The high mental health burden of "Long COVID" and its association with on-going physical and respiratory symptoms in all adults discharged from hospital To the Editor: During previous severe coronavirus outbreaks, 15% of survivors suffered from depression and 33% from post-traumatic stress disorder (PTSD) at a mean follow-up of 22.6 and 32.2 months, respectively [1]. A recent systematic review identified that whilst physical symptoms receive most attention, the effects of coronavirus disease 2019 (COVID-19) upon mental health may be equally important [2]. One meta-analysis estimated the prevalence of depression and PTSD in the general public during this pandemic at 24% and 15%, respectively [3]. In adults with pre-existing asthma and COPD, the prevalence of depression and PTSD was 31.5% and 11.3%, respectively [4]. For patients with acute COVID-19 infection, this increased to 42% for depression and 96% for symptoms consistent with PTSD [3]. There are little data on psychiatric ill-health in adults recovering from COVID-19, especially in those with symptoms weeks to months after their initial infection, or "Long COVID" [5]. One study suggested these adults are more likely to be diagnosed with psychiatric conditions, with an estimated incidence of mood disorders of 9.9%. However, this was suggested to be under-estimated as it relied on reporting *via* electronic health data rather than active screening of symptoms [6]. We investigated the mental health burden in adults discharged from hospital with COVID-19 and explored factors that contribute to this. We established a virtual follow-up service (methodology and questionnaire previously reported [7]) for all adults discharged from hospital with a clinical diagnosis of COVID-19 (with or without positive swabs). Our cohort included adults treated in the emergency department, inpatient wards and intensive care. We screened for psychological morbidity using the Patient Health Questionnaire 2-item (PHQ-2) for depression and Trauma Screening Questionnaire (TSQ) for PTSD; these are brief but have good diagnostic sensitivity [8, 9]. Adults with positive scores (PHQ-2 \geqslant 3/6 and TSQ \geqslant 6/10) were provided a referral link to local psychology services. We consecutively sampled and included in our analysis all adults who consented to follow-up. A power calculation was not undertaken due to the observational nature of the study. In line with national guidance for such work, our research was exempt from the need for institutional review board approval [10]. Non-parametric data were compared with Mann–Whitney U-test and categorical data with Chi-squared test. Logistic regression analysis was performed to review the multivariate association between different factors. All tests of significance were two-tailed. p-values ≤ 0.05 were considered statistically significant. As of 22 May 2020, our hospitals had discharged 1050 adults with COVID-19. After excluding patients who died or were clinically inappropriate for follow-up, 90% (n=946) received virtual follow-up at a median of 65 days (interquartile range (IQR) 37.5–92.5). Efforts to follow-up all patients included using translation services, ensuring results were representative of the hospital population. 760 (80.3%) completed the consultation (mean \pm sD age 60.7 \pm 16.3 years); 60.2% were male and 48.4% of black or minority ethnic (BAME) background. Table 1 summarises our follow up outcomes. ## @ERSpublications Adults discharged from hospital with COVID-19 may experience "Long COVID", where mental health symptoms are significant and linked to physical symptoms such as breathlessness. Clinicians should use brief screening questionnaires to support their recovery. https://bit.ly/3d22SJM Cite this article as: Naidu SB, Shah AJ, Saigal A, *et al.* The high mental health burden of "Long COVID" and its association with on-going physical and respiratory symptoms in all adults discharged from hospital. *Eur Respir J* 2021; 57: 2004364 [https://doi.org/10.1183/13993003.04364-2020]. TABLE 1 Demographics and results from virtual follow-up of patients with and without positive Patient Health Questionnaire 2-item (PHQ-2) and Trauma Screening Questionnaire (TSQ) scores | Variable | PHQ-2 | | p-value | TSQ | | p-value | |--|-----------------|----------------|---------|-----------------|---------------|---------| | | Negative | Positive | | Negative | Positive | | | Total patients n | 622 | 105 | | 680 | 80 | | | Demographics | | | | | | | | Age | 60.5±16.1 | 59.7±16.1 | 0.65 | 61.2±16.5 | 57.0±13.2 | 0.03 | | Female | 243 (39.1%) | 48 (45.7%) | 0.20 | 259 (38.1%) | 43 (53.8%) | 0.007 | | Black, Asian and minority ethnic | 289/606 (47.7%) | 50/100 (50.0%) | 0.69 | 316/657 (48.1%) | 36/75 (48.0%) | 0.99 | | Comorbidities | | | | | | | | Clinical frailty (Rockwood) score (out of 9) | 2 (2–3) | 2 (2-4) | 0.50 | 2 (2-4) | 2 (2–3) | 0.07 | | Diabetes | 144/576 (25.0%) | 27/97 (27.8%) | 0.55 | 161/625 (25.8%) | 20/76 (26.3%) | 0.92 | | Any cardiovascular disease | 280/585 (47.9%) | 47/99 (47.5%) | 0.94 | 314/636 (49.4%) | 33/76 (43.4%) | 0.33 | | Chronic respiratory disease | 107/585 (18.3%) | 26/99 (26.3%) | 0.06 | 120/636 (18.9%) | 20/76 (26.3%) | 0.12 | | Chronic kidney disease | 70/579 (12.1%) | 15/97 (15.5%) | 0.35 | 81/630 (12.9%) | 8/74 (10.8%) | 0.62 | | Depression | 16/585 (2.7%) | 18/99 (18.2%) | < 0.001 | 27/636 (4.2%) | 9/76 (11.8%) | 0.004 | | Anxiety | 9/584 (1.5%) | 11/99 (11.1%) | < 0.001 | 16/635 (2.5%) | 6/76 (7.9%) | 0.01 | | Admission data | | | | | | | | Total number of symptoms (out of 14)# | 4 (3-5) | 5 (3-6) | 0.03 | 4 (3-5) | 5 (3-6) | < 0.001 | | Discharged following ED assessment | 93 (15.0%) | 16 (15.2%) | 0.94 | 100 (14.7%) | 11 (13.8%) | 0.81 | | Admitted to intensive care unit | 72/487 (14.8%) | 16/83 (19.3%) | 0.30 | 78 (11.5%) | 12 (15.0%) | 0.43 | | Length of stay days | 7 (4–11) | 7 (3–15) | 0.44 | 7 (4–12) | 7 (3–13) | 0.70 | | Follow-up data | | | | | | | | Any persistent symptoms | 259/620 (41.8%) | 84/105 (80.0%) | < 0.001 | 286/667 (42.9%) | 71/80 (88.8%) | < 0.001 | | Non-improved breathlessness | 126/567 (22.2%) | 14/97 (14.4%) | 0.08 | 135/603 (22.4%) | 10/73 (13.7%) | 0.09 | | MRC breathlessness scale | 1 (1–2) | 3 (2-3.75) | < 0.001 | 1 (1-2) | 3 (2-3.5) | < 0.001 | | Non-improved cough | 157/567 (27.7%) | 32/98 (32.7%) | 0.31 | 174/603 (28.9%) | 19/74 (25.7%) | 0.57 | | Non-improved fatigue | 90/564 (16.0%) | 28/97 (28.9%) | 0.002 | 101/598 (16.9%) | 19/74 (25.7%) | 0.06 | | Non-improved sleep quality | 220/559 (39.4%) | 46/96 (47.9%) | 0.12 | 233/593 (39.3%) | 37/73 (50.7%) | 0.06 | | Myalgia | 106/619 (17.1%) | 49/104 (47.1%) | < 0.001 | 120/667 (18.0%) | 40/79 (50.6%) | < 0.001 | | Anorexia | 37/620 (6.0%) | 22/104 (21.2%) | < 0.001 | 40/668 (6.0%) | 22/79 (27.8%) | < 0.001 | | Confusion or "fuzzy head" | 57/619 (9.2%) | 46/104 (44.2%) | < 0.001 | 65/667 (9.7%) | 42/79 (53.2%) | < 0.001 | | Persistent symptom burden (out of 10)¶ | 0 (0-1) | 2 (1-3.75) | < 0.001 | 0 (0-1) | 3 (1-4) | < 0.001 | | How close to 100% | 90 (80–100) | 70 (60–80) | < 0.001 | 90.0 (80–100) | 70.0 (60-80) | < 0.001 | | Back to work | 174/302 (57.6%) | 18/50 (36.0%) | 0.004 | 174/308 (56.5%) | 18/48 (37.5%) | 0.01 | Data are presented as mean±sp or median (interquartile range), unless otherwise indicated. #: symptoms included were cough, dyspnoea, chest pain, sore throat, rhinitis, fever, fatigue, myalgia, headache, anorexia, anosmia, diarrhoea, abdominal pain, confusion; 10: symptoms included were myalgia, anosmia, chest pain, chest tightness, confusion, diarrhoea, abdominal pain, anorexia, peripheral oedema, focal weakness. ED: emergency department; MRC: Medical Research Council. 47.0% (n=357) of adults had persisting physical and psychiatric symptoms. 105 (14.4%) and 80 (10.5%) adults screened positive for depression and PTSD, respectively. Pre-existing depression and anxiety were associated with positive PHQ-2 (18.2% $\it versus$ 2.7%; 11.1% $\it versus$ 1.5%; both p<0.001) and TSQ (11.8% $\it versus$ 4.2%, p=0.004; 7.9% $\it versus$ 2.5%, p=0.01). No other comorbidity was associated with positive PHQ-2 or TSQ. Adults with positive PHQ-2 and TSQ were significantly more likely to experience persistent symptoms (PHQ-2 80.0% *versus* 41.8%, TSQ 88.8% *versus* 42.9%; both p<0.001). In particular, they were likely to have ongoing physical symptoms of breathlessness, myalgia, anorexia and confusion (all p<0.001). They were also less likely to have returned to work (PHQ-2 36.0% *versus* 57.6%, p=0.004; TSQ 37.5% *versus* 56.5%, p=0.01). Positive PHQ-2 and TSQ scores were more common in adults with more physical symptoms on admission (PHQ-2: 5 symptoms (IQR 3–6) versus 4 symptoms (IQR 3–5), p=0.03; TSQ: 5 symptoms (IQR 3–6) versus 4 symptoms (IQR 3–5), p<0.001; as pre-defined from a list of 14 symptoms) and follow-up (PHQ-2: 2 symptoms (IQR 1–3.75) versus 0 symptoms (IQR 0–1); TSQ: 3 symptoms (IQR 1–4) versus 0 symptoms (IQR 0–1), both p<0.001; as pre-defined from a list of 10 symptoms). No significant differences were seen in PHQ-2 or TSQ scores for patients discharged from the emergency department *versus* inpatient wards, or in patients requiring positive airway pressure or intensive care unit treatment *versus* general care. Logistic regression analysis was undertaken to clarify possible confounders between positive PHQ-2 and TSQ and the above factors. When adjusting for demographics, comorbidities and symptoms, adults with increased symptoms at admission and follow-up remained more likely to have positive PHQ-2 and TSQ; no other significant factors were unmasked. Adults with pre-existing diagnoses of depression and anxiety remained more likely to have positive PHQ-2 but not TSQ. In summary, amongst adults attending hospital services for COVID-19, there is significant mental health burden at follow-up; 13.8% and 10.5% screened positive for depression and PTSD, respectively, at a median of 9 weeks after discharge. This is not dissimilar to the prevalence derived from electronic health data [6]. An association between ethnicity and COVID-19 infection is reported [11]. Our sample had a higher proportion of adults from BAME backgrounds compared to the demography of our local population. Ethnicity was neither associated with prevalence of psychiatric symptoms nor confounded the association of these symptoms with other risks. However, uptake of mental health services by adults of BAME backgrounds may be affected by well-recognised, important factors [11]. This has public health implications for the management of adults from BAME backgrounds suffering with "Long COVID". Our data demonstrate that adults with pre-existing depression and anxiety were likely to have positive PHQ-2 and TSQ at follow-up. When adjusting for psychiatric comorbidity, there remained an increased likelihood of depression but not PTSD. This may be due to their pre-existing psychiatric disease, but the association between mental health and COVID-19 is complicated. Psychiatric disease is an independent risk factor for COVID-19, though the explanation for this remains uncertain [6]. In practice, this population is likely to be vulnerable and would certainly benefit from additional support during recovery. Psychiatric ill-health at follow-up was associated with persistent physical symptoms, such as breathlessness and myalgia. This may be bidirectional: ongoing physical symptoms could lead to psychiatric ill-health and conversely increased mental health burden may present as physical symptoms. Additionally, the SARS-CoV-2 virus may directly cause psychiatric morbidity through cerebral infection or hyperinflammation [2]. Recovery in Long COVID is multi-faceted and we recommend mental health screening to support patients holistically. There was no association between severity of acute COVID-19 infection and psychiatric morbidity at follow-up, suggesting that all adults, even those with initially limited healthcare interaction, may be at equal risk. Considering the large numbers of adults affected, there is a need to establish robust follow-up and rehabilitation services. Given the association between psychiatric ill-health and inability to return to work, this would support societal and economic recovery through improved functional outcomes. We believe our data are representative of our patient population, as we actively screened for symptoms in all patients. We included a diverse range of patients with different comorbidities and disease severity. Our multivariate analysis was able to account for possible confounding factors. Our limitations include not screening for psychiatric ill-health on presentation; thus, we cannot directly compare the prevalence of psychiatric disease pre- and post-infection with COVID-19. Our data cannot sufficiently explain the complex interaction between pre-existing psychiatric illness and current mental health burden. Our data focused on identifying psychological morbidity, but adults infected with COVID-19 may experience positive psychological change and post-traumatic growth [12]. This may mediate psychological morbidity and is interesting to consider for future work by following up the same patients over time. In summary, adults with "Long COVID" are likely to be referred to healthcare professionals specialising in respiratory or rehabilitation medicine. We advocate using brief mental health screening questionnaires to identify psychological needs and support the recovery of patients who may be far from "back to normal" physically and mentally. Sindhu B. Naidu o¹, Amar J. Shah o¹, Anita Saigal¹, Colette Smith², Simon E. Brill¹, James Goldring¹, John R. Hurst o¹,³, Hannah Jarvis¹, Marc Lipman o¹,³ and Swapna Mandal¹¹Royal Free London NHS Foundation Trust, London, UK. ²Institute for Global Health, University College London, London, UK. ³UCL Respiratory, University College London, London, UK. Correspondence: Swapna Mandal, Royal Free London NHS Trust, Pond Street, London, UK. E-mail: swapnamandal@nhs.net Received: 30 Nov 2020 | Accepted: 9 Feb 2021 Conflict of Interest: S.B. Naidu has nothing to disclose. A.J. Shah has nothing to disclose. A. Saigal has nothing to disclose. C. Smith reports grants from ViiV Healthcare and personal fees for development of educational presentations from Gilead Sciences Ltd, outside the submitted work. S.E. Brill has nothing to disclose. J. Goldring has nothing to disclose. J.R. Hurst reports grants, personal fees for educational and advisory work, and non-financial support to attend meetings from pharmaceutical companies that make medicines to treat respiratory disease, during the conduct of the study. H. Jarvis has nothing to disclose. M. Lipman has nothing to disclose. S. Mandal has nothing to disclose. ## References - Rogers JP, Chesney E, Oliver D, et al. Psychiatric and neuropsychiatric presentations associated with severe coronavirus infections: a systematic review and meta-analysis with comparison to the COVID-19 pandemic. Lancet Psych 2020; 7: 611–627. - Vindegaard N, Benros ME. COVID-19 pandemic and mental health consequences: systematic review of the current evidence. *Brain Behav Immun* 2020; 89: 531–542. - 3 Krishnamoorthy Y, Nagarajan R, Saya GK, et al. Prevalence of psychological morbidities among general population, healthcare workers and COVID-19 patients amidst the COVID-19 pandemic: a systematic review and meta-analysis. *Psych Res* 2020; 293: 113382. - Pedrozo-Pupo JC, Campo-Arias A. Depression, perceived stress related to COVID, post-traumatic stress, and insomnia among asthma and COPD patients during the COVID-19 pandemic. Chron Resp Dis 2020; 17: 1479973120962800. - 5 Callard F, Perego E. How and why patients made Long Covid. Soc Sci Med 2021; 268: 113426. - Taquet M, Luciano S, Geddes JR, et al. Bidirectional associations between COVID-19 and psychiatric disorder: retrospective cohort studies of 62 354 COVID-19 cases in the USA. *Lancet Psych* 2021; 8: 130–140. - Mandal S, Barnett J, Brill SE, et al. "Long-COVID": a cross-sectional study of persisting symptoms, biomarker and imaging abnormalities following hospitalisation for COVID-19. Thorax 2021; 76: 396–398. - 8 Kroenke K, Spitzer RL, Williams JB. The Patient Health Questionnaire-2: validity of a two-item depression screener. *Med Care* 2003; 41: 1284–1292. - 9 Brewin CR, Rose S, Andrews B, et al. Brief screening instrument for post-traumatic stress disorder. Br J Psych 2002; 181: 158–162. - 10 Health Research Authority. Guidance for Using Patient Data. www.hra.nhs.uk/covid-19-research/guidance-using-patient-data/ Date last updated: 10 November 2020 - 11 Sze S, Pan D, Nevill CR, et al. Ethnicity and clinical outcomes in COVID-19: a systematic review and meta-analysis. EClinicalMedicine 2020; 29: 100630. - 12 Prieto-Ursúa M, Jódar R. Finding meaning in hell. The role of meaning, religiosity and spirituality in posttraumatic growth during the coronavirus crisis in Spain. Front Psychol 2020; 11: 567836. Copyright ©The authors 2021. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org