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Abstract

Objective: Vast 12-lead ECGs repositories provide opportunities to develop new machine 

learning approaches for creating accurate and automatic diagnostic systems for cardiac 

abnormalities. However, most 12-lead ECG classification studies are trained, tested, or developed 

in single, small, or relatively homogeneous datasets. In addition, most algorithms focus on 

identifying small numbers of cardiac arrhythmias that do not represent the complexity and 

difficulty of ECG interpretation. This work addresses these issues by providing a standard, multi-

institutional database and a novel scoring metric through a public competition: the PhysioNet/

Computing in Cardiology Challenge 2020.

Approach: A total of 66 361 12-lead ECG recordings were sourced from six hospital systems 

from four countries across three continents; 43 101 recordings were posted publicly with a focus 

on 27 diagnoses. For the first time in a public competition, we required teams to publish open-

source code for both training and testing their algorithms, ensuring full scientific reproducibility.

Main results: A total of 217 teams submitted 1395 algorithms during the Challenge, 

representing a diversity of approaches for identifying cardiac abnormalities fr om both academia 
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and industry. As with previous Challenges, high-performing algorithms exhibited significant drops 

(⪅ 10%) in performance on the hidden test data.

Significance: Data from diverse institutions allowed us to assess algorithmic generalizability. A 

novel evaluation metric considered different misclassification errors for different cardiac 

abnormalities, capturing the outcomes and risks of different diagnoses. Requiring both trained 

models and code for training models improved the generalizability of submissions, setting a new 

bar in reproducibility for public data science competitions.
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1. Introduction

Cardiovascular disease is the leading cause of death worldwide (Benjamin et al 2019). Early 

treatment can prevent serious cardiac events, and the most important tool for screening and 

diagnosing cardiac electrical abnormalities is the electrocardiogram (ECG) (Kligfield et al 

2007, Kligfield 2002). The ECG is a non-invasive representation of the electrical activity of 

the heart that is measured using electrodes placed on the torso. The standard 12-lead ECG is 

widely used to diagnose a variety of cardiac arrhythmias such as atrial fibrillation and other 

cardiac anatomy abnormalities such as ventricular hypertrophy (Kligfield et al 2007). ECG 

abnormalities have also been identified as both short- and long-term mortality risk predictors 

(Mozos and Caraba 2015, Gibbs et al 2019). Therefore, the early and correct diagnosis of 

cardiac ECG abnormalities can increase the chances of successful treatments. However, 

manual interpretation of ECGs is time-consuming and requires skilled personnel with a high 

degree of training.

The automatic detection and classification of cardiac abnormalities can assist physicians in 

making diagnoses for a growing number of recorded ECGs. However, there has been limited 

success in achieving this goal (Willems et al 1991, Shah and Rubin 2007). Over the last 

decade, the rapid development of machine learning techniques have also included a growing 

number of 12-lead ECG classifiers (Ye et al 2010, Ribeiro et al 2020, Chen et al 2020). 

Many of these algorithms may identify cardiac abnormalities correctly. However, most of 

these methods are trained, tested, or developed in single, small, or relatively homogeneous 

datasets. In addition, most methods focus on identifying a small number of cardiac 

arrhythmias that do not represent the complexity and difficulty of ECG interpretation.

The PhysioNet/Computing in Cardiology Challenge 2020 provided an opportunity to 

address these problems by providing data from a wide set of sources with a large set of 

cardiac abnormalities (Goldberger et al 2000, PhysioNet Challenges 2020, PhysioNet/

Computing in Cardiology Challenge 2020a). The PhysioNet Challenge is an initiative that 

invites participants from academia, industry, and elsewhere to tackle clinically important 

questions that are either unsolved or not well-solved. Similar to previous years, the 

Challenge had both an unofficial phase and an official phase that ran over the course of 

several months. PhysioNet co-hosts the Challenge annually in cooperation with the 
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Computing in Cardiology conference. The goal of the 2020 PhysioNet Challenge was to 

identify clinical diagnoses from 12-lead ECG recordings.

We asked participants to design and implement a working, open-source algorithm that can, 

based only on the clinical data provided, automatically identify any cardiac abnormalities 

present in a 12-lead ECG recording. Like previous years, we facilitated the development of 

the algorithms through the Challenge but did little to constrain the algorithms themselves. 

However, we required that each algorithm be reproducible from the provided training data. 

The winners of the Challenge are the team whose algorithm achieved the highest score for 

recordings in the hidden test set. We developed a new scoring function that awards partial 

credit to misdiagnoses that result in similar treatments or outcomes as the true diagnosis or 

diagnoses as judged by our cardiologists because traditional scoring metrics, such as 

common area under the curve (AUC) metrics, do not explicitly reflect the clinical reality that 

some misdiagnoses are more harmful than others and should be scored accordingly.

2. Methods

2.1. Data

For the PhysioNet/Computing in Cardiology Challenge 2020, we assembled multiple 

databases from across the world. Each database contained recordings with diagnoses and 

demographic data.

2.1.1. Challenge data sources—We used data from five different sources. Two 

sources were split to form training, validation, and test sets; two sources were included only 

as training data; and one source was included only as test data. These sources of ECG data 

are described below and summarized in table 1. We made the training data and clinical ECG 

diagnoses (labels) publicly available, but the validation and test data were kept hidden. The 

training, validation and test data were matched as closely as possible for age, sex and 

diagnosis. The completely hidden dataset has never been posted publicly, allowing us to 

assess common machine learning problems such as overfitting.

a. CPSC. The first source is the China Physiological Signal Challenge 2018 

(CPSC2018), held during the 7th International Conference on Biomedical 

Engineering and Biotechnology in Nanjing, China (Liu et al 2018). This source 

includes three databases: the original public training dataset (CPSC), an unused 

dataset (CPSC-Extra), and the test dataset (the hidden CPSC set) from the 

CPSC2018. The CPSC and CPSC-Extra datasets were shared as training sets. 

The hidden CPSC set was split into validation and test set for this year’s 

Challenge.

b. INCART. The second source is the public dataset from the St. Petersburg 

Institute of Cardiological Technics (INCART) 12-lead Arrhythmia Database, St. 

Petersburg, Russian Federation, which is posted on PhysioNet (Tihonenko et al 

2008). The dataset was shared as a training set.

c. PTB and PTB-XL. The third source is the Physikalisch-Technische 

Bundesanstalt (PTB) Database, Brunswick, Germany. This source includes two 
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public databases: the PTB Diagnostic ECG Database (Bousseljot et al 1995) and 

the PTB-XL Database (Wagner et al 2020), a large publicly available ECG 

dataset. These datasets were shared as training sets.

d. G12EC. The fourth source is the Georgia 12-lead ECG Challenge (G12EC) 

Database, Emory University, Atlanta, Georgia, USA. This is a new database, 

representing a large population from the Southeastern United States, and is split 

between the training, validation, and test sets. The validation and test set 

comprised the hidden G12EC set.

e. Undisclosed. The fifth source is a dataset from an undisclosed American 

institution that is geographically distinct from the other dataset sources. This 

dataset has never been (and may never be) posted publicly, and is used as a test 

set for the Challenge.

2.1.2. Challenge data variables—Each 12-lead ECG recording was acquired in a 

hospital or clinical setting. The specifics of the data acquisition depend on the source of the 

databases, which were assembled around the world and therefore vary. We encourage the 

readers to check the original publications for details but provide a summary below.

Each annotated ECG recording contained 12-lead ECG signal data with sample frequencies 

varying from 257 Hz to 1 kHz. Demographic information, including age, sex, and a 

diagnosis or diagnoses, i.e. the labels for the Challenge data, were also included. The quality 

of the label depended on the clinical or research practices, and the Challenge included labels 

that were machine-generated, over-read by a single cardiologist, and adjudicated by multiple 

cardiologists.

Table 2 provides a summary of the age, sex, and recording information for the Challenge 

databases, indicating differences between the populations. Table 3 and figure 1 provide 

summaries of the diagnoses for the training and validation data. The training data contain 

111 diagnoses or classes. We used 27 of these 111 diagnoses to evaluate participant 

algorithms because they were relatively common, of clinical interest, and more likely to be 

recognizable from ECG recordings. Table 3 contains the list of the scored diagnoses for the 

Challenge can be seen in table 3 with long-form descriptions, the corresponding 

Systematized Nomenclature of Medicine Clinical Terms (SNOMED-CT) codes, and 

abbreviations. Only these scored classes are shown in table 3 and figure 1, but all 111 classes 

were included in the training data so that participants could decide whether or not to use 

them with their algorithms. The test data contain a subset of the 111 diagnoses in potentially 

different proportions, but each diagnosis in the test data was represented in the training data.

All data were provided in MATLAB- and WFDB-compatible format (Goldberger et al 

2000). Each ECG recording had a binary MATLAB v4 file for the ECG signal data and an 

associated text file in WFDB header format describing the recording and patient attributes, 

including the diagnosis or diagnoses, i.e. the labels for the recording. We did not change the 

original data or labels from the databases, except (1) to provide consistent and Health 

Insurance Portability and Accountability Act (HIPAA)-compliant identifiers for age and sex, 

(2) to add approximate SNOMED CT codes as the diagnoses for the recordings, and (3) to 
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change the amplitude resolution to save the data as integers as required for WFDB format. 

Saving the signals as integers helped reduced storage size and compute times without 

degrading the signal, as it only represents a change in the scaling factor for the signal 

amplitude.

2.2. Challenge objective

We asked participants to design working, open-source algorithms for identifying cardiac 

abnormalities in 12-lead ECG recordings. To the best of our knowledge, for the first time in 

any public competition, we required that teams submit code both for their trained models 

and for training their models, which aided the generalizability and reproducibility of the 

research conducted during the Challenge. We ran the participants’ trained models on the 

hidden validation and test data and evaluated their performance using a novel, expert-based 

evaluation metric that we designed for this year’s Challenge.

2.2.1. Challenge overview, rules, and expectations—This year’s Challenge is the 

21st PhysioNet/Computing in Cardiology Challenge (Goldberger et al 2000). Similar to 

previous Challenges, this year’s Challenge had an unofficial phase and an official phase. The 

unofficial phase (February 7, 2020 to April 30, 2020) provided an opportunity to socialize 

the Challenge and seek discussion and feedback from teams about the data, evaluation 

metrics, and requirements. The unofficial phase allowed five scored entries for each team. 

After a short break, the official phase (May 11, 2020 to August 23, 2020) introduced 

additional training, validation, and test data; a requirement for teams to submit their training 

code; and an improved evaluation metric. The official phase allowed 10 scored entries for 

each team. During both phases, teams were evaluated on a small validation set; evaluation 

on the test set occurred after the end of the official phase of the Challenge to prevent 

sequential training on the test data. Moreover, while teams were encouraged to ask 

questions, pose concerns, and discuss the Challenge in a public forum, they were prohibited 

from discussing their particular approaches to preserve the uniqueness of their approaches 

for solving the problem posed by the Challenge.

2.2.2. Classification of 12-lead ECGs—We required teams to submit both their 

trained models along with code for training their models. We announced this requirement at 

the launch of this year’s Challenge but did not start requiring the submission of training code 

until the official phase of the Challenge; by this time, we had a better idea of what teams 

would need to train their algorithms. Teams included any processed and relabeled training 

data in the training step; any changes to the training data are part of training a model.

We first ran each team’s training code on the training data and then ran each team’s trained 

code from the previous step on the hidden validation and test sets. We ran each algorithm 

sequentially on the recordings to use them as realistically as possible.

We allowed teams to submit either MATLAB or Python implementations of their code. 

Other languages, including Julia and R, were supported but received insufficient interest 

from participants during the unofficial phase. Participants containerized their code in Docker 

and submitted it in GitHub or Gitlab repositories. We downloaded their code and ran in 
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containerized environments on Google Cloud. The computational environment is given more 

fully in Reyna et al (2019), which describes the previous year’s Challenge.

We used virtual machines on Google Cloud with 8 vCPUs, 64 GB RAM, and an optional 

NVIDIA T4 Tensor Core graphics processing unit (GPU) with a 72 hour time limit for 

training on the training set. We used virtual machines on Google Cloud with 2 vCPUs, 13 

GB RAM, and an optional NVIDIA T4 Tensor Core GPU with a 24 hour time limit for 

running the trained classifiers on the test set.

To aid teams, we shared baseline models that we implemented in MATLAB and Python. The 

Python baseline model was a random forest classifier that used age, sex, QRS amplitude, and 

RR intervals as features. QRS detection was implemented using the Pan-Tompkins 

algorithm (Pan and Tompkins 1985). The MATLAB baseline model was a hierarchical 

multinomial logistic regression classifier that used age, sex, and global electrical 

heterogeneity (Waks et al 2016) parameters as features. The global electrical heterogeneity 

parameters were computed using a time coherent median beat and origin point calculation 

(Perez-Alday et al 2019). The QRS detection and RR interval calculations were 

implemented using the heart rate variability (HRV) cardiovascular research toolbox (Vest et 

al 2018, Vest et al 2019). However, it was not the aim of these example models to provide a 

competitive classifier but instead to provide an example of how to read and extract features 

from the recordings.

2.2.3. Evaluation of classifiers—For this year’s Challenge, we developed a new 

scoring metric that awards partial credit to misdiagnoses that result in similar outcomes or 

treatments as the true diagnoses as judged by our cardiologists. This scoring metric reflects 

the clinical reality that some misdiagnoses are more harmful than others and should be 

scored accordingly. Moreover, it reflects the fact that it is less harmful to confuse some 

classes than others because the responses may be similar or the same.

Let C = {ci}i = 1
m  be a collection of m distinct diagnoses for a database of n recordings. First, 

we defined a multi-class confusion matrix A = [aij], where aij is the normalized number of 

recordings in a database that were classified as belonging to class ci but actually belong to 

class cj (where ci and cj may be the same class or different classes). Since each recording can 

have multiple labels and each classifier can produce multiple outputs for a recording, we 

normalized the contribution of each recording to the scoring metric by dividing by the 

number of classes with a positive label and/or classifier output. Specifically, for each 

recording k = 1, … , n, let xk be the set of positive labels and yk be the set of positive 

classifier outputs for recording k. We defined a multi-class confusion matrix A = [aij] by

aij = ∑
k = 1

n
aijk, (1)

where
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aijk =
1

∣ xk ∪ yk ∣ , if ci ∈ xk and cj ∈ yk,

0, otherwise.
(2)

The quantity ∣xk ∪ yk ∣ is the number of distinct classes with a positive label and/or classifier 

output for recording k. To incentivize teams to develop multi-class classifiers, we allowed 

classifiers to receive slightly more credit from recordings with multiple labels than from 

those with a single label, but each additional positive label or classifier output may reduce 

the available credit for that recording.

Next, we defined a reward matrix W = [wij], where wij is the reward for a positive classifier 

output for class ci with a positive label cj (where ci and cj may be the same class or different 

classes). The entries of W are defined by our cardiologists based on the similarity of 

treatments or differences in risks (see figure 2). The highest values of the reward matrix are 

along its diagonal, associating full credit with correct classifier outputs, partial credit with 

incorrect classifier outputs, and no credit for labels and classifier outputs that are not 

captured in the weight matrix. Also, three similar classes (i.e. PAC and SVPB, PVC and 

VPB, CRBBB and RBBB) are scored as if they were the same class, so a positive label or 

classifier output in one of these classes is considered to be a positive label or classifier 

output for all of them. However, we did not change the labels in the training or test data to 

make these classes identical to preserve any institutional preferences or other information in 

the data.

Finally, we defined a score

sunnormalized = ∑
i = 1

m
∑
j = 1

m
wijaij, (3)

for each classifier as a weighted sum of the entries in the confusion matrix. This score is a 

generalized version of the traditional accuracy metric that awards full credit to correct 

outputs and no credit to incorrect outputs. To aid interpretability, we normalized this score so 

that a classifier that always outputs the true class or classes receives a score of 1 and an 

inactive classifier that always outputs the normal class receives a score of 0, i.e.

snormalized = sunnormalized − sinactive
strue − sinactive

, (4)

where sinactive is the score for the inactive classifier and strue is the score for ground-truth 

classifier. A classifier that returns only positive outputs will typically receive a negative 

score, i.e. a lower score than a classifier that returns only negative outputs, which reflects the 

harm of false alarms.

Accordingly, this scoring metric was designed to award full credit to correct diagnoses and 

partial credit to misdiagnoses with similar risks or outcomes as the true diagnosis. The 
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resources, populations, practices, and preferences of an institution all determine the ideal 

choice of the reward matrix W; the choice of W for the Challenge is just one example.

3. Results

We received a total of 1395 submissions of algorithms from 217 teams across academia and 

industry. The total number of successful entries was 707, with 397 successful entries during 

the unofficial phase of the Challenge and 310 successful entries during the official phase. 

During the official phase, we scored each entry on the validation set. The final score and 

ranking were based on the test set. A total of 70 teams’ codebases successfully ran on the 

test data. After final scoring, 41 teams were able to qualify for the final rankings (PhysioNet/

Computing in Cardiology Challenge 2020b). Reasons for disqualification included: the 

training algorithm did not run, the trained model failed to run on the hidden undisclosed set 

(because of differences in sampling frequencies), the team failed to submit a preprint on 

time, the team failed to attend Computing in Cardiology (remotely or in person) and defend 

their work, and the team failed to submit their final article on time or address the reviewers’ 

comments.

Figure 3 shows the performance of each team’s final algorithm on the validation set, the 

hidden CPSC set, the hidden G12EC set, the hidden undisclosed set, and the test set. The 

line colors from red to blue indicate higher to lower scores on the test set. We observed the 

difference in score between each set. The higher scores were observed in the hidden CPSC 

dataset which contained a larger number of recordings in the training set as compared to the 

other three hidden dataset. We can also observe a drop on scores for the hidden undisclosed 

set for which no recording was included in the training or validation sets.

Figure 4 shows the ranked performance of each team’s final algorithm on the validation set, 

the hidden CPSC set, the hidden G12EC set, the hidden undisclosed set, and the test set. The 

points indicate the rank of each individual algorithm on each dataset. The line colors 

indicate the ranks on the test set.

On average, the Challenge scores dropped 47% from the hidden CPSC set to the hidden 

G12EC set and another 57% from the hidden G12EC set to the hidden undisclosed set. We 

observed an average drop of 50% from the validation score set to the test set.

The most common algorithmic approach was based on deep learning and convolutional 

neural networks (CNNs). However, over 70% of entries used standard clinical or hand-

crafted features with classifiers such as support vector machines, gradient boosting, random 

forests, and shallow neural networks. The median training time was 6 h, 49 min; nearly all 

approaches that required more than a few hours for training used deep learning frameworks.

4. Discussion

Figures 3 and 4 show how the performance of participant entries dropped on the hidden set. 

This under-performance on the hidden undisclosed dataset, and to a much lesser extent, on 

the hidden G12EC dataset could be due to the most teams over-trained on the CPSC data. 

The hidden CPSC data included fewer recordings than the other hidden sets. The poorer 
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scores and ranks demonstrate the importance of including multiple sources for 

generalizability of the algorithms.

Deep learning approaches are one of the most popular machine learning techniques for 

classification problems, especially those of images. Some participants adapted previously 

developed algorithms for other classification problems and therefore this modification does 

not necessarily perform better than a custom-made machine learning algorithm.

It is important to note the class imbalance between the datasets, but the larger number and 

varying prevalences of diagnoses in different datasets represent the real-world problem of 

reading 12-lead ECGs in a clinical setting. In fact, most teams performed best on the CPSC 

dataset, which was the least representative dataset because it had fewer and more balanced 

diagnoses than the other datasets. Moreover, the scoring function that we proposed and used 

to evaluate the performance of each algorithm penalized classes non-uniformly, based on 

clinical importance. Balancing data would not only be artificial, but would provide an 

advantage to teams because the prevalence of the class would then be known. The Challenge 

was designed to discourage the use of a priori information on distributions, since the 

algorithms are likely to be used in a variety of unknown populations. Moreover, racial 

inequities and genetic variations are likely to lead to substantially different performances. 

While we cannot address that directly because the populations in the databases are not 

strictly matched, there is the potential to evaluate long-standing unknowns in algorithms that 

have been traditionally developed on predominately white, western hemisphere populations. 

(We note that the training, validation, and test data were matched as closely as possible for 

age, sex and diagnosis.) In future Challenges, we will re-use these databases and reveal per-

class performances in the hidden test data to allow full evaluations of the algorithms in terms 

of class, age, race, and gender.

5. Conclusions

This article describes the world’s largest open access database of 12-lead ECGs, together 

with a large hidden test database to provide objective comparisons. The data were drawn 

from three continents with diverse and distinctly different populations, encompassing 111 

diagnoses with 27 diagnoses of special interest for the Challenge. Additionally, we 

introduced a novel scoring matrix that rewards algorithms based on similarities between 

diagnostic outcomes, weighted by severity/risk.

The public training data and sequestered validation and test data provided the opportunity 

for unbiased and comparable repeatable research. Notably, to the best of our knowledge, this 

is the first public competition that has required the teams to provide both their original 

source code and the framework for (re)training their code. In doing so, this creates the first 

truly repeatable and generalizable body of work on the classification of electrocardiograms.
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Figure 1. 
Numbers of recordings with each scored diagnosis in the training and validation sets. Colors 

indicate the fraction of recordings with each scored diagnosis in each data set, i.e. the total 

number of each scored diagnosis in a data set normalized by the number of recordings in 

each data set. Parentheses indicate the total numbers of records with a given label across 

training and the validation sets (rows) and the total numbers of recordings, including 

recordings without scored diagnoses, in each data set (columns).
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Figure 2. 
Reward matrix W for the diagnoses scored in the Challenge with rows and columns labeled 

by the abbreviations for the diagnoses in table 3. Off-diagonal entries that are equal to 1 

indicate similar diagnoses that are scored as if they were the same diagnosis. Each entry in 

the table was rounded to the first decimal place due to space constraints in this manuscript, 

but the shading of each entry reflects the actual value of the entry.
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Figure 3. 
Scores of the final 70 algorithms that were able to completely evaluated on the validation 

set, the hidden CPSC set, the hidden G12EC set, the hidden undisclosed set, and the test set. 

The points indicate the score of each individual algorithm on each dataset, with the higher 

points showing algorithms with the highest scores on each dataset. The ranks on the test set 

are further indicated by color, with red indicating the best ranked algorithms and blue 

indicating the worst ranked algorithm on the test set.
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Figure 4. 
Ranks of the final 70 algorithms that were completely evaluated on the validation set, the 

hidden CPSC set, the hidden G12EC set, the hidden undisclosed set, and the test set. Lines 

from top to bottom indicate the rank of each individual algorithm on each dataset. Rank is 

indicated by color coding, with red indicating the best ranked algorithms, blue indicating the 

worst ranked algorithm on the test set, and gray indicating disqualified algorithms.
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Table 1.

Numbers of patients and recordings in the training, validation, and test databases for the Challenge. The 

training set includes data from the China Physiological Signal Challenge 2018 (CPSC), the St. Petersburg 

Institute of Cardiological Technics (INCART), the Physikalisch-Technische Bundesanstalt (PTB), and the 

Georgia 12-lead ECG Challenge (G12EC) databases. The validation set includes data from the CPSC and the 

G12EC databases. The test set includes data from the CPSC, the G12EC, and the undisclosed databases.

Database Total patients
Recordings in

training set
Recordings in
validation set

Recordings
in test set Total recordings

CPSC 9458 10 330 1463 1463 13 256

INCART 32 74 0 0 74

PTB 19 175 22 353 0 0 22 353

G12EC 15 742 10 344 5167 5167 20 678

Undisclosed Unknown 0 0 10 000 10 000

Total Unknown 43 101 6630 16 630 66 361
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Table 2.

Number of recordings, mean duration of recordings, mean age of patients in recordings, sex of patients in 

recordings, and sample frequency of recordings for each dataset. Italicized dataset names indicate that the 

database is a subset of the source dataset above it. The training, validation and test data were matched as 

closely as possible for age, sex and diagnosis.

Dataset
Number of
recordings

Mean
duration (s)

Mean age
(years)

Sex
(male/female)

Sample
frequency (Hz)

CPSC (all data) 13 256 16.2 61.1 53%/47% 500

CPSC Training 6877 15.9 60.2 54%/46% 500

CPSC-Extra Training 3453 15.9 63.7 53%/46% 500

Hidden CPSC 2926 17.4 60.4 52%/48% 500

INCART 72 1800.0 56.0 54%/46% 257

PTB 516 110.8 56.3 73%/27% 1000

PTB-XL 21 837 10.0 59.8 52%/48% 500

G12EC (all data) 20 678 10.0 60.5 54%/46% 500

G12EC Training 10 344 10.0 60.5 54%/46% 500

Hidden G12EC 10 344 10.0 60.5 54%/46% 500

Undisclosed 10 000 10.0 63.0 53%/47% 300
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Table 3.

Diagnoses, SNOMED CT codes and abbreviations in the posted training databases for diagnoses that were 

scored for the Challenge.

Diagnosis Code Abbreviation

1st degree AV block 270492004 IAVB

Atrial fibrillation 164889003 AL

Atrial flutter 164890007 AFL

Bradycardia 426627000 Brady

Complete right bundle branch block 713427006 CRBBB

Incomplete right bundle branch block 713426002 IRBBB

Left anterior fascicular block 445118002 LAnFB

Left axis deviation 39732003 LAD

Left bundle branch block 164909002 LBBB

Low QRS voltages 251146004 LQRSV

Nonspecific intraventricular conduction disorder 698252002 NSIVCB

Pacing rhythm 10370003 PR

Premature atrial contraction 284470004 PAC

Premature ventricular contractions 427172004 PVC

Prolonged PR interval 164947007 LPR

Prolonged QT interval 111975006 LQT

Q wave abnormal 164917005 QAb

Right axis deviation 47665007 RAD

Right bundle branch block 59118001 RBBB

Sinus arrhythmia 427393009 SA

Sinus bradycardia 426177001 SB

Sinus rhythm 426783006 NSR

Sinus tachycardia 427084000 STach

Supraventricular premature beats 63593006 SVPB

T wave abnormal 164934002 TAb

T wave inversion 59931005 TInv

Ventricular premature beats 17338001 VPB
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