilities of 2.5D EfficientNet Iden. (P) 0.95 

Kang et al. (2020) Probabilities of a NN for raidomics Iden. (P) Acc. 1 0.96 

Shi et al. (2020b) Probabilities of RF for radiomics Iden. (P) 0.94 

Li et al. (2020a) Probabilities of 2.5D ResNet-50 Iden. (P, NP) 0.96 

Wang et al. (2020a) Probabilities of a 3D Resnet-based NN Iden. (HC, P) 0.97 

Han et al. (2020) Probabilities of a 3D CNN Iden. (HC, P) 0.99 

Jin et al. (2020b) Probabilities of ResNet-50 Iden. (HC, P, N) 0.99 

Jin et al. (2020a) Custom aggregation of a 2D CNN predicitons Iden. (HC, P) 0.97 

Gozes et al. (2020a) Fractions of affected slices (by 2D ResNet) Iden. (HC, C) 0.99 

Amine et al. (2020) Probabilities of 3D U-Net (encoder part) Iden. (HC, P) 0.97 

Wang et al. (2020b) Probabilities of a 3D CNN Iden. (HC) 0.96 

Chen et al. (2020) 2D Bounding boxes + post-processing Iden. (other disease) Acc. 1 0.99 

Gozes et al. (2020b) A score based on 2D ResNet attention Both (fever) 0.95 2 

Chaganti et al. (2020) Affected lung percentage, a combined score Sev. Corr. 3 0.95 

Huang et al. (2020a) Affected lung percentage by 2D U-Net Sev. N/A 

Shen et al. (2020) Affected lung percentage by non trainable CV Sev. Corr. 3 0.81 

Shan et al. (2020) Volume of segm. masks by a 3D CNN Sev. Vol. 4 10.7 

Fan et al. (2020) Segmentation mask Sev. Dice 5 0.60 

Tang et al. (2020) Random Forrest probabilities Sev. 0.91 
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essing step. We will skip the description of this step below for all 

orks. 

Binary classification Researchers usually treat the problem of 

dentification as binary classification, e.g. COVID-19 versus all other 

tudies. Likely, the most direct way to classify CT images with 

arying slice thicknesses is to train well established 2D convolu- 

ional neural networks. For example, authors of ( Jin et al., 2020b ) 

rain ResNet-50 ( He et al., 2016a ) to classify images using the ob-

ained lung mask. An interesting and interpretable way to aggre- 

ate slice predictions into whole-study predictions is proposed in 

 Gozes et al., 2020a ), where the number of affected slices is used

s the final output of the model. Also, this work employs Grad- 

am ( Selvaraju et al., 2017 ) to visualize network attention. A cus- 

om slice-level predictions aggregation is proposed in ( Jin et al., 

020a ) to filter out false positives. 

The need for a post-training aggregation of slice prediction can 

e avoided by using 3D convolutional networks, ( Han et al., 2020; 
3 
ang et al., 2020b ). ( Wang et al., 2020a ) propose a two-headed

rchitecture based on 3D ResNet. This approach is a way to ob- 

ain hierarchical classification as the first head is trained to classify 

Ts with and without pneumonia. In contrast, the second one aims 

o distinguish COVID-19 from other types of pneumonia. Alterna- 

ively, slice aggregation may be inserted into network architectures 

o obtain an end-to-end pipeline, as proposed in ( Li et al., 2020a; 

ai et al., 2020 ). Within this setup, all slices are processed by a 

D backbone (ResNet-50 for ( Li et al., 2020a ), EfficientNet ( Tan and

e, 2019 ) for ( Bai et al., 2020 )) while the final classification layers

perate with a pooled version of feature maps from all slices. 

Segmentation The majority of papers for tackling severity esti- 

ation are segmentation based. For example, the total absolute 

olume of involved lung parenchyma can be used as a severity 

core ( Shan et al., 2020 ). Relative volume (i.e., normalized by the 

otal lung volume) is a more robust approach taking into account 

he normal variation of lung sizes. Affected lung percentage is es- 
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imated in several ways including a non-trainable computer vision 

lgorithm ( Shen et al., 2020 ), 2D U-Net ( Huang et al., 2020a ), and

D U-Net ( Chaganti et al., 2020 ). Alternatively, an algorithm may 

redict the severity directly, e.g., with Random Forest based on a 

et of radiomics features ( Tang et al., 2020 ) or a neural network. 

Multitask approach As discussed above, many papers address ei- 

her COVID-19 identification or severity estimation. However, lit- 

le research has been conducted to study both tasks simultane- 

usly. ( Gozes et al., 2020b ) propose an original Grad-cam-based 

pproach to calculate a single attention-based score. Though the 

uthors mention both identification and severity quantification in 

he papers, they do not provide direct quality metrics for the lat- 

er. Amine et al. (2020) propose a multi-head architecture to solve 

oth segmentation and classification problems in an end-to-end 

anner. They use a 2D U-Net backbone with an additional clas- 

ification head after the encoder part, which takes a latent feature 

ap from the bottom of U-Net as input. Even though they do not 

ackle the problem of severity identification, they demonstrate that 

olving two tasks jointly could benefit both. However, they report 

etrics only for classification and segmentation of 2D axial slices 

nd do not propose an approach to applying their method to the 

hole 3D CT series. 

.1.2. Deep learning for triage 

As mentioned above, we define triage as a process of ordering 

tudies to be examined by a radiologist. There are two major sce- 

arios where such an approach could be useful: 

• Studies with a high probability of dangerous findings must be 

prioritized. The most important example is triage within emer- 

gency departments, where minutes of acceleration may save 

lives ( Faita, 2020 ), but it may be useful for other departments 

as well. For example, the study ( Annarumma et al., 2019 ) esti- 

mates the average reporting delay in chest radiographs as 11.2 

days for critical imaging findings and 7.6 days for urgent imag- 

ing findings. 
• The majority of studies do not contain critical findings. This is 

a common situation for screening programs, e.g., CT-based lung 

cancer screening ( Team, 2011 ). In this scenario, triage systems 

aim to exclude studies with the smallest probability of impor- 

tant findings to reduce radiologists’ workload. 

Medical imaging may provide detailed information useful 

or automatic patient triage, as shown in several studies. 

 Annarumma et al., 2019 ) propose a deep learning-based algorithm 

o estimate the urgency of imaging findings on adult chest radio- 

raphs. The dataset includes 470388 studies annotated in an au- 

omated way via text report mining. The Inception v3 architecture 

 Szegedy et al., 2016 ) is used to model clinical priority as ordinal

ata via solving several binary classification problems as proposed 

n ( Lin and Li, 2012 ). The average reporting delay is reduced to 2.7

nd 4.1 days for critical and urgent imaging findings correspond- 

ngly in a simulation on historical data. 

A triage system for screening mammograms, another 2D image 

odality, has been developed in ( Yala et al., 2019 ). The authors 

raw attention to reducing the radiologist’s load by maximizing 

ystem recall. The underlying architecture is ResNet-18 ( He et al., 

016a ), which is trained on 223109 screening mammograms. The 

odel achieves 0.82 ROC AUC on the whole test population and 

emonstrates the capability to reduce workload by 20% while pre- 

erving the same level of diagnostic accuracy. 

Prior research confirms that deep learning may assist in triage 

f more complex images such as volumetric CT. A deep learning- 

ased system for rapid diagnosis of acute neurological condi- 

ions caused by stroke or traumatic brain injury is proposed in 

 Titano et al., 2018 ). A 3D adaption of ResNet-50 ( Korolev et al.,

017 ) analyzes head CT images to predict critical findings. To train 
4 
he model, the authors utilize 37236 studies; labels are also gen- 

rated by text reports mining. The classifier’s output probabilities 

erve as ranks for triage, and the system achieves ROC AUC 0.73- 

.88. Stronger supervision is investigated in ( Chang et al., 2018 ), 

here authors use 3D masks of all hemorrhage subtypes of 10159 

on-contrast CT. The detection and quantification of 5 subtypes of 

emorrhages are based on a modified Mask R-CNN ( He et al., 2017 )

xtended by pyramid pooling to map 3D input to 2D feature maps 

 Lin et al., 2017 ). More detailed and informative labels combined 

ith an accurately designed method provide reliable performance 

s ROC AUC varies from 0.85 to 0.99 depending on hemorrhage 

ype and size. A similar finding is reported in ( De Fauw et al., 

018 ) for optical coherence tomography (OCT). The authors em- 

loy a two-stage approach. First, 3D U-Net ( Çiçek et al., 2016 ) is

rained on 877 studies with dense 21-class segmentation masks. 

hen output maps for another 14884 cases are processed by a 3D 

ersion of DenseNet ( Huang et al., 2017 ) to identify urgent cases. 

he obtained combination of two networks provided excellent per- 

ormance achieving 0.99 ROC AUC. 

.2. Contribution 

First , we highlight the need for triage systems of two types: for 

OVID-19 identification and severity quantification. We study ex- 

sting approaches and demonstrate that a system trained for one 

ask shows low performance in the other. Second , we have devel- 

ped a multitask learning-based approach to create a single neural 

etwork which achieves top results in both triage tasks. In con- 

rast to common multitask architectures, classification layers take 

he spatially detailed 3D feature map as input and return the sin- 

le probability for the whole CT series. Finally , we provide a frame- 

ork for reproducible comparison of various models (see the de- 

ails below). 

.2.1. Reproducible research 

A critical meta-review ( Wynants et al., 2020 ) of machine learn- 

ng models for COVID-19 diagnosis highlights low reliability and 

igh risk of biased results for all 27 reviewed papers, mostly due to 

 non-representative selection of control patients and poor analy- 

is of results, including possible model overfitting. The authors use 

 Wolff et al., 2019 ) PROBAST (Prediction model Risk Of Bias Assess- 

ent Tool), a systematic approach to validate the performance of 

achine learning-based approaches in medicine and identified the 

ollowing issues. 

1. Poor patient structure of the validation set, including several 

studies where control studies were sampled from different 

populations. 

2. Unreliable annotation protocol where only one rater as- 

sessed each study without subsequent quality control or the 

model output influenced annotation. 

3. Lack of comparison with other well-established methods for 

similar tasks. 

4. Low reproducibility due to several factors such as unclear 

model description and incorrect validation approaches (e.g., 

slice-level prediction rather than study-level prediction). 

The authors conclude the paper with a call to share data and 

ode to develop an established system for validating and compar- 

ng different models collaboratively. 

Though ( Wynants et al., 2020 ) is an early review and does 

ot include many properly peer-reviewed papers mentioned above, 

e agree that current COVID-19 algorithmic research lacks repro- 

ucibility. We aim to follow the best practices of reproducible re- 

earch and address these issues in the following way. 

1. We selected fully independent test dataset and retrieved all 

COVID-19 positive and COVID-19 negative cases from the 
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same population and the same healthcare system, see de- 

tails in Section 3.5 . 

2. Two raters annotated the test data independently. If raters 

contours were not aligned, the meta-rater requested annota- 

tion correction, see Section 3.5 . 

3. We carefully selected several key ideas from the related 

works and implemented them within the same setup as our 

method, see Section 2 . 

4. We publicly released the code to share technical details of 

the compared architectures 2 . 

Finally, we use solely open CT images for training and testing. 

e also annotate and release the lesions masks for the COVID- 

9 positive cases from the test set, see details in the Section 3.5 .

herefore, our experiments are reproducible as they rely on the 

pen data. 

. Method 

As discussed in Section 1 method should solve two tasks: iden- 

ification of COVID-19 cases and ranking them in descending order 

f severity. Therefore, we organize Section 2 as follows. 

• In Section 2.1 we describe lungs segmentation as a common 

preprocessing step for all methods. 
• In Section 2.2 we tackle the severity quantification task. We 

describe methods which predict segmentation mask of lesions 

caused by COVID-19 and provide a severity score based on that. 
• In Section 2.3 we discuss two straightforward baselines for 

the identification task. First is to use segmentation results and 

identify patients with non-empty lesions masks as COVID-19 

positive. Second is to use separate neural network for classifica- 

tion of patients into COVID-19 positive or negative. However, as 

we show in Section 5 these methods yield poor identification 

quality, especially due to false positive alarms in patients with 

bacterial pneumonia. 
• In Section 2.4 we propose a multitask model which achieves 

better COVID-19 identification results than the baselines. In par- 

ticular, as we show in Section 5 , this model successfully distin- 

guishes between COVID-19 and bacterial pneumonia cases. 
• In Section 2.5 we introduce quality metrics for both identifica- 

tion and severity quantification tasks to formalize the compari- 

son of the methods. 

.1. Lungs segmentation 

We segment lungs in two steps. First, we predict single binary 

ask for both lungs including pathological findings, e.g. ground- 

lass opacity, consolidation, nodules and pleural effusion. Then we 

plit the obtained mask into separate left and right lungs’ masks. 

inary segmentation is performed via fully-convolutional neural 

etwork in a standard fashion. Details of the architecture and 

raining setup are given in Section 4.2 . 

On the second step voxels within the lungs are clustered us- 

ng k -means algorithm ( k = 2 ) with Euclidean distance as a metric

etween voxels. Then we treat resulting clusters as separate lungs. 

.2. COVID-19 Severity quantification 

To quantify COVID-19 severity we solve COVID-19-specific le- 

ions segmentation task. Using predicted lungs’ and lesions’ masks, 

e calculate the lesions’ to lung’s volume ratio for each lung and 

se the maximum of two ratios as a final severity score for triage, 

ccording to recommendations discussed in Section 1 . 
2 https://github.com/neuro- ml/COVID- 19- Triage n

5 
Threshold-based As a baseline for lesions segmentation, we 

hoose a thresholding-based method. As pathological tissues are 

enser than healthy ones, corresponding CT voxels have greater in- 

ensities in Hounsfield Units. The method consists of three steps. 

he first step implements thresholding: voxels with intensity value 

etween HU min and HU max within the lung mask are assigned to 

he positive class. At the second step, we apply Gaussian blur with 

moothing parameter σ to the resulting binary mask and reassign 

he positive class to voxels with values greater than 0.5. Finally, 

e remove 3D binary connected components with volumes smaller 

han V min . The hyperparameters HU min = −700 , HU max = 300 , σ = 

 and V min = 0 . 1% are chosen via a grid-search in order to maxi-

ize the average Dice score between predicted and ground truth 

esions masks for series from training dataset. 

U-Net The de facto standard approach for medical image seg- 

entation is the U-Net model ( Ronneberger et al., 2015 ). We 

rained two U-Net-based architectures for lung parenchyma in- 

olvement segmentation which we refer to as 2D U-Net and 3D U- 

et. 2D U-Net independently processes the axial slices of the input 

D series. 3D U-Net processes 3D sub-patches of size 160 × 160 ×
60 and then stacks predictions for individual sub-patches to ob- 

ain prediction for the whole input 3D series. Thus, we do not need 

o downsample the input image under the GPU memory restric- 

ions. For each model, we replace plain 2D and 3D convolutional 

ayers with 2D and 3D residual convolutional blocks ( He et al., 

016b ), correspondingly. Both models were trained using the stan- 

ard binary cross-entropy loss (see other details in Section 4.3 ). 

.3. COVID-19 Identification 

We formalize COVID-19 identification task as a binary classifi- 

ation of 3D CT series. CT series of patients with verified COVID-19 

re positive class. CT series of patients with other lung diseases, 

.g. bacterial pneumonia, non-small cell lung cancer, etc., as well 

s normal patients are negative class. 

Segmentation-based One possible approach is to base the deci- 

ion rule on the segmentation results: classify a series as positive 

f the segmentation-based severity score exceeds some threshold. 

e show that this leads to a trade-off between severity quan- 

ification and identification qualities: models which yield the best 

anking results perform worse in terms of classification, and vice 

ersa. Moreover, despite some segmentation-based methods accu- 

ately classify COVID-19 positive and normal cases, all of them 

ields a significant number of false positives in patients with bac- 

erial pneumonia (see Section 5.1 ). 

ResNet-50 Another approach is to tackle the classification task 

eparately from segmentation and explicitly predict the probabil- 

ty that a given series is COVID-19 positive. The advantage of this 

trategy is that we only need weak labels for model training, which 

re much more available than ground truth segmentations. 

To assess the performance of this approach we follow the au- 

hors of ( Li et al., 2020a; Bai et al., 2020 ) and train the ResNet-

0 ( He et al., 2016b ) which takes a series of axial slices as input

nd independently extracts feature vectors for each slice. After that 

he feature vectors are combined via a pyramid max-pooling oper- 

tion ( He et al., 2014 ) along all the slices. The resulting vector is

assed into two fully connected layers followed by sigmoid acti- 

ation which predicts the final COVID-19 probability for the whole 

eries. In our paper, we denote this architecture as ResNet-50 (see 

ther details in Section 4.4 ). 

.4. Multitask 

Baselines for the identification task described in Section 2.3 do 

ot perform well, as we show in Section 5 . Therefore, we propose 

https://github.com/neuro-ml/COVID-19-Triage
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Fig. 3. Schematic representation of the Multitask-Spatial-1 model. Identification score is the probability of being a COVID-19 positive series; Severity score is calculated using 

predicted lesions’ mask and precomputed lungs’ masks. 
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o solve the identification task simultaneously with the segmenta- 

ion task via a single two-headed convolutional neural network. 

The segmentation part of the architecture is slice-wise 2D U- 

et model. As earlier, its output is used for the evaluation of the 

everity score. 

The classification head shares a common intermediate feature 

ap (per slice) with the segmentation part. These feature maps are 

tacked and aggregated into a feature vector via a pyramid pooling 

ayer ( He et al., 2014 ). Finally, two fully connected layers followed 

y sigmoid activation transform the feature vector to the COVID-19 

robability. 

Following ( Amine et al., 2020 ), the shared feature maps can be 

he outputs of the U-Net’s encoder and have no explicit spatial 

tructure in the axial plane. We refer to this approach as Multitask- 

atent . In contrast, we argue that the identification task is con- 

ected to the segmentation task and the classification model can 

enefit from the spatial structure of the input features. Therefore, 

e propose to share the feature map from the very end of the U- 

et architecture, as shown in Fig. 3 . We refer to the resulting archi-

ecture as Multitask-Spatial-1 . More generally, shared feature maps 

an be taken from the l-th upper level of the U-Net’s decoder. To- 

ether they form a 3D spatial feature map, which is aligned with 

he input 3D series downsampled in the axial plane by a factor of 

 

l−1 . We denote this approach as Multitask-Spatial- l. Since 2D U-Net 

rchitecture has 7 levels, l can vary from 1 to 7. 

As a loss function we optimize a weighted combination of bi- 

ary cross entropies for segmentation and classification (see other 

etails in Section 4 ). 

.5. Metrics 

To assess the quality of classification of patients into posi- 

ive, i.e. infected by COVID-19, and negative, i.e. with other lung 

athologies or normal, we use areas under the ROC-curves (ROC 

UC) calculated on several subsamples of the test sample de- 

cribed in Section 3.5 . 

• The first subsample contains only COVID-19 positive and 

healthy subjects, while studies with other pathological findings 

are excluded (ROC AUC COVID-19 vs. Normal). 
• The second subsample contains only patients infected by 

COVID-19 or bacterial pneumonia (ROC AUC COVID-19 vs. Bac. 

Pneum.). 
• The third subsample contains COVID-19 positive patients and 

patients with lung nodules typical for non-small cell lung can- 

cer (ROC AUC COVID-19 vs. Nodules). 
• The last ROC AUC is calculated on the whole test sample (ROC 

AUC COVID-19 vs. All others). 

ROC-curves are obtained by thresholding the predicted proba- 

ilities for ResNet-50 and multitask models, and by thresholding 

he predicted severity score for segmentation-based methods. 

We evaluate the quality of ranking studies in order of descend- 

ng COVID-19 severity on the test subsample, which contains only 
6 
OVID-19 positive patients. As a quality metric, we use Spearman’s 

ank correlation coefficient (Spearman’s ρ) between the severity 

cores y true calculated for ground truth segmentations and the pre- 

icted severity scores y pred . It is defined as 

(y true , y pred ) = 

cov ( rg (y true ) , rg (y pred )) 

σ ( rg (y true )) · σ ( rg (y pred )) 
, 

here cov (·, ·) is a sample covariance, σ (·) is a sample standard 

eviation and rg (y ) is the vector of ranks, i.e. resulting indices of 

 elements after their sorting in the descending order. 

To evaluate the COVID-19 lesions segmentation quality we use 

ice score coefficient between the predicted and the ground truth 

egmentation masks. Similar to Spearman’s ρ, we evaluate the 

ean Dice score only for COVID-19 positive cases. 

. Data 

We use several public datasets in our experiments: 

• NSCLC-Radiomics and LUNA16 to create a robust lung segmen- 

tation model. 
• Mosmed-1110, MedSeg-29 and NSCLC-Radiomics to train and 

validate all triage models. 
• Mosmed-Test as a hold-out test set for the final evaluation of 

all models. 

.1. Mosmed-1110 

1110 CT scans from Moscow outpatient clinics were collected 

rom 1st of March, 2020 to 25th of April, 2020, within the frame- 

ork of outpatient computed tomography centers in Moscow, Rus- 

ia ( Morozov et al., 2020a ). 

Scans were performed on Canon (Toshiba) Aquilion 64 units in 

ith standard scanner protocols and, particularly 0.8 mm inter- 

lice distance. However, the public version of the dataset contains 

very 10th slice of the original study, so the effective inter-slice 

istance is 8mm. 

The quantification of COVID-19 severity in CT was performed 

ith the visual semi-quantitative scale adopted in the Russian 

ederation and Moscow in particular ( Morozov et al., 2020c ). Ac- 

ording to this grading, the dataset contains 254 images without 

OVID-19 symptoms. The rest is split into 4 categories: CT1 (af- 

ected lung percentage 25% or below, 684 images), CT2 (from 25% 

o 50%, 125 images), CT3 (from 50% to 75%, 45 images), CT4 (75% 

nd above, 2 images). 

Radiologists performed an initial reading of CT scans in clinics, 

fter which experts from the advisory department of the Center for 

iagnostics and Telemedicine (CDT) independently conducted the 

econd reading as a part of a total audit targeting all CT studies 

ith suspected COVID-19. 

Additionally, 50 CT scans were annotated with binary masks de- 

icting regions of interest (ground-glass opacity and consolidation). 
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.2. Medseg-29 

MedSeg web-site 3 shares 2 publicly available datasets of anno- 

ated volumetric CT images. The first dataset consists of 9 volumet- 

ic CT scans from a web-site 4 that were converted from JPG to Nifti 

ormat. The annotations of this dataset include lung masks and 

OVID-19 masks segmented by a radiologist. The second dataset 

onsists of 20 volumetric CT scans shared by ( Jun et al., 2020 ). The

eft and rights lungs, and infections are labeled by two radiologists 

nd verified by an experienced radiologist. 

.3. NSCLC-Radiomics 

NSCLC-Radiomics dataset ( Kiser et al., 2020; Aerts et al., 2015 ) 

epresents a subset of The Cancer Imaging Archive NSCLC Ra- 

iomics collection ( Clark et al., 2013 ). It contains left and right 

ungs segmentations annotated on 3D thoracic CT series of 402 pa- 

ients with diseased lungs. Pathologies — lung cancerous nodules, 

telectasis and pleural effusion — are included in the lung volume 

asks. Pleural effusion and cancerous nodules are also delineated 

eparately, when present. 

Automatic approaches for lungs segmentation often perform in- 

onsistently for patients with diseased lungs, while it is usually 

he main case of interest. Thus, we use NSCLC-Radiomics to create 

obust for pathological cases lungs segmentation algorithm. Other 

athologies, e.g. pneumothorax, that are not presented in NSCLC- 

adiomics could also lead to poor performance of lungs segmen- 

ation. But the appearance of such pathologies among COVID-19 

ases is extremely rare. For instance, it is less than 1% for pneu- 

othorax ( Zantah et al., 2020 ). Therefore, we ignore the possible 

resence of other pathology cases, while training and evaluating 

ur algorithm. 

.4. LUNA16 

LUNA16 ( Jacobs et al., 2016 ) is a public dataset for cancerous 

ung nodules segmentation. It includes 888 annotated 3D thoracic 

T scans from the LIDC/IDRI database ( Armato III et al., 2011 ). 

cans widely differ by scanner manufacturers (17 scanner models), 

lice thicknesses (from 0.6 to 5.0 mm), in-plane pixel resolution 

from 0.461 to 0.977 mm), and other parameters. Annotations for 

very image contain binary masks for the left and right lungs, the 

rachea and main stem bronchi, and the cancerous nodules. The 

ung and trachea masks were originally obtained using an auto- 

atic algorithm ( van Rikxoort et al., 2009 ) and the lung nodules 

ere annotated by 4 radiologists ( Armato III et al., 2011 ). We also

xclude 7 cases with absent or completely broken lung masks and 

xtremely noisy scans. 

.5. Mosmed-Test 

We ensure the following properties of the test dataset: 

• All cases are full CT series without missing slices and/or lack- 

ing metadata fields (e.g., information about original Hounsfield 

units). 
• Data for all classes comes from the same population and the 

same healthcare system to avoid domain shifts within test data. 

COVID-19 positive It is a subsample of Mosmed-20 5 , 42 CT stud- 

es collected from 20 patients in an infectious diseases hospi- 

al during the second half of February 2020, at the beginning of 
3 https://medicalsegmentation.com/covid19/ 
4 https://radiopaedia.org/articles/covid- 19- 3 
5 https://mosmed.ai/en/datasets/ct _ lungcancer _ 500/ 

m

7 
he Russian outbreak. We remove 5 cases with artifacts related 

o patients’ movements while scanning. The remaining 37 cases 

ere independently assessed by two raters (radiologists with 2 

nd 5 years of experience) who have annotated regions of interest 

ground-glass opacities and consolidation) via MedSeg 6 annotation 

ool for every of the 37 Mosmed-Test series. During the annotation 

rocess, 5 out of 37 images were identified to have no radiomic 

igns of COVID-19, so we remove these images from the list of 

OVID-19 positives. Then, we iteratively verify annotations based 

n two factors: Dice Score between two rates, and missing large 

onnected components of the mask by one of the raters. The dis- 

repancy between the two raters has been analyzed until the con- 

ensus is reached — 0 . 87 ± 0 . 17 Dice Score over 32 COVID-19 in-

ected cases. We publicly release the final version of COVID-19 pos- 

tive dataset including both images and annotated lesions masks. 

Note, that the Mosmed-20 was collected at inpatient clinics, 

hereas Mosmed-1110 is a subset of Moscow out-patient clinics 

atabase created from two to six weeks later, which guarantees 

hat studies are not duplicated. 

Bacterial pneumonia We use 30 randomly selected cases from a 

ataset ( Korb et al., 2021 ) with 75 chest CT studies with radiologi-

al signs of community-acquired bacterial pneumonia in 2019. 

Lung nodules We use a subset of MoscowRadiology-CTLungCa- 

00 7 , a public dataset containing 500 chests CT scans randomly 

elected from patients over 50 years of age. We selected 30 cases 

andomly among cases with radiologically verified lung nodules. 

Normal controls The dataset with healthy patients consists 

f two parts: 5 Mosmed20 cases mentioned above without ra- 

iomic signs of COVID-19, and 26 cases from MoscowRadiology- 

TLungCa-500 without lung nodules larger than 5mm and other 

ung pathologies. 

. Experiments 

We design our experiments in order to objectively compare all 

he triage models described in Section 2 . As shown in the Tab. 2 ,

ll the methods are trained on the same datasets and evaluated us- 

ng the mean values and the standard deviations of the same qual- 

ty metrics defined in Section 2.5 on the same hold-out test dataset 

escribed in Section 3.5 . We believe, that the experimental design 

or training neural networks for triage described in Section 4.3 and 

.4 exclude overfitting. All computational experiments were con- 

ucted on Zhores supercomputer ( Zacharov et al., 2019 ). 

.1. Preprocessing 

In all our experiments we use the same preprocessing applied 

eparately for each axial slice: rescaling to a pixel spacing of 2 × 2 

m and intensity normalization to the [0 , 1] range. 

In our COVID-19 identification and segmentation experiments 

e crop the input series to the bounding box of the lungs’ mask 

redicted by our lungs segmentation network. 

We further show ( Section 5 ) that this preprocessing is sufficient 

or all the models. Despite the diversity of the training dataset, all 

he models successfully adapt to the test dataset. 

.2. Lungs segmentation 

For the lungs segmentation task we choose a basic U-Net 

 Ronneberger et al., 2015 ) architecture with 2D convolutional lay- 

rs, individually apply to each axial slice of an incoming series. The 

odel was trained on NSCLC-Radiomics and LUNA16 datasets for 
6 https://www.medseg.ai/ 
7 https://mosmed.ai/en/datasets/ct _ lungcancer _ 500/ 

https://medicalsegmentation.com/covid19/
https://radiopaedia.org/articles/covid-19-3
https://mosmed.ai/en/datasets/ct_lungcancer_500/
https://www.medseg.ai/
https://mosmed.ai/en/datasets/ct_lungcancer_500/
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Table 2 

Training, validation and test data splits for all triage models. For each method, we give the optimized training objectives in the corresponding table cells for 

the training datasets. Every column of Mosmed-Test dataset represents the metrics which are calculated using the corresponding test subset. Remarks . 1. pos. 

with mask / pos. mean COVID-19 positive cases with or without lesions mask, correspondingly, and neg. means COVID-19 negative cases. 2. DSC means Dice 

Score. 3. AUCs means ROC AUC COVID-19 vs. All, vs. Normal, vs. Bac. Pneum. and vs. Nodules. 4. Seg. BCE and class. BCE means segmentation and classification 

Binary Cross-Entropy correspondingly. 5. ρ means Spearman’s ρ . 6. Multitask-Latent, Multitask-Spatial-4, Multitask-Spatial-1. 

Training and validation datasets Mosmed-test 

Mosmed-1110 Medseg-29 NSCLC-Radiomics COVID-19 pos. Bac. Pneum. Nodules Normal 

Ground truth 1 pos. with mask pos. neg. pos. with mask neg. pos. with mask neg. neg. neg. 

Num. of images 50 806 254 29 402 32 30 30 31 

Thresholding DSC 2 - DSC - AUCs 3 , ρ, DSC AUCs AUCs AUCs 

2D U-Net, 3D U-Net Seg. BCE 4 - Seg. BCE - AUCs, ρ, DSC AUCs AUCs AUCs 

2D U-Net + Seg. BCE - Seg. BCE Seg. BCE AUCs, ρ5 , DSC AUCs AUCs AUCs 

ResNet-50 - Class. BCE 4 - Class. BCE AUCs AUCs AUCs AUCs 

Multitask models 6 Seg. BCE Class. BCE Seg. BCE Class. BCE AUCs, ρ, DSC AUCs AUCs AUCs 
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6k batches of size 30. We use Adam ( Kingma and Ba, 2014 ) opti-

izer with default parameters and an initial learning rate of 0.001, 

hich was decreased to 0.0 0 01 after 8k batches. 

We assess the model’s performance using 3-fold cross- 

alidation and additionally using MedSeg-29 dataset as hold-out 

et. Dice Score of cross-validation is 0 . 976 ± 0 . 023 for both LUNA16

nd NSCLC-Radiomics datasets, and 0 . 962 ± 0 . 023 only on NSCLC- 

adiomics dataset. The latter result confirms our model to be ro- 

ust to the cases with pleural effusion. Dice Score on MedSeg-29 

ataset is 0 . 976 ± 0 . 013 , which shows the robustness of our model

o the COVID-19 cases. 

.3. Lesions segmentation 

We use all the available 79 images of COVID-19 positive pa- 

ients with annotated lesions masks (50 images from Mosmed-1110 

nd 29 images from MedSeg-29) to train the threshold-based, 2D 

-Net, 3D U-Net models. 

Additionally, we train the 2D U-Net ’s architecture on the same 

9 cases along with 402 images from the NSCLC-Radiomics dataset. 

hese 402 images were acquired long before the COVID-19 pan- 

emic, therefore we assume that ground truth segmentations for 

hem are zero masks. During training this model we resample se- 

ies such that batches contain approximately equal numbers of 

OVID-19 positive and negative cases. We refer to this model as 

D U-Net+ . 

2D U-Net and 2D U-Net+ were trained for 15k batches using 

dam ( Kingma and Ba, 2014 ) optimizer with default parameters 

nd an initial learning rate of 0.0 0 03. Each batch contains 5 series

f axial slices. 3D U-Net was optimized via plain stochastic gradient 

escent for 10k batches using a learning rate of 0.01. Each batch 

onsists of 16 3D patches. 

In order to estimate mean values and standard deviations of 

odels’ quality metrics defined in Section 2.5 each segmentation 

etwork was trained 3 times with different random seeds. Re- 

ulting networks were evaluated on the hold-out test dataset, de- 

cribed in Section 3.5 . 

.4. Resnet-50 and multitask models 

The remaining 806 positive images without ground truth seg- 

entations and 254 negative images from the Mosmed-1110 and 

02 negative images from NSCLC-Radiomics were split 5 times in 

 stratified manner into a training set and a validation set. Each of 

he 5 validation sets contains 30 random images. 

For each split we train the ResNet-50 and the classification 

eads of Multitask-Latent, Multitask-Spatial-1 and Multitask-Spatial- 

 models on the defined training set, while segmentation heads of 

he multitask models were trained on the same 79 images, as 2D 

-Net (see Section 4.3 ). 
8 
For each network on each training epoch we evaluate the ROC 

UC between the predicted COVID-19 probabilities and the ground 

ruth labels on the validation set. We save the networks’ weights 

hich resulted in the highest validation ROC AUC during training. 

or all the multitask models as well as for ResNet-50 top validation 

OC AUCs exceeded 0.9 for all splits. 

We train all networks for 30k batches using Adam ( Kingma and 

a, 2014 ) optimizer with the default parameters and an initial 

earning rate of 3 · 10 −4 reduced to 1 · 10 −4 after 24k batches. Each 

atch contains 5 series of axial slices. 

During training the multitask models we resample examples 

uch that batches contained an approximately equal number of ex- 

mples which were used to penalize either classification or seg- 

entation head. However, we multiplied by 0.1 the loss for the 

lassification head, because it resulted in better validation ROC 

UCs. 

For each of 5 splits, we evaluated each trained network on the 

old-out test dataset described in Section 3.5 . We report the re- 

ulting mean values and standard deviations of the quality metrics 

n Section 5 . 

. Results 

In this section we report and discuss the results of the ex- 

eriments described in Section 4 . In Tab. 3 we compare all the 

ethods described in Section 2 using quality metrics defined 

n Section 2.5 and evaluated on the test dataset described in 

ection 3.5 . 

.1. Segmentation-based methods 

In this subsection we discuss the performance of four methods: 

he threshold-based baseline, 3D U-Net, 2D U-Net and 2D U-Net+ . 

We expect two major weaknesses of the threshold-based 

ethod: False Positive (FP) predictions on the vessels and bronchi, 

nd inability to distinguish COVID-19 related lesions from other 

athological findings. It is clearly seen from the extremely low ROC 

UC scores ( Tab. 3 ). One could also notice massive FP predictions 

ven in healthy cases ( Fig. 4 , column B). However, the method of- 

en provides a reasonable segmentation of the lesion area ( Fig. 4 , 

olumn A). 

Neural networks considerably outperform the threshold-based 

aseline in terms of any quality metric. We observe neither quanti- 

ative ( Tab. 3 ) nor qualitative ( Fig. 4 ) significant difference between

D U-Net ’s and 3D U-Net ’s performances. They yield accurate sever- 

ty scores within the COVID-19 positive population (Spearman’s 

= 0 . 97 ). However, severity scores quantified for the whole test 

ataset do not allow to accurately distinguish between COVID-19 

ositive cases and cases with other pathological findings (ROC AUC 
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Table 3 

Quantitative comparison of all the methods discussed in Section 2 . Trade-off between qualities of COVID-19 identifi- 

cation and ranking by severity is observed for segmentation-based methods. The proposed Multitask-Spatial-1 model 

yields the best identification results. Results are given as mean ± std. 

ROC AUC (COVID-19 vs. ·) Spearman’s 

ρ

Dice 

Score 
vs. All others vs. Normal vs. Bac. Pneum. vs. Nodules 

Thresholding . 51 ± 0 . 00 . 68 ± 0 . 00 . 46 ± 0 . 00 . 45 ± 0 . 00 . 92 ± 0 . 00 . 42 ± 0 . 00 

3D U-Net . 76 ± 0 . 02 . 89 ± 0 . 02 . 59 ± 0 . 01 . 79 ± 0 . 03 . 97 ± 0 . 01 . 65 ± 0 . 00 

2D U-Net . 78 ± 0 . 01 . 93 ± 0 . 01 . 62 ± 0 . 01 . 79 ± 0 . 00 . 97 ± 0 . 00 . 63 ± 0 . 00 

2D U-Net + . 86 ± 0 . 01 . 98 ± 0 . 01 . 68 ± 0 . 02 . 91 ± 0 . 01 . 80 ± 0 . 03 . 59 ± 0 . 01 

ResNet-50 . 62 ± 0 . 19 . 67 ± 0 . 21 . 55 ± 0 . 13 . 65 ± 0 . 22 N/A N/A 

Multitask-Latent . 79 ± 0 . 06 . 84 ± 0 . 05 . 73 ± 0 . 06 . 80 ± 0 . 07 . 97 ± 0 . 00 . 61 ± 0 . 02 

Multitask-Spatial-4 . 89 ± 0 . 03 . 94 ± 0 . 03 . 83 ± 0 . 05 . 91 ± 0 . 03 . 98 ± 0 . 00 . 61 ± 0 . 02 

Multitask-Spatial-1 . 93 ± 0 . 01 . 97 ± 0 . 01 . 87 ± 0 . 01 . 93 ± 0 . 00 . 97 ± 0 . 01 . 61 ± 0 . 02 

Fig. 4. Examples of axial CT slices from the test dataset along with ground truth annotations (first row) and predicted masks (second row) of COVID-19-specific lesions. 

Column A : COVID-19 positive case; Column B : normal case; Column C : case with bacterial pneumonia. Lesions’ masks are represented by the contours of their borders for 

clarity. 
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 0 . 79 ) due to FP segmentations ( Fig. 4 , columns B and C). 

As one could expect, training on images with non-small cell 

ung cancer tumors from NSCLS-Radiomics dataset results in the 

nhancement of ROC AUC vs. Nodules (0.91 for 2D U-Net+ com- 

ared to 0.79 for 2D U-Net ). Interestingly, in this experiment we 

bserve a degradation in terms of Spearman’s ρ for ranking of 

OVID-19 positive cases (0.8 for 2D U-Net+ compared to 0.97 

or 2D U-Net). We conclude that one should account for this 

rade-off and use an appropriate training setup depending on the 

ask. 

All the segmentation-based models perform poorly in terms of 

lassification into COVID-19 and bacterial pneumonia (ROC AUC 

OVID-19 vs. Bac. Pneum. ≤ 0 . 7 ). This motivates to discuss the 
ther methods. b

9 
.2. Resnet-50 

Despite that validation ROC AUCs for all the trained ResNet- 

0 networks exceed 0.9, their performance on the test dataset is 

xtremely unstable: ROC AUC COVID-19 vs. All varies from 0.43 

o 0.85, see also high standard deviation values for all tasks in 

ab. 3 . 

.3. Multitask models 

In this subsection we discuss the performance of Multitask- 

atent, Multitask-Spatial-4 and the proposed Multitask-Spatial-1 

odels on identification, segmentation and severity quantification 

asks in comparison to each other, ResNet-50 and segmentation- 

ased methods. 
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Fig. 5. COVID-19 triage: identification of COVID-19 positive patients (left) and ranking them in the descending order of severity (right) via the proposed single Multitask- 

Spatial-1 model. In the right plot bars correspond to the ranked studies. Absolute values of the predicted affected lungs fractions are represented as bars’ lengths along the 

x -axis. The bars’ colors denote ground truth labels. 

Fig. 6. The comparison of visual subjective estimation and automatic segmentation for weakly annotated cases from the Mosmed-1110 dataset. Each distribution corresponds 

to a set of cases with the same Severity group according to the radiologist’s subjective judgment. The left y-axis shows the automatically estimated Severity by our method; 

the right one denotes expected Severity ranges that are [0; 25) for CT-1, [25; 50) for CT-2, [50; 75) for CT-3, [75; 100] for CT-4. The colored arrows denote the correspondence 

between some visually underestimated cases and their representative axial slices. Note the inconsistency of manual estimation. 
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As seen from mean values and standard deviations of ROC AUC 

cores in Tab. 3 , Multitask-Latent model yields better and more sta- 

le identification results than ResNet-50 . Both these models clas- 

ify the latent representations of the input images. We show that 

haring these features with the segmentation head, i.e. decoder of 

he U-Net architecture improves the classification quality. More- 

ver, one can see in Tab. 3 that this effect is enhanced by shar-

ng the spatial feature maps from the upper levels of the U-Net’s 

ecoder. The proposed Multitask-Spatial-1 architecture (see Fig. 3 ) 

ith shallow segmentation and classification heads directly shar- 

ng the same spatial feature map shows the top classification re- 

ults. Especially, it most accurately distinguish between COVID-19 

nd other lung diseases (ROC AUC COVID-19 vs. Bac. Pneum. = 

 . 87 , ROC AUC COVID-19 vs. Nodules = 0 . 93 ). 

As seen in Tab. 3 and Fig. 4 there is no significant difference 

n terms of segmentation and severity quantification qualities be- 

ween the multitask models and the neural networks for single 

egmentation task. 

Therefore, the single proposed Multitask-Spatial-1 model can 

e applied for both triage problems: identification of COVID-19 

r

10 
atients followed by their ranking according to the severity. In 

ig. 5 we visualize these two steps of triage pipeline for the test 

ataset, described in Section 3.5 . One can see the several false pos- 

tive alarms in cases with non-COVID-19 pathological findings. We 

iscuss the possible ways to resolve them in Section 6 . The over- 

ll pipeline for triage, including preprocessing, lungs segmentation, 

nd multitask inference takes 8s and 20s using nVidia V100 and 

TX 980 GPUs respectively. 

. Discussion 

We have highlighted two important scores: COVID-19 Iden- 

ification and Severity and discussed their priorities in different 

linical scenarios. We have shown that these two scores aren’t 

ligned well. Existing methods operate either with Identification 

r Severity and demonstrate deteriorated performance for the 

ther task. We have presented a new method for joint estima- 

ion of COVID-19 Identification and Severity score and showed 

hat the proposed multitask architecture achieves top quality met- 

ics for both tasks simultaneously. Finally, we have released the 
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ode and used public data for training, so our results are fully 

eproducible. 

Besides classification between COVID-19 and healthy patients 

e evaluate classification between COVID-19 and other lung ab- 

ormalities: bacterial pneumonia and cancerous nodules. As shown 

n Fig. 5 , our method yields false positive alarms, mainly in pa- 

ients with bacterial pneumonia (COVID-19 vs. bacterial pneumonia 

pecificity 22 / 30 = 73 . 4% ). However, we find this result promising,

iven the fact that we do not use any explicit training dataset with 

acterial pneumonia patients. The proposed multitask model can 

e trained with the addition of bacterial or/and viral (not COVID- 

9) pneumonia cases, which can partially reduce the classification 

rror. However, there is also an irreducible classification error in 

ases when radiomic features are not allow to distinguish between 

OVID-19 and non-COVID-19 pneumonia. Fortunately, in practice, 

sage of an automated triage system always implies second read- 

ng, so the model’s false positives are assumed to be resolved by a 

adiologist, while the most controversial cases can be resolved by 

he RT-PCR testing. Thus, we conclude that the identification part 

f our triage system may be used as a highly sensitive first reading 

ool. 

The role of the Severity Quantification part is more straight- 

orward. As we mentioned in Section 1 , radiologists perform the 

everity classification into groups from CT0 (no COVID-19 related 

esions) and CT1 (up to 25% of lungs affected) to CT4 (more than 

5%) in a visual semi-quantitative fashion. We believe that such 

stimation may be highly subjective and may contain severe dis- 

repancies. To validate this assumption, we additionally analyzed 

osmed-1110, which includes not only 50 segmentation masks 

ut also 1110 multiclass labels CT0-CT4. Within our experiments, 

e binarized these labels and effectively removed information 

bout COVID-19 severity. We examined mask predictions for the 

emaining 1050 cases, excluding healthy patients (CT0 group) and 

rouped the predictions by these weak labels, as shown in Fig. 6 . 

n expert radiologist validated analyzed the most extreme mis- 

atches visualized in Fig. 6 and confirmed the correctness of our 

odel’s predictions. As we see, the severity of many studies was 

ighly underestimated during the visual semi-quantitative analysis. 

his result implies that deep-learning-based medical image analy- 

is algorithms, including the proposed method, are great intelligent 

adiologists’ assistants in a fast and reliable estimation of time- 

onsuming biomarkers such as COVID-19 severity. 

eclaration of Competing Interest 

The authors declare the following financial interests/personal 

elationships which may be considered as potential competing in- 

erests: 

M. Belyaev is a founder and CEO of IRA Labs ltd, a medical im- 

ge processing company. The company didn’t support the study 

hich was conducted on open-sourced datasets; the paper code 

s also public. 

RediT authorship contribution statement 

Mikhail Goncharov: Writing - original draft, Formal analysis, 

nvestigation. Maxim Pisov: Visualization, Writing - original draft, 

nvestigation. Alexey Shevtsov: Investigation, Data curation, Soft- 

are. Boris Shirokikh: Writing - original draft, Formal analy- 

is, Investigation. Anvar Kurmukov: Software, Writing - review & 

diting. Ivan Blokhin: Writing - review & editing, Data curation. 

aleria Chernina: Writing - original draft. Alexander Solovev: 

ata curation. Victor Gombolevskiy: Conceptualization, Validation. 

ergey Morozov: Supervision. Mikhail Belyaev: Conceptualization, 

ethodology, Writing - original draft, Writing - review & editing. 
11 
cknowledgment 

We thank Dmitry Petrov (University of Massachusetts Amherst) 

or valuable comments and Tatiana Korb (Research and Practical 

linical Center for Diagnostics and Telemedicine Technologies) for 

uggesting test CT studies. 

eferences 

erts, H. , Velazquez, E.R. , Leijenaar, R.T. , Parmar, C. , Grossmann, P. , Cavalho, S. ,

Bussink, J. , Monshouwer, R. , Haibe-Kains, B. , Rietveld, D. , et al. , 2015. Data from

nsclc-radiomics. The cancer imaging archive . 
kl, E.A. , Blazic, I. , Yaacoub, S. , Frija, G. , Chou, R. , Appiah, J.A. , Fatehi, M. , Flor, N. ,

Hitti, E. , Jafri, H. , et al. , 2020. Use of chest imaging in the diagnosis and man-
agement of covid-19: a who rapid advice guide. Radiology 203173 . 

mine, A. , Modzelewski, R. , Li, H. , Ruan, S. , 2020. Multi-task deep learning based
ct imaging analysis for covid-19 pneumonia: classification and segmentation.. 

Comput. Biol. Med. 126 . 

nnarumma, M. , Withey, S.J. , Bakewell, R.J. , Pesce, E. , Goh, V. , Montana, G. , 2019.
Automated triaging of adult chest radiographs with deep artificial neural net- 

works. Radiology 291 (1), 196–202 . 
rmato III, S.G. , McLennan, G. , Bidaut, L. , McNitt-Gray, M.F. , Meyer, C.R. , Reeves, A.P. ,

Zhao, B. , Aberle, D.R. , Henschke, C.I. , Hoffman, E.A. , et al. , 2011. The lung im-
age database consortium (lidc) and image database resource initiative (idri): a 

completed reference database of lung nodules on ct scans. Med. Phys. 38 (2), 

915–931 . 
ai, H.X. , Wang, R. , Xiong, Z. , Hsieh, B. , Chang, K. , Halsey, K. , Tran, T.M.L. , Choi, J.W. ,

Wang, D.-C. , Shi, L.-B. , et al. , 2020. Ai augmentation of radiologist performance
in distinguishing covid-19 from pneumonia of other etiology on chest ct. Radi- 

ology 201491 . 
ernheim, A. , Mei, X. , Huang, M. , Yang, Y. , Fayad, Z.A. , Zhang, N. , Diao, K. , Lin, B. ,

Zhu, X. , Li, K. , et al. , 2020. Chest ct findings in coronavirus disease-19 (covid-19):
relationship to duration of infection. Radiology 200463 . 

laži ́c, I. , Brklja ̌ci ́c, B. , Frija, G. , 2020. The use of imaging in covid-19-results of a

global survey by the international society of radiology. Eur. Radiol. 1–9 . 
haganti, S. , Balachandran, A. , Chabin, G. , Cohen, S. , Flohr, T. , Georgescu, B. , Gre-

nier, P. , Grbic, S. , Liu, S. , Mellot, F. , et al. . Quantification of tomographic patterns
associated with covid-19 from chest ct . 

hang, P.D. , Kuoy, E. , Grinband, J. , Weinberg, B.D. , Thompson, M. , Homo, R. , Chen, J. ,
Abcede, H. , Shafie, M. , Sugrue, L. , et al. , 2018. Hybrid 3d/2d convolutional neural

network for hemorrhage evaluation on head ct. American Journal of Neuroradi- 

ology 39 (9), 1609–1616 . 
hen, J. , Wu, L. , Zhang, J. , Zhang, L. , Gong, D. , Zhao, Y. , Hu, S. , Wang, Y. , Hu, X. ,

Zheng, B. , et al. , 2020. Deep learning-based model for detecting 2019 novel 
coronavirus pneumonia on high-resolution computed tomography: a prospec- 

tive study. medRxiv . 
içek, Ö. , Abdulkadir, A. , Lienkamp, S.S. , Brox, T. , Ronneberger, O. , 2016. 3d u-net:

learning dense volumetric segmentation from sparse annotation. In: Interna- 

tional conference on medical image computing and computer-assisted interven- 
tion. Springer, pp. 424–432 . 

lark, K. , Vendt, B. , Smith, K. , Freymann, J. , Kirby, J. , Koppel, P. , Moore, S. , Phillips, S. ,
Maffitt, D. , Pringle, M. , et al. , 2013. The cancer imaging archive (tcia): main-

taining and operating a public information repository. J. Digit. Imaging 26 (6), 
1045–1057 . 

olombi, D. , Bodini, F.C. , Petrini, M. , Maffi, G. , Morelli, N. , Milanese, G. , Silva, M. ,

Sverzellati, N. , Michieletti, E. , 2020. Well-aerated lung on admitting chest ct to 
predict adverse outcome in covid-19 pneumonia. Radiology 201433 . 

e Fauw, J. , Ledsam, J.R. , Romera-Paredes, B. , Nikolov, S. , Tomasev, N. , Blackwell, S. ,
Askham, H. , Glorot, X. , O’Donoghue, B. , Visentin, D. , et al. , 2018. Clinically ap-

plicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 24 
(9), 1342–1350 . 

aita, F. , 2020. Deep learning in emergency medicine: recent contributions and 

methodological challenges. Emergency Care Journal 16 (1) . 
an, D.-P. , Zhou, T. , Ji, G.-P. , Zhou, Y. , Chen, G. , Fu, H. , Shen, J. , Shao, L. . Inf-net: au-

tomatic covid-19 lung infection segmentation from ct scans . 
ang, Y. , Zhang, H. , Xie, J. , Lin, M. , Ying, L. , Pang, P. , Ji, W. , 2020. Sensitivity of chest

ct for covid-19: comparison to rt-pcr. Radiology 200432 . 
ozes, O. , Frid-Adar, M. , Greenspan, H. , Browning, P.D. , Zhang, H. , Ji, W. , Bern-

heim, A. , Siegel, E. . Rapid ai development cycle for the coronavirus (covid-19) 

pandemic: initial results for automated detection & patient monitoring using 
deep learning ct image analysis . 

ozes, O. , Frid-Adar, M. , Sagie, N. , Zhang, H. , Ji, W. , Greenspan, H. . Coronavirus de-
tection and analysis on chest ct with deep learning . 

an, Z. , Wei, B. , Hong, Y. , Li, T. , Cong, J. , Zhu, X. , Wei, H. , Zhang, W. , 2020. Accurate
screening of covid-19 using attention based deep 3d multiple instance learning. 

IEEE Trans. Med. Imaging . 1–1 
e, K. , Gkioxari, G. , Dollár, P. , Girshick, R. , 2017. Mask r-cnn. In: Proceedings of the

IEEE international conference on computer vision, pp. 2961–2969 . 

e, K., Zhang, X., Ren, S., Sun, J., 2014. Spatial pyramid pooling in deep convolutional
networks for visual recognition. CoRR. arXiv:1406.4729 . 

e, K. , Zhang, X. , Ren, S. , Sun, J. , 2016. Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recogni- 

tion, pp. 770–778 . 

http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0001
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0002
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0003
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0004
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0005
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0006
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0007
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0008
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0009
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0010
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0011
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0012
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0013
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0014
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0015
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0016
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0017
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0018
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0019
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0020
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0021
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0022
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0022
http://arxiv.org/abs/1406.4729
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0024
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0024


M. Goncharov, M. Pisov, A. Shevtsov et al. Medical Image Analysis 71 (2021) 102054 

H  

H  

H  

H  

J  

J  

 

J  

J  

 

K  

K  

K
K  

K  

K  

L  

L  

 

L  

L  

M  

M  

 

M  

M

P  

v  

R

R  

S  

S  

S  

S  

S  

S  

S  

T

T  

T  

T

T  

W  

W  

W  

 

W

W  

 

Y  

Z  

Z  
e, K. , Zhang, X. , Ren, S. , Sun, J. , 2016. Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recogni- 

tion, pp. 770–778 . 
uang, G. , Liu, Z. , Van Der Maaten, L. , Weinberger, K.Q. , 2017. Densely connected

convolutional networks. In: Proceedings of the IEEE conference on computer vi- 
sion and pattern recognition, pp. 4700–4708 . 

uang, L. , Han, R. , Ai, T. , Yu, P. , Kang, H. , Tao, Q. , Xia, L. , 2020. Serial quantitative
chest ct assessment of covid-19: deep-learning approach. Radiology: Cardiotho- 

racic Imaging 2 (2), e20 0 075 . 

uang, Z. , Zhao, S. , Li, Z. , Chen, W. , Zhao, L. , Deng, L. , Song, B. , 2020. The battle
against coronavirus disease 2019 (covid-19): emergency management and in- 

fection control in a radiology department. Journal of the american college of 
radiology . 

acobs, C., Setio, A .A .A ., Traverso, A ., van Ginneken, B., 2016. Lung nodule analysis
2016. URL https://luna16.grand-challenge.org 

in, C. , Chen, W. , Cao, Y. , Xu, Z. , Zhang, X. , Deng, L. , Zheng, C. , Zhou, J. , Shi, H. ,

Feng, J. , 2020. Development and evaluation of an ai system for covid-19 diagno-
sis. medRxiv . 

in, S. , Wang, B. , Xu, H. , Luo, C. , Wei, L. , Zhao, W. , Hou, X. , Ma, W. , Xu, Z. , Zheng, Z. ,
et al. , 2020. Ai-assisted ct imaging analysis for covid-19 screening: building and 

deploying a medical ai system in four weeks. medRxiv . 
un, M., Cheng, G., Yixin, W., Xingle, A., Jiantao, G., Ziqi, Y., Minqing, Z., Xin, L.,

Xueyuan, D., Shucheng, C., Hao, W., Sen, M., Xiaoyu, Y., Ziwei, N., Chen, L., Lu,

T., Yuntao, Z., Qiongjie, Z., Guoqiang, D., Jian, H., 2020. COVID-19 CT Lung and 
Infection Segmentation Dataset. 10.5281/zenodo.3757476 

ang, H. , Xia, L. , Yan, F. , Wan, Z. , Shi, F. , Yuan, H. , Jiang, H. , Wu, D. , Sui, H. , Zhang, C. ,
et al. , 2020. Diagnosis of coronavirus disease 2019 (covid-19) with structured 

latent multi-view representation learning. IEEE Trans. Med. Imaging . 
herad, O. , Moret, B.M. , Fumeaux, T. , 2020. Computed tomography (ct) utility for

diagnosis and triage during covid-19 pandemic. Rev. Med. Suisse 16 (692), 955 . 

ingma, D.P. , Ba, J. . Adam: a method for stochastic optimization . 
iser, K. , Ahmed, S. , Stieb, S. , et al. , 2020. Data from the thoracic volume and pleural

effusion segmentations in diseased lungs for benchmarking chest ct processing 
pipelines [dataset]. The Cancer Imaging Archive . 

orb, T. , Chernina, V. , Blokhin, I. , Aleshina, O. , Mokienko, O. , Morozov, S. ,
Gombolevskiy, V. , 2021. Specificity of chest computed tomography in 

covid-19-associated pneumonia: a retrospective study (in russ.). Almanac of 

Clinical Medicine 49 . 
orolev, S. , Safiullin, A. , Belyaev, M. , Dodonova, Y. , 2017. Residual and plain con-

volutional neural networks for 3d brain mri classification. In: 2017 IEEE 14th 
International Symposium on Biomedical Imaging (ISBI 2017). IEEE, pp. 835–838 . 

i, L. , Qin, L. , Xu, Z. , Yin, Y. , Wang, X. , Kong, B. , Bai, J. , Lu, Y. , Fang, Z. , Song, Q. ,
et al. , 2020. Artificial intelligence distinguishes covid-19 from community ac- 

quired pneumonia on chest ct. Radiology 200905 . 

i, Q. , Guan, X. , Wu, P. , Wang, X. , Zhou, L. , Tong, Y. , Ren, R. , Leung, K.S. , Lau, E.H. ,
Wong, J.Y. , et al. , 2020. Early transmission dynamics in wuhan, china, of novel

coronavirus–infected pneumonia. N top N. Engl. J. Med. . 
in, H.-T. , Li, L. , 2012. Reduction from cost-sensitive ordinal ranking to weighted

binary classification. Neural Comput. 24 (5), 1329–1367 . 
in, T.-Y. , Dollár, P. , Girshick, R. , He, K. , Hariharan, B. , Belongie, S. , 2017. Feature pyra-

mid networks for object detection. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition, pp. 2117–2125 . 

ei, X. , Lee, H.-C. , Diao, K.-y. , Huang, M. , Lin, B. , Liu, C. , Xie, Z. , Ma, Y. , Robson, P.M. ,

Chung, M. , et al. , 2020. Artificial intelligence–enabled rapid diagnosis of patients 
with covid-19. Nat. Med. 1–5 . 

orozov, S. , Andreychenko, A. , Pavlov, N. , Vladzymyrskyy, A. , Ledikhova, N. , Gom-
bolevskiy, V. , Blokhin, I. , Gelezhe, P. , Gonchar, A. , Chernina, V.Y. , 2020. Mosmed-

data: data set of 1110 chest ct scans performed during the covid-19 epidemic. 
Digital Diagnostics 1 (1), 49–59 . 

orozov, S. , Chernina, V. , Blokhin, I. , Gombolevskiy, V. , 2020. Chest computed to-

mography for outcome prediction in laboratory-confirmed covid-19: a retro- 
spective analysis of 38,051 cases. Digital Diagnostics 1 (1), 27–36 . 

orozov, S.P., Protsenko, D., Smetanina, S. e. a., 2020c. Imaging of coronavirus dis- 
ease (covid-19): Organization, methodology, interpretation: Preprint no. cdt - 

2020 - ii. version 2 of 17.04.2020. 
etrikov, S. , Popugaev, K. , Barmina, T. , Zabavskaya, O. , Sharifullin, F. , Kokov, L. , 2020.

Comparison of clinical data and computed tomography semiotics of the lungs 

in covid-19. Tuberculosis and Lung Diseases 98 (7) . 
12 
an Rikxoort, E.M. , de Hoop, B. , Viergever, M.A. , Prokop, M. , van Ginneken, B. , 2009.
Automatic lung segmentation from thoracic computed tomography scans using 

a hybrid approach with error detection. Med. Phys. 36 (7), 2934–2947 . 
onneberger, O. , Fischer, P. , Brox, T. , 2015. U-net: Convolutional networks for 

biomedical image segmentation. In: International Conference on Medical image 
computing and computer-assisted intervention. Springer, pp. 234–241 . 

ubin, G. , Ryerson, C. , Haramati, L. , Sverzellati, N. , Kanne, J. , 2020. Others,’the role of
chest imaging in patient management during the covid-19 pandemic: a multi- 

national consensus statement from the fleischner society,’. Chest . 

elvaraju, R.R. , Cogswell, M. , Das, A. , Vedantam, R. , Parikh, D. , Batra, D. , 2017.
Grad-cam: Visual explanations from deep networks via gradient-based localiza- 

tion. In: Proceedings of the IEEE international conference on computer vision, 
pp. 618–626 . 

han, F. , Gao, Y. , Wang, J. , Shi, W. , Shi, N. , Han, M. , Xue, Z. , Shi, Y. . Lung infection
quantification of covid-19 in ct images with deep learning . 

hen, C. , Yu, N. , Cai, S. , Zhou, J. , Sheng, J. , Liu, K. , Zhou, H. , Guo, Y. , Niu, G. , 2020.

Quantitative computed tomography analysis for stratifying the severity of coro- 
navirus disease 2019. J. Pharm. Anal. . 

hi, F. , Wang, J. , Shi, J. , Wu, Z. , Wang, Q. , Tang, Z. , He, K. , Shi, Y. , Shen, D. , 2020.
Review of artificial intelligence techniques in imaging data acquisition, segmen- 

tation and diagnosis for covid-19. IEEE Rev. Biomed. Eng. . 
hi, F. , Xia, L. , Shan, F. , Wu, D. , Wei, Y. , Yuan, H. , Jiang, H. , Gao, Y. , Sui, H. , Shen, D. .

Large-scale screening of covid-19 from community acquired pneumonia using 

infection size-aware classification . 
verzellati, N. , Milanese, G. , Milone, F. , Balbi, M. , Ledda, R.E. , Silva, M. , 2020. Inte-

grated radiologic algorithm for covid-19 pandemic. J. Thorac. Imaging . 
zegedy, C. , Vanhoucke, V. , Ioffe, S. , Shlens, J. , Wojna, Z. , 2016. Rethinking the incep-

tion architecture for computer vision. In: Proceedings of the IEEE conference on 
computer vision and pattern recognition, pp. 2818–2826 . 

an, M. , Le, Q.V. . Efficientnet: rethinking model scaling for convolutional neural net- 

works . 
ang, Z. , Zhao, W. , Xie, X. , Zhong, Z. , Shi, F. , Liu, J. , Shen, D. . Severity assessment

of coronavirus disease 2019 (covid-19) using quantitative features from chest ct 
images . 

anne, J.H. , Hayasaki, E. , Zastrow, M. , Pulla, P. , Smith, P. , Rada, A.G. , 2020. Covid-19:
how doctors and healthcare systems are tackling coronavirus worldwide. BMJ 

368 . 

eam, N.L.S.T.R. , 2011. The national lung screening trial: overview and study design. 
Radiology 258 (1), 243–253 . 

itano, J.J. , Badgeley, M. , Schefflein, J. , Pain, M. , Su, A. , Cai, M. , Swinburne, N. , Zech, J. ,
Kim, J. , Bederson, J. , et al. , 2018. Automated deep-neural-network surveillance of 

cranial images for acute neurologic events. Nat. Med. 24 (9), 1337–1341 . 
ang, J. , Bao, Y. , Wen, Y. , Lu, H. , Luo, H. , Xiang, Y. , Li, X. , Liu, C. , Qian, D. , 2020.

Prior-attention residual learning for more discriminative covid-19 screening in 

ct images. IEEE Trans. Med. Imaging . 
ang, X. , Deng, X. , Fu, Q. , Zhou, Q. , Feng, J. , Ma, H. , Liu, W. , Zheng, C. , 2020. A

weakly-supervised framework for covid-19 classification and lesion localization 
from chest ct. IEEE Trans. Med. Imaging . 1–1 

olff, R.F. , Moons, K.G. , Riley, R.D. , Whiting, P.F. , Westwood, M. , Collins, G.S. , Re-
itsma, J.B. , Kleijnen, J. , Mallett, S. , 2019. Probast: a tool to assess the risk of bias

and applicability of prediction model studies. Ann. Intern. Med. 170 (1), 51–58 . 
orld Health Organization, et al., 2020. Clinical management of covid-19. who ref- 

erence number: Who/2019-ncov/clinical/2020.5. 2020.[internet]. 

ynants, L. , Van Calster, B. , Bonten, M.M. , Collins, G.S. , Debray, T.P. , De Vos, M. ,
Haller, M.C. , Heinze, G. , Moons, K.G. , Riley, R.D. , et al. , 2020. Systematic re-

view and critical appraisal of prediction models for diagnosis and prognosis of 
covid-19 infection. medRxiv . 

ala, A. , Schuster, T. , Miles, R. , Barzilay, R. , Lehman, C. , 2019. A deep learning model
to triage screening mammograms: a simulation study. Radiology 293 (1), 38–46 . 

acharov, I. , Arslanov, R. , Gunin, M. , Stefonishin, D. , Bykov, A. , Pavlov, S. , Panarin, O. ,

Maliutin, A. , Rykovanov, S. , Fedorov, M. , 2019. ’Zhores’–petaflops supercom- 
puter for data-driven modeling, machine learning and artificial intelligence in- 

stalled in skolkovo institute of science and technology. Open Engineering 9 (1), 
512–520 . 

antah, M. , Castillo, E.D. , Townsend, R. , Dikengil, F. , Criner, G.J. , 2020. Pneumotho-
rax in covid-19 disease-incidence and clinical characteristics. Respir. Res. 21 (1), 

1–9 . 

http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0025
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0026
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0027
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0028
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0028
https://luna16.grand-challenge.org
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0030
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0031
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0033
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0034
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0035
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0036
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0037
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0038
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0039
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0040
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0041
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0042
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0043
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0044
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0045
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0047
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0048
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0049
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0049
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0049
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0049
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0050
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0051
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0052
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0053
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0054
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0055
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0056
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0057
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0058
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0059
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0060
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0061
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0062
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0063
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0064
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0065
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0067
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0068
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0069
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0070
http://refhub.elsevier.com/S1361-8415(21)00100-6/sbref0070

	CT-Based COVID-19 triage: Deep multitask learning improves joint identification and severity quantification
	1 Introduction
	1.1 Related work
	1.1.1 CT Analysis for COVID-19 identification and severity estimation
	1.1.2 Deep learning for triage

	1.2 Contribution
	1.2.1 Reproducible research


	2 Method
	2.1 Lungs segmentation
	2.2 COVID-19 Severity quantification
	2.3 COVID-19 Identification
	2.4 Multitask
	2.5 Metrics

	3 Data
	3.1 Mosmed-1110
	3.2 Medseg-29
	3.3 NSCLC-Radiomics
	3.4 LUNA16
	3.5 Mosmed-Test

	4 Experiments
	4.1 Preprocessing
	4.2 Lungs segmentation
	4.3 Lesions segmentation
	4.4 Resnet-50 and multitask models

	5 Results
	5.1 Segmentation-based methods
	5.2 Resnet-50
	5.3 Multitask models

	6 Discussion
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	References


